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ABSTRACT 
Metaheuristic algorithms have been at the forefront of optimization research for many years, with 
continuous advancements and the development of new algorithms. Among these, the recently proposed 
Sunflower Optimization Algorithm (SFO) has emerged as a notable search algorithm due to its simplicity 
and effectiveness. However, as a relatively new algorithm, it presents opportunities for further 
enhancement and flexibility in its methodology. This study introduces the Oscillating Chaotic Sunflower 
Optimization Algorithm (OCSFO), an innovative variant of the SFO that incorporates a novel exploration 
technique utilizing chaotic maps. Specifically, the OCSFO algorithm employs Chebyshev, Circle, Logistic, 
Sine, and Tent chaotic maps to guide individual production and algorithm execution. The novelty of this 
research lies in the integration of chaotic dynamics into the SFO framework, enhancing its exploratory 
capabilities and potentially improving convergence rates and solution quality. The OCSFO algorithm was 
applied to solve various optimization problems, including benchmark test functions and practical 
applications such as parameter tuning in machine learning models and optimizing design parameters in 
engineering systems. To evaluate the performance of the proposed OCSFO, both restricted and 
unrestricted test functions were utilized, providing a comprehensive assessment of its effectiveness. 
Comparative results demonstrate that the OCSFO achieves competitive outcomes compared to the 
classical SFO, underscoring its potential as a robust optimization tool. This work is highly relevant as it 
contributes to the ongoing evolution of metaheuristic algorithms, offering a new approach to 
optimization that leverages the strengths of chaotic systems. The findings of this study provide valuable 
insights and pave the way for further research and development in the field of metaheuristic optimization 
and its applications in artificial intelligence and engineering. 
 
Keywords: Machine Learning Models, Metaheuristic Algorithms, Sunflower Optimization Algorithm, 
Chaotic Maps, Optimization. 
 
1. INTRODUCTION  
Plant intelligence-based heuristic algorithms have established their effectiveness in solving combinatorial 
and nonlinear problems. Extensive research over the years has revealed that plants exhibit intelligent 
behaviours and possess complex systems that resemble a nervous system. For instance, plant roots 
transmit data about light and toxins to their growth centres, and plants interact with their environment 
through electric currents, as seen in their defence mechanisms against aphids or caterpillars [1]. 
The SFO Algorithm, inspired by the movement of sunflowers towards the sun, has found diverse 
applications. Qais et al. [2] used the SFO Algorithm for parameter selection in photovoltaic module 
modelling and simulation, achieving notable results with specific pollination and elimination rates. Shaha 
Al-Otaibi et al. [3] applied the SFO Algorithm, a novel approach called SFO-CORP, which addresses the 
issue of short-lived sensor nodes in wireless sensor networks. Hussein et al. [4] used the SFO Algorithm 
for PI controller parameter selection, where it outperformed the Particle Swarm Optimization (PSO) 
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algorithm.  Tabibi et al. [5] introduced a self-adaptive SFO Algorithm to optimize parameters for proton 
exchange membrane fuel cells, minimizing error values significantly. Shaheen et al. [6] employed the SFO 
Algorithm to solve optimal power flow problems in power systems, achieving better results than both 
PSO and genetic algorithms. Alshammar [7] developed a chaotic SFO Algorithm using Logistic chaotic 
mapping for optimal tuning of power system stabilizers, which outperformed several other algorithms 
across multiple test functions. 
Chaotic maps have been extensively integrated into metaheuristic algorithms to enhance their 
performance by escaping local optima and improving convergence rates. Author in literature [8] 
combined chaotic maps with the golden section search method, producing a highly effective optimization 
algorithm for nonlinear problems. 
 Literature [9] demonstrated that chaotic maps help algorithms avoid local minima more efficiently, 
leading to superior optimization performance. Demir et al. [10] proposed a hybrid chaotic swarm 
optimization method using the Logistic-sine map, which showed excellent results on benchmark 
functions and practical design problems. Author in literature [11] enhanced PSO with the Piecewise 
Linear Chaotic Map (PWLCM), achieving better global optimization performance. Tian [12] integrated 
chaotic maps and Gaussian mutation into PSO, avoiding local optima and ensuring thorough exploration 
of the solution space. Literature [13] utilized various chaotic maps to improve the Whale Optimization 
Algorithm, achieving high effectiveness across multiple benchmark functions. Pluhacek et al. [14,15] 
employed chaotic maps to enhance the inertia-weighted PSO algorithm, resulting in significant 
performance improvements. 
Building on these insights, this study proposes the Oscillating Chaotic Sunflower Algorithm (OCSFO), a 
novel variant that enhances the exploration process through oscillation-based positioning and the use of 
chaotic maps. This innovative approach allows for flexible and robust search capabilities, achieving 
competitive results compared to the classical SFO Algorithm. The details of the classical SFO Algorithm 
and the OCSFO's methodology are presented in the next section. Performance tests, experimental 
parameters, and results are discussed in the third section, followed by a comprehensive evaluation in the 
final section. 
 
