
Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

 669 M.Bheemalingaiah et al 669-681

Enhancing AI Optimization with Chaotic Maps: The
Oscillating Chaotic Sunflower Optimization

Algorithm

M.Bheemalingaiah1*, G.Sreenivasulu2, L.Venkateswa Reddy3, Khaja
Mahabubullah4, A.Ramesh Babu5, D.Himagiri6

1,2,5,6 Département of CSE, J.B. Institute of Engineering and Technology, Hyderabad, India,

Email : bheemasiva2019@gmail.com1, g.sreenivasulu@jbiet.edu.in2, askarbabu@gmail.com5,
himagiri.danapana@gmail.com6

3Department of CSE, Joginapally B.R. Engineering College, Hyderabad, India,
Email : lakkireddy.v@gmail.com

4Department of MCA, Deccan College of Engineering and Technology, Hyderabad, India,
Email : hod_mca@deccancollege.ac.in

*Corresponding Author

 Received: 11.04.2024 Revised : 18.05.2024 Accepted: 24.05.2024

ABSTRACT
Metaheuristic algorithms have been at the forefront of optimization research for many years, with
continuous advancements and the development of new algorithms. Among these, the recently proposed
Sunflower Optimization Algorithm (SFO) has emerged as a notable search algorithm due to its simplicity
and effectiveness. However, as a relatively new algorithm, it presents opportunities for further
enhancement and flexibility in its methodology. This study introduces the Oscillating Chaotic Sunflower
Optimization Algorithm (OCSFO), an innovative variant of the SFO that incorporates a novel exploration
technique utilizing chaotic maps. Specifically, the OCSFO algorithm employs Chebyshev, Circle, Logistic,
Sine, and Tent chaotic maps to guide individual production and algorithm execution. The novelty of this
research lies in the integration of chaotic dynamics into the SFO framework, enhancing its exploratory
capabilities and potentially improving convergence rates and solution quality. The OCSFO algorithm was
applied to solve various optimization problems, including benchmark test functions and practical
applications such as parameter tuning in machine learning models and optimizing design parameters in
engineering systems. To evaluate the performance of the proposed OCSFO, both restricted and
unrestricted test functions were utilized, providing a comprehensive assessment of its effectiveness.
Comparative results demonstrate that the OCSFO achieves competitive outcomes compared to the
classical SFO, underscoring its potential as a robust optimization tool. This work is highly relevant as it
contributes to the ongoing evolution of metaheuristic algorithms, offering a new approach to
optimization that leverages the strengths of chaotic systems. The findings of this study provide valuable
insights and pave the way for further research and development in the field of metaheuristic optimization
and its applications in artificial intelligence and engineering.

Keywords: Machine Learning Models, Metaheuristic Algorithms, Sunflower Optimization Algorithm,
Chaotic Maps, Optimization.

1. INTRODUCTION
Plant intelligence-based heuristic algorithms have established their effectiveness in solving combinatorial
and nonlinear problems. Extensive research over the years has revealed that plants exhibit intelligent
behaviours and possess complex systems that resemble a nervous system. For instance, plant roots
transmit data about light and toxins to their growth centres, and plants interact with their environment
through electric currents, as seen in their defence mechanisms against aphids or caterpillars [1].
The SFO Algorithm, inspired by the movement of sunflowers towards the sun, has found diverse
applications. Qais et al. [2] used the SFO Algorithm for parameter selection in photovoltaic module
modelling and simulation, achieving notable results with specific pollination and elimination rates. Shaha
Al-Otaibi et al. [3] applied the SFO Algorithm, a novel approach called SFO-CORP, which addresses the
issue of short-lived sensor nodes in wireless sensor networks. Hussein et al. [4] used the SFO Algorithm
for PI controller parameter selection, where it outperformed the Particle Swarm Optimization (PSO)

mailto:g.sreenivasulu@jbiet.edu.in
mailto:askarbabu@gmail.com
mailto:himagiri.danapana@gmail.com
mailto:lakkireddy.v@gmail.com
mailto:hod_mca@deccancollege.ac.in

