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ABSTRACT 
Clustering ensemble methods aim to improve the robustness, stability, and accuracy of clustering results 
by combining multiple individual clustering solutions. The idea is to leverage diverse clustering 
algorithms or variations of the same algorithm to capture different aspects of the underlying data 
structure. Ensemble methods can be particularly effective when dealing with complex datasets, noisy 
data, or when individual clustering algorithms are sensitive to specific initialization conditions. 
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1. INTRODUCTION 
Ensemble clustering is the process of combining the multiple clustering results of a set of objects into a 
single improved clustering. It is sometimes referred to as the Consensus solution or Clustering 
Aggregation. In recent years, various studies have been conducted to develop clustering ensemble 
methods inspired by the success of the ensemble method in the supervised learning field. However, 
compared to the research on classification ensemble methods, building a clustering ensemble is not 
straightforward, and further work is required in this field. There are several reasons that make the task of 
building a clustering ensemble more challenging than that of classification. One is that clustering is 
unsupervised learning in which the data are unlabelled, so there is no prior knowledge with which the 
algorithm can discover the true cluster structure, and there is no “ground truth” to validate the clustering 
result. Moreover, no cross-validation technique can be carried out to tune the clustering algorithm’s 
parameters, thus there are no guidelines with which the user can select the most appropriate clustering 
algorithm for a given dataset. Another challenge is that the number of clusters produced may differ among 
the generated solutions by different clustering algorithms. In addition, the number of clusters in the final 
solution is unknown in advance. The final solution is obtained by accessing a set of base solutions, which 
in fact are cluster labels, and not the original data used. Ghosh and Acharya pointed out that there are 
several motivations for using clustering ensembles, and that these are much broader than those for using 
classification ensemble, where the main motivation of the latter is to improve the classification accuracy.  
These reasons include:  
 To improve the quality of the clustering results compared to those produced by single clustering 

algorithms. 
 To reuse existing clustering (knowledge reuse): in some applications a variety of partitions may 

exist, so they can be combined to obtain a final clustering result. This delivers a more consolidated 
clustering result; several examples are provided in.  

 To generate robust clustering results across different types of datasets. It is widely known that the 
popular clustering algorithms often fail to produce a good clustering result when the data do not 
match with their assumptions. Among these objectives, the first point is the most widely accepted 
one. The cluster quality is usually measured with a numerical measurement to assess different 
aspects of cluster validation.  

 
2. Motivation 
Clustering ensemble methods are motivated by the recognition that different clustering algorithms or 
parameter settings may yield varying results on the same dataset. 
They aim to overcome the limitations of individual algorithms by combining their outputs to achieve more 
reliable and robust clustering solutions. 
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Diversity 
Ensemble methods benefit from the diversity of individual clustering solutions. Diversity is essential 
because it allows the ensemble to capture different perspectives on the data and reduce the impact of 
algorithmic biases or sensitivity to initialization. 
 
Aggregation Techniques 
Clustering ensemble methods use various aggregation techniques to combine individual clustering. 
Common approaches include voting mechanisms, averaging, or more sophisticated meta-models that 
learn to combine the outputs of base clustering models. 
Bagging involves generating multiple bootstrap samples of the original dataset, performing clustering on 
each sample independently, and aggregating the results. 
Boosting focuses on improving the performance of weak clustering algorithms by giving more weight to 
misclassified instances in successive iterations. 
Voting-based methods combine the results of multiple clustering algorithms through a voting mechanism. 
Stacking uses a meta-model to combine the predictions of multiple base clustering models. 
Hierarchical clustering ensemble combines results from different hierarchical clustering algorithms or 
applies hierarchical clustering to the outputs of other clustering algorithms. 
Self-Organizing Maps (SOM) ensemble combines the results of multiple SOMs to enhance clustering 
performance. 
Consensus clustering generates multiple clustering solutions and finds a consensus among them to 
identify stable clusters. 
 