2. Related Work 
The Sunflower Optimization (SFO) Algorithm is part of a broader class of plant intelligence-based 
heuristic algorithms that have demonstrated their capability in solving complex combinatorial and 
nonlinear problems. As researchers have delved into plant behaviours, such as heliotropism in 
sunflowers, these insights have been translated into optimization algorithms with significant success. 
 
2.1 Sunflower Optimization Algorithm and Oscillating Chaotic Sunflower Optimization Algorithm 
Mathematical methods used in solving optimization problems can be disadvantageous due to the high 
computational cost or the difficulty in formulating a mathematical model for every problem. Alternatively, 
metaheuristics offer a versatile approach that can be applied to various problems without requiring a 
specific model. The lower computational cost, ease of adaptability, and strong performance of 
metaheuristics make them a popular choice for many applications. These advantages have led to their 
application across diverse fields, from engineering to social sciences. 

   One of the successful metaheuristic optimization algorithms proposed in recent years is the Sunflower 
Optimization Algorithm (SFO). Inspired by the heliotropic movements of sunflowers, the SFO algorithm 
mimics the natural behaviour of sunflowers as they follow the sun's rays. Each day, sunflowers reorient 
themselves to maximize their exposure to sunlight, moving eastward in the morning and westward in the 
evening. The SFO algorithm uses this behaviour as a metaphor for its optimization process, where each 
sunflower represents a potential solution. 

   In the SFO algorithm, individuals (sunflowers) adjust their positions based on their proximity to an 
optimal solution, referred to as the "sun." Sunflowers close to the optimal solution make finer 
adjustments, while those farther away make larger moves to get closer. Neighbouring sunflowers also 
engage in pollination, creating new individuals. Despite the potential for millions of pollinations in the 
real world, the algorithm simplifies this by assuming each sunflower performs one pollination. The 
individual closest to the optimal solution becomes the new sun, and a proportion of the population is 
eliminated to maintain a manageable search space, a process termed the elimination rate. This cycle 
repeats until a termination criterion is met. 
The effectiveness of the SFO algorithm stems from its consideration of the distance from the sun, 
governed by the inverse square radiation law. According to this law, radiation intensity is inversely 
proportional to the square of the distance, meaning that sunflowers farther from the sun receive more 

radiation. This effect is represented by a parameter, ( ), which modulates the influence of distance on 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 5, 2024                           VOL. 33, NO. 2, 2024 

 

 

                                                                                 671                                                     M.Bheemalingaiah et al 669-681 

the algorithm's operations. The mathematical representation of this relationship involves the power of 

the source ( ) and the distance ( ) between the (ith) individual and the immediate best solution: 

 
The basic principle in the algorithm is to represent the orientation of sunflowers to the sun. For this, the 

sun ( ) in the population is the reference for other sunflowers ( ). Its orientation, which takes into 

account the criterion of distance relative to the reference, is expressed by: 