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 670 M.Bheemalingaiah et al 669-681

algorithm. Tabibi et al. [5] introduced a self-adaptive SFO Algorithm to optimize parameters for proton
exchange membrane fuel cells, minimizing error values significantly. Shaheen et al. [6] employed the SFO
Algorithm to solve optimal power flow problems in power systems, achieving better results than both
PSO and genetic algorithms. Alshammar [7] developed a chaotic SFO Algorithm using Logistic chaotic
mapping for optimal tuning of power system stabilizers, which outperformed several other algorithms
across multiple test functions.
Chaotic maps have been extensively integrated into metaheuristic algorithms to enhance their
performance by escaping local optima and improving convergence rates. Author in literature [8]
combined chaotic maps with the golden section search method, producing a highly effective optimization
algorithm for nonlinear problems.
 Literature [9] demonstrated that chaotic maps help algorithms avoid local minima more efficiently,
leading to superior optimization performance. Demir et al. [10] proposed a hybrid chaotic swarm
optimization method using the Logistic-sine map, which showed excellent results on benchmark
functions and practical design problems. Author in literature [11] enhanced PSO with the Piecewise
Linear Chaotic Map (PWLCM), achieving better global optimization performance. Tian [12] integrated
chaotic maps and Gaussian mutation into PSO, avoiding local optima and ensuring thorough exploration
of the solution space. Literature [13] utilized various chaotic maps to improve the Whale Optimization
Algorithm, achieving high effectiveness across multiple benchmark functions. Pluhacek et al. [14,15]
employed chaotic maps to enhance the inertia-weighted PSO algorithm, resulting in significant
performance improvements.
Building on these insights, this study proposes the Oscillating Chaotic Sunflower Algorithm (OCSFO), a
novel variant that enhances the exploration process through oscillation-based positioning and the use of
chaotic maps. This innovative approach allows for flexible and robust search capabilities, achieving
competitive results compared to the classical SFO Algorithm. The details of the classical SFO Algorithm
and the OCSFO's methodology are presented in the next section. Performance tests, experimental
parameters, and results are discussed in the third section, followed by a comprehensive evaluation in the
final section.

2. Related Work
The Sunflower Optimization (SFO) Algorithm is part of a broader class of plant intelligence-based
heuristic algorithms that have demonstrated their capability in solving complex combinatorial and
nonlinear problems. As researchers have delved into plant behaviours, such as heliotropism in
sunflowers, these insights have been translated into optimization algorithms with significant success.

2.1 Sunflower Optimization Algorithm and Oscillating Chaotic Sunflower Optimization Algorithm
Mathematical methods used in solving optimization problems can be disadvantageous due to the high
computational cost or the difficulty in formulating a mathematical model for every problem. Alternatively,
metaheuristics offer a versatile approach that can be applied to various problems without requiring a
specific model. The lower computational cost, ease of adaptability, and strong performance of
metaheuristics make them a popular choice for many applications. These advantages have led to their
application across diverse fields, from engineering to social sciences.

 One of the successful metaheuristic optimization algorithms proposed in recent years is the Sunflower
Optimization Algorithm (SFO). Inspired by the heliotropic movements of sunflowers, the SFO algorithm
mimics the natural behaviour of sunflowers as they follow the sun's rays. Each day, sunflowers reorient
themselves to maximize their exposure to sunlight, moving eastward in the morning and westward in the
evening. The SFO algorithm uses this behaviour as a metaphor for its optimization process, where each
sunflower represents a potential solution.

 In the SFO algorithm, individuals (sunflowers) adjust their positions based on their proximity to an
optimal solution, referred to as the "sun." Sunflowers close to the optimal solution make finer
adjustments, while those farther away make larger moves to get closer. Neighbouring sunflowers also
engage in pollination, creating new individuals. Despite the potential for millions of pollinations in the
real world, the algorithm simplifies this by assuming each sunflower performs one pollination. The
individual closest to the optimal solution becomes the new sun, and a proportion of the population is
eliminated to maintain a manageable search space, a process termed the elimination rate. This cycle
repeats until a termination criterion is met.
The effectiveness of the SFO algorithm stems from its consideration of the distance from the sun,
governed by the inverse square radiation law. According to this law, radiation intensity is inversely
proportional to the square of the distance, meaning that sunflowers farther from the sun receive more

radiation. This effect is represented by a parameter, (), which modulates the influence of distance on

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 671 M.Bheemalingaiah et al 669-681

the algorithm's operations. The mathematical representation of this relationship involves the power of

the source () and the distance () between the (ith) individual and the immediate best solution:

The basic principle in the algorithm is to represent the orientation of sunflowers to the sun. For this, the

sun () in the population is the reference for other sunflowers (). Its orientation, which takes into

account the criterion of distance relative to the reference, is expressed by:

The orientation steps of the population individuals towards the sun are among the critical parameters of

the sunflower algorithm. Individuals (). in the orientation velocities of the population

individuals. It pollinates with the individual and forms the new individual with random position. This
random position is proportional to the distance between individuals. The general expression of the steps
towards the sun is given by:

=

One of the main criteria for determining step values is the maximum stride length (). This

parameter is directly proportional to the Euclidean distance of the default upper bound () and

lower bound () according to the problem definition, and inversely proportional to the number of

individuals in the population ():

Based on these basic parameters, the new individual is calculated as:

In the classical SFO Algorithm, individuals that are far from the sun in each iteration are removed from
the search process according to the mortality rate, and new individuals are produced in their place. Given
the randomness, it is possible that new individuals behave similarly to older individuals.
In this study, the Oscillating Chaotic Sunflower Optimization Algorithm (OCSFO) is proposed to allow the
exploration process to be carried out more flexibly. In this version of the algorithm, the search space for a
given portion of newly added individuals throughout the iterations is determined based on the
population best and the search space maximum. This process involves two main stages. The first stage
determines a location between the iteration best and the search space maximum for a specific proportion

() of individuals to be added. This location is based on the value obtained from the Gaussian

Distribution Function, which uses the midpoint of the two boundaries as the average value:

A trigonometric approach is used for generating candidate values around the specified location centre,
allowing a more flexible discovery process. New candidate values introduced into the population in

iteration () are identified using:

Here, () refers to the value returned from the chaotic map function used, and () is a predefined

application constant. The identification of other individuals who did not use this function and who
recently joined the population was carried out according to the classical SFO. However, chaotic map
functions were used in all candidate productions (including the initial population). The study used well-
known chaotic map functions to evaluate the performance of different chaotic variations of the OCSFO.
Algorithm 1 uses the pseudocode of the OCSFO Algorithm, with the chaotic map selection indicated by the

() parameter. In the algorithm, Equations 6-8 are executed in the function of subtracting individuals

away from the sun. This function uses the parameters and .

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 672 M.Bheemalingaiah et al 669-681

Algorithm 1. OCSFO Algorithm pseudocode

1. , Problem-defined upper limit and lower limits

2. Maximum number of iterations

3. population size.

4. Chaotic generator function type

5. population removal rate (%)

6. for ’ then

7. = IndividualGeneratorFunction (,)

8. add to population ()

9. end for
10. Calculate objective()

11. findsun()

12. RedirectYour Sunflowers to the Sun()

13. while ()

14. for j=1’then 𝑵𝒑𝒐𝒑
15. CalculateVector of Individuals()

16. SubtractIndividualsAway from the Sun .

17. EvaluateNewIndividuals()

18. end for
19. calculateobjective.

20. findsun()

21. End while
22. ShowBestSolution()

Chaotic maps are the randomness of a mathematically simple deterministic dynamic system, and the
chaotic system can be considered a source of randomness. In this study, it was examined whether more
efficient results could be obtained from SFO application by using chaotic maps. These chaotic maps have
been used in individual production and movement behaviours. Table 1 shows the chaotic maps used in
the study. All chaotic maps used are added to the OCSFO Algorithm and enabled by a function selection
parameter. Thus, similar to the studies in [16,17] the OCSFO Algorithm being run is named with the
chaotic map used (such as tentOCSFO).

3.Simulation and Analysis
In this section, we present the performance results of the chaotic-based Sunflower Optimization
Algorithms (SFOs), specifically focusing on the Oscillating Chaotic Sunflower Optimization (OCSFO)
variants. The performance of these chaotic-based algorithms is compared with that of the classical
Sunflower Algorithm (SFO). Various well-known test functions, as listed in Table 2, were used to evaluate
the performance. The test functions include both unrestricted functions (Sphere, Rastrigin, Nonlinear)
and restricted functions (Rosenbrock Disk, Rosenbrock Cubic/Line). For each test function, the problem
sizes were as follows: five for the Sphere function, three for the Rastrigin function, and two for the other
functions. The individual size and the number of internal iterations were set to 20, with the number of
solution iterations chosen as 5, resulting in a total of 95 iterations. The pollination rate (p) was set to 0.05
and the elimination rate (O) to 0.1. The performance of the algorithms was evaluated across 20
independent experiments. The results are analyzed in terms of the minimum values obtained over
iterations, with a focus on comparing the classical SFO and the chaotic-based SFOs.