3. Clustering Ensemble Methods 
Bagging (Bootstrap Aggregating) 
Description: Bagging involves creating multiple bootstrap samples (random samples with replacement) 
from the original dataset. Each sample is used to independently perform clustering. The final clustering 
result is obtained by aggregating the individual results, often through a majority vote or averaging. 
Example: Iterative Bagging of K-Means (IBK-Means) involves applying K-Means clustering to different 
bootstrap samples iteratively. 
 
Boosting 
Description: Boosting methods aim to improve the performance of weak clustering algorithms by 
iteratively assigning higher weights to misclassified instances. The idea is to focus on instances that are 
difficult to cluster correctly. 
Example: AdaBoost clustering assigns higher weights to misclassified data points in each iteration, 
encouraging the algorithm to give more attention to challenging instances. 
 
Voting-Based Methods 
Description: In voting-based ensemble methods, the results of multiple clustering algorithms are 
combined through a voting mechanism. This can involve a majority vote or a weighted vote based on the 
confidence of each algorithm's clustering decisions. 
Example: K-Modes Voting combines the results of multiple K-Modes clustering algorithms through a 
voting process. 
 
Stacking 
Description: Stacking involves training multiple base clustering models, and then using a meta-model to 
combine their predictions. The meta-model is trained on the outputs of the base models to improve 
overall clustering performance. 
Example: Stacked Ensemble Clustering may use algorithms like K-Means, DBSCAN, and Agglomerative 
Clustering as base models, and a meta-model like Random Forest to combine their outputs. 
 
Hierarchical Clustering Ensemble 
Description: Hierarchical Clustering Ensemble involves combining the results of different hierarchical 
clustering algorithms or applying hierarchical clustering to the outputs of other clustering algorithms. 
Example: Hierarchical Clustering Ensemble (HCE) might utilize results from algorithms like K-Means, 
DBSCAN, and Agglomerative Clustering, and then perform hierarchical clustering on the combined results. 
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Self-Organizing Maps (SOM) Ensemble 
Description: SOM Ensemble combines the results of multiple Self-Organizing Maps, which are neural 
network-based clustering algorithms. The ensemble approach helps capture different aspects of the data. 
Example: Train multiple SOMs on different subsets of the data and combine their cluster assignments. 
 
Consensus Clustering 
Description: Consensus Clustering involves generating multiple clustering solutions using various 
algorithms or parameters and finding a consensus among them. This helps identify robust clusters that 
are stable across different runs. 
Example: Consensus K-Means generates multiple K-Means clusterings with different initializations and 
combines them to find a stable consensus. 
These ensemble methods offer diverse strategies for combining the results of individual clustering 
algorithms, enhancing the robustness and accuracy of the overall clustering process. The choice of a 
specific method depends on the characteristics of the data and the goals of the clustering task. 
 
4. Challenges in Clustering Ensemble 
Unsupervised Nature: Clustering is unsupervised, making it challenging as there's no labeled data to 
guide the algorithm. 
Lack of Ground Truth: Without labeled data, there's no "ground truth" to validate the clustering results. 
No Parameter Tuning via Cross-Validation: The absence of labeled data also means no cross-validation 
for parameter tuning. 
Differing Number of Clusters: Different clustering algorithms may produce varying numbers of clusters. 
Unknown Number of Clusters in Advance: The final number of clusters is unknown before clustering. 
 
5. Advantages of Clustering Ensemble 
Improved Robustness: Ensembles are less sensitive to variations in data and initialization conditions. 
Increased Stability: Consistent clustering results across multiple runs or algorithms enhances stability. 
Enhanced Accuracy: Combining diverse perspectives can lead to more accurate representations of 
complex data structures. 
 
6. CONCLUSION 
In summary, clustering ensemble methods provide a powerful approach to enhance the quality and 
reliability of clustering results by leveraging the strengths of multiple algorithms. The choice of a specific 
ensemble method depends on the characteristics of the data and the goals of the clustering task. 
Ensemble clustering addresses the challenges posed by unsupervised learning, offering a way to improve 
clustering quality, reuse existing knowledge, and enhance robustness across different datasets. Further 
research and development in this field are essential to refine and expand the applicability of clustering 
ensemble methods. 
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