 
The orientation steps of the population individuals towards the sun are among the critical parameters of 

the sunflower algorithm. Individuals ( ).  in the orientation velocities of the population 

individuals. It pollinates with the individual and forms the new individual with random position. This 
random position is proportional to the distance between individuals. The general expression of the steps 
towards the sun is given by: 

=  

One of the main criteria for determining step values is the maximum stride length ( ). This 

parameter is directly proportional to the Euclidean distance of the default upper bound ( ) and 

lower bound ( ) according to the problem definition, and inversely proportional to the number of 

individuals in the population ( ): 

 
Based on these basic parameters, the new individual is calculated as: 

 
In the classical SFO Algorithm, individuals that are far from the sun in each iteration are removed from 
the search process according to the mortality rate, and new individuals are produced in their place. Given 
the randomness, it is possible that new individuals behave similarly to older individuals.  
In this study, the Oscillating Chaotic Sunflower Optimization Algorithm (OCSFO) is proposed to allow the 
exploration process to be carried out more flexibly. In this version of the algorithm, the search space for a 
given portion of newly added individuals throughout the iterations is determined based on the 
population best and the search space maximum. This process involves two main stages. The first stage 
determines a location between the iteration best and the search space maximum for a specific proportion 

( ) of individuals to be added. This location is based on the value obtained from the Gaussian 

Distribution Function, which uses the midpoint of the two boundaries as the average value: 

 

 
A trigonometric approach is used for generating candidate values around the specified location centre, 
allowing a more flexible discovery process. New candidate values introduced into the population in 

iteration ( ) are identified using: 

 
Here, ( ) refers to the value returned from the chaotic map function used, and ( ) is a predefined 

application constant. The identification of other individuals who did not use this function and who 
recently joined the population was carried out according to the classical SFO. However, chaotic map 
functions were used in all candidate productions (including the initial population). The study used well-
known chaotic map functions to evaluate the performance of different chaotic variations of the OCSFO. 
Algorithm 1 uses the pseudocode of the OCSFO Algorithm, with the chaotic map selection indicated by the 

( ) parameter. In the algorithm, Equations 6-8 are executed in the function of subtracting individuals 

away from the sun. This function uses the parameters  and . 
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Algorithm 1. OCSFO Algorithm pseudocode  

1. ,   Problem-defined upper limit and lower limits  

2.  Maximum number of iterations  

3.  population size. 

4.  Chaotic generator function type  

5.  population removal rate (%) 

6. for ’ then   

7. = IndividualGeneratorFunction ( , ) 

8. add to population ( ) 

9. end for  
10. Calculate objective()  

11.  findsun()  

12. RedirectYour Sunflowers to the Sun()  

13. while ( )  

14. for j=1’then 𝑵𝒑𝒐𝒑  
15. CalculateVector of Individuals() 

16. SubtractIndividualsAway from the Sun . 

17. EvaluateNewIndividuals( ) 

18. end for 
19. calculateobjective. 

20. findsun()  

21. End while  
22. ShowBestSolution() 

 
Chaotic maps are the randomness of a mathematically simple deterministic dynamic system, and the 
chaotic system can be considered a source of randomness. In this study, it was examined whether more 
efficient results could be obtained from SFO application by using chaotic maps. These chaotic maps have 
been used in individual production and movement behaviours. Table 1 shows the chaotic maps used in 
the study. All chaotic maps used are added to the OCSFO Algorithm and enabled by a function selection 
parameter. Thus, similar to the studies in [16,17] the OCSFO Algorithm being run is named with the 
chaotic map used (such as tentOCSFO). 
 