Table 1. Chaotic Maps used in OCSFO variants.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 673 M.Bheemalingaiah et al 669-681

Table 2. Test Functions used for Performance Evaluation.

a)

b)

c)

d) Logistic

e)

f)

Figure 1. Minimum variations of the conformity value according to iterations for the Camel Test Function,
a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 674 M.Bheemalingaiah et al 669-681

Camel Test Function
Figure 1 illustrates the iteration-wise minimum values obtained for the Camel test function. The classical
SFO and various chaotic-based SFOs were evaluated, including Chebyshev, Circle, Logistic, Sine, and Tent.
The results show that the average number of iterations to achieve 99% of the minimum value was 17.
Specifically, TentOCSFO achieved this in an average of 13 iterations, making it the most effective among
the chaotic-based methods, followed by CircleOCSFO and LogisticOCSFO with 16 iterations each.
ChebyshevOCSFO and SineOCSFO required more iterations, with averages of 19 and 25, respectively.

a)

b)

c)

d)

e)

f)

Figure 2. Minimum variations of the conformity value according to iterations for the Nonlinear Test
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Nonlinear Test Function
Performance results for the Nonlinear test function are shown in Figure 2. The classical SFO reached the
minimum value in an average of 8 iterations. Among the chaotic-based SFOs, TentOCSFO and CircleOCSFO
performed the best, reaching the minimum in 6 and 7 iterations, respectively. ChebyshevOCSFO and
LogisticOCSFO took longer, achieving the minimum in 11 and 10 iterations, respectively. The overall
performance highlights TentOCSFO as the most efficient chaotic-based method for this function.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 675 M.Bheemalingaiah et al 669-681

a)

b)

c)

d)

e)

f)

Figure 3. Minimum variations of the conformity value according to iterations for the Rastrigin Test
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Rastrigin Test Function
Figure 3 displays the iteration-minimum results for the Rastrigin test function. This function, known for
its multiple local minima, showed that the classical SFO achieved a minimum value of 1.471 at the 32nd
iteration. TentOCSFO performed well, achieving a minimum of 1.012 by the 17th iteration, making it one
of the top performers. LogisticOCSFO achieved a minimum of 0.885 but required more iterations (65).
CircleOCSFO and ChebyshevOCSFO also performed competently but fell short compared to TentOCSFO.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 676 M.Bheemalingaiah et al 669-681

a)

b)

c)

d)

e)

f)

Figure 4. Minimum variations of the conformity value according to iterations for the Sphere Test
Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Sphere Test Function
Figure 4 presents the results for the Sphere test function, where the actual minimum value is 0. Here,
TentOCSFO and SineOCSFO achieved the closest values to the minimum, with averages of 19 and 43
iterations, respectively. The classical SFO showed similar performance, reaching the minimum in an
average of 22 iterations. While TentOCSFO performed closely to the classical SFO, ChebyshevOCSFO and
LogisticOCSFO required more iterations.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 677 M.Bheemalingaiah et al 669-681

a)

b)

c)

d)

e)

f)

Figure 5. Minimum variations of the conformity value according to iterations for the Rosenbrock Disk
Test Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Rosenbrock Disk Test Function
The results for the Rosenbrock Disk test function are shown in Figure 5. The classical SFO reached the
minimum in an average of 9 iterations. The chaotic-based methods showed similar performance, with
TentOCSFO and ChebyshevOCSFO achieving the minimum in 10 and 10 iterations, respectively. The other
methods also performed well, though TentOCSFO and ChebyshevOCSFO were slightly less efficient in
comparison to the classical SFO.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 678 M.Bheemalingaiah et al 669-681

a)

b)

c)

d)

e)

f)

Figure 6. Minimum variations of the conformity value according to iterations for the Rosenbrock
Cubic/Line Test Function, a) Classic Sunflower, b) Chebyshev, c) Circle, d) Logistic, e) Sine, f) Tent.