3.Simulation and Analysis 
In this section, we present the performance results of the chaotic-based Sunflower Optimization 
Algorithms (SFOs), specifically focusing on the Oscillating Chaotic Sunflower Optimization (OCSFO) 
variants. The performance of these chaotic-based algorithms is compared with that of the classical 
Sunflower Algorithm (SFO). Various well-known test functions, as listed in Table 2, were used to evaluate 
the performance. The test functions include both unrestricted functions (Sphere, Rastrigin, Nonlinear) 
and restricted functions (Rosenbrock Disk, Rosenbrock Cubic/Line). For each test function, the problem 
sizes were as follows: five for the Sphere function, three for the Rastrigin function, and two for the other 
functions. The individual size and the number of internal iterations were set to 20, with the number of 
solution iterations chosen as 5, resulting in a total of 95 iterations. The pollination rate (p) was set to 0.05 
and the elimination rate (O) to 0.1. The performance of the algorithms was evaluated across 20 
independent experiments. The results are analyzed in terms of the minimum values obtained over 
iterations, with a focus on comparing the classical SFO and the chaotic-based SFOs. 
 

Table 1. Chaotic Maps used in OCSFO variants. 
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Table 2. Test Functions used for Performance Evaluation. 

 

 
a) 

 
b) 

 
c) 

 
d) Logistic 

 
e) 

 
f) 

Figure 1. Minimum variations of the conformity value according to iterations for the Camel Test Function, 
a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 
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Camel Test Function 
Figure 1 illustrates the iteration-wise minimum values obtained for the Camel test function. The classical 
SFO and various chaotic-based SFOs were evaluated, including Chebyshev, Circle, Logistic, Sine, and Tent. 
The results show that the average number of iterations to achieve 99% of the minimum value was 17. 
Specifically, TentOCSFO achieved this in an average of 13 iterations, making it the most effective among 
the chaotic-based methods, followed by CircleOCSFO and LogisticOCSFO with 16 iterations each. 
ChebyshevOCSFO and SineOCSFO required more iterations, with averages of 19 and 25, respectively. 
 

 
a) 

 
b) 

 

 
c) 

 
d) 

 

 
e) 

 
f) 
 

Figure 2. Minimum variations of the conformity value according to iterations for the Nonlinear Test 
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 

 
Nonlinear Test Function 
Performance results for the Nonlinear test function are shown in Figure 2. The classical SFO reached the 
minimum value in an average of 8 iterations. Among the chaotic-based SFOs, TentOCSFO and CircleOCSFO 
performed the best, reaching the minimum in 6 and 7 iterations, respectively. ChebyshevOCSFO and 
LogisticOCSFO took longer, achieving the minimum in 11 and 10 iterations, respectively. The overall 
performance highlights TentOCSFO as the most efficient chaotic-based method for this function.
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a) 

 
b) 

 

 
c) 

 
d) 

 

 
e) 

 
f) 
 

Figure 3. Minimum variations of the conformity value according to iterations for the Rastrigin Test 
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 

 
Rastrigin Test Function 
Figure 3 displays the iteration-minimum results for the Rastrigin test function. This function, known for 
its multiple local minima, showed that the classical SFO achieved a minimum value of 1.471 at the 32nd 
iteration. TentOCSFO performed well, achieving a minimum of 1.012 by the 17th iteration, making it one 
of the top performers. LogisticOCSFO achieved a minimum of 0.885 but required more iterations (65). 
CircleOCSFO and ChebyshevOCSFO also performed competently but fell short compared to TentOCSFO. 
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a) 

 
b) 

 

 
c) 

 
d) 

 

 
e) 

 
f) 
 

Figure 4. Minimum variations of the conformity value according to iterations for the Sphere Test 
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 

 
Sphere Test Function 
Figure 4 presents the results for the Sphere test function, where the actual minimum value is 0. Here, 
TentOCSFO and SineOCSFO achieved the closest values to the minimum, with averages of 19 and 43 
iterations, respectively. The classical SFO showed similar performance, reaching the minimum in an 
average of 22 iterations. While TentOCSFO performed closely to the classical SFO, ChebyshevOCSFO and 
LogisticOCSFO required more iterations. 
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a) 

 
b) 

 

 
c) 

 
d) 

 

 
e) 

 
f) 
 

Figure 5. Minimum variations of the conformity value according to iterations for the Rosenbrock Disk 
Test Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 

 
 
Rosenbrock Disk Test Function 
The results for the Rosenbrock Disk test function are shown in Figure 5. The classical SFO reached the 
minimum in an average of 9 iterations. The chaotic-based methods showed similar performance, with 
TentOCSFO and ChebyshevOCSFO achieving the minimum in 10 and 10 iterations, respectively. The other 
methods also performed well, though TentOCSFO and ChebyshevOCSFO were slightly less efficient in 
comparison to the classical SFO. 
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a) 

 
b) 

 

 
c) 

 
d) 

 

 
e) 

 
f) 
 

Figure 6. Minimum variations of the conformity value according to iterations for the Rosenbrock 
Cubic/Line Test Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent. 

 
Rosenbrock Cubic/Line Test Function 
Figure 6 presents the results for the Rosenbrock Cubic/Line test function. The classical SFO demonstrated 
superior performance, reaching the minimum in an average of 10 iterations. Chaotic-based SFOs 
generally required more iterations, with ChebyshevOCSFO and TentOCSFO needing 53 and 47 iterations, 
respectively. LogisticOCSFO and CircleOCSFO also showed good results but were less effective compared 
to the classical SFO. 
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Table 3. Statistical results for all experiments 

 
 
4.Statistical Summary 
Table 3 summarizes the statistical results for all experiments. For the Camel function, chaotic-based SFOs, 
particularly ChebyshevOCSFO, LogisticOCSFO, SineOCSFO, and TentOCSFO, showed better performance 
compared to the classical SFO, although CircleOCSFO and classical SFO were slightly behind. For the 
Nonlinear function, all methods performed well, with minimal differences between them. For the 
Rastrigin function, LogisticOCSFO and TentOCSFO outperformed others, with TentOCSFO being the best. 
In the Sphere function, SineOCSFO and TentOCSFO were closest to the minimum value. For the 
Rosenbrock Disk, all methods performed well, but classical SFO and TentOCSFO were slightly less 
efficient. Finally, for the Rosenbrock Cubic/Line, classical SFO was the most effective, with chaotic-based 
methods trailing behind. 
Overall, the results demonstrate that the chaotic-based SFOs, particularly TentOCSFO, generally provide 
competitive and often superior performance compared to the classical SFO. ChebyshevOCSFO, while 
effective, showed slightly lower performance in comparison to other chaotic variants. 
 
5.CONCLUSIONS 
In this paper, the Oscillating Chaotic Sunflower Optimization (OCSFO) Algorithm is proposed, introducing 
a more flexible exploration process to the traditional Sunflower Optimization Algorithm (SFO) by 
integrating chaotic and trigonometric approaches. The performance of the proposed OCSFO algorithm 
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was evaluated using various chaotic maps—Circle, Logistic, Chebyshev, Tent, and Sine—and tested on a 
set of well-known benchmark functions, including both unrestricted (Nonlinear, Camel, Rastrigin, Sphere) 
and restricted (Rosenbrock Disk, Rosenbrock Cubic/Line) test functions. 
The experimental results demonstrate that the OCSFO algorithm produces highly competitive results 
across different test functions. In particular, the Tent-based OCSFO variant showed superior performance 
in terms of reaching minimum values more quickly and effectively for several test functions, including the 
Camel, Nonlinear, and Sphere functions. The Logistic-based OCSFO also performed well, especially for the 
Rastrigin function. Although the Chebyshev-based OCSFO showed slightly lower performance compared 
to other chaotic variants, it still demonstrated competitive results. 
Statistical analyses confirmed that the chaotic-based SFOs, particularly the TentOCSFO, offer a significant 
improvement over the classical SFO, making them a viable alternative for optimization tasks. The chaotic 
maps introduced an additional layer of randomness and flexibility, enhancing the exploration capabilities 
of the algorithm and preventing premature convergence. 
Future work will focus on further enhancing the OCSFO algorithm by exploring rule inference-based 
optimization and sentiment analysis applications. Additionally, there is potential for investigating other 
chaotic maps and trigonometric approaches to further improve the performance and applicability of the 
OCSFO algorithm in various optimization problems. 
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