Rosenbrock Cubic/Line Test Function
Figure 6 presents the results for the Rosenbrock Cubic/Line test function. The classical SFO demonstrated
superior performance, reaching the minimum in an average of 10 iterations. Chaotic-based SFOs
generally required more iterations, with ChebyshevOCSFO and TentOCSFO needing 53 and 47 iterations,
respectively. LogisticOCSFO and CircleOCSFO also showed good results but were less effective compared
to the classical SFO.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 679 M.Bheemalingaiah et al 669-681

Table 3. Statistical results for all experiments

4.Statistical Summary
Table 3 summarizes the statistical results for all experiments. For the Camel function, chaotic-based SFOs,
particularly ChebyshevOCSFO, LogisticOCSFO, SineOCSFO, and TentOCSFO, showed better performance
compared to the classical SFO, although CircleOCSFO and classical SFO were slightly behind. For the
Nonlinear function, all methods performed well, with minimal differences between them. For the
Rastrigin function, LogisticOCSFO and TentOCSFO outperformed others, with TentOCSFO being the best.
In the Sphere function, SineOCSFO and TentOCSFO were closest to the minimum value. For the
Rosenbrock Disk, all methods performed well, but classical SFO and TentOCSFO were slightly less
efficient. Finally, for the Rosenbrock Cubic/Line, classical SFO was the most effective, with chaotic-based
methods trailing behind.
Overall, the results demonstrate that the chaotic-based SFOs, particularly TentOCSFO, generally provide
competitive and often superior performance compared to the classical SFO. ChebyshevOCSFO, while
effective, showed slightly lower performance in comparison to other chaotic variants.

5.CONCLUSIONS
In this paper, the Oscillating Chaotic Sunflower Optimization (OCSFO) Algorithm is proposed, introducing
a more flexible exploration process to the traditional Sunflower Optimization Algorithm (SFO) by
integrating chaotic and trigonometric approaches. The performance of the proposed OCSFO algorithm

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 680 M.Bheemalingaiah et al 669-681

was evaluated using various chaotic maps—Circle, Logistic, Chebyshev, Tent, and Sine—and tested on a
set of well-known benchmark functions, including both unrestricted (Nonlinear, Camel, Rastrigin, Sphere)
and restricted (Rosenbrock Disk, Rosenbrock Cubic/Line) test functions.
The experimental results demonstrate that the OCSFO algorithm produces highly competitive results
across different test functions. In particular, the Tent-based OCSFO variant showed superior performance
in terms of reaching minimum values more quickly and effectively for several test functions, including the
Camel, Nonlinear, and Sphere functions. The Logistic-based OCSFO also performed well, especially for the
Rastrigin function. Although the Chebyshev-based OCSFO showed slightly lower performance compared
to other chaotic variants, it still demonstrated competitive results.
Statistical analyses confirmed that the chaotic-based SFOs, particularly the TentOCSFO, offer a significant
improvement over the classical SFO, making them a viable alternative for optimization tasks. The chaotic
maps introduced an additional layer of randomness and flexibility, enhancing the exploration capabilities
of the algorithm and preventing premature convergence.
Future work will focus on further enhancing the OCSFO algorithm by exploring rule inference-based
optimization and sentiment analysis applications. Additionally, there is potential for investigating other
chaotic maps and trigonometric approaches to further improve the performance and applicability of the
OCSFO algorithm in various optimization problems.

REFERENCE
[1] Alshammari, B.M., Guesmi, T. New Chaotic Sunflower Optimization Algorithm for Optimal Tuning of

Power System Stabilizers. J. Electr. Eng. Technol. 15, 1985–1997
(2020). https://doi.org/10.1007/s42835-020-00470-1.

[2] Qais MH, Hasanien HM, Alghuwainem S. Identification of electrical parameters for three-diode
photovoltaic model using analytical and sunflower optimization algorithm. Applied Energy 2019;
250: 109-117. Doi:10.1016/j.apenergy.2019.05.013.

[3] Al-Otaibi, S.; Cherappa, V.; Thangarajan, T.; Shanmugam, R.; Ananth, P.; Arulswamy, S. Hybrid K-
Medoids with Energy-Efficient Sunflower Optimization Algorithm for Wireless Sensor Networks.
Sustainability 2023, 15, 5759. https://doi.org/10.3390/su15075759.

[4] AM. Hussien, HM. Hasanien, SF. Mekhamer, Sunflower optimization algorithm-based optimal PI
control for enhancing the performance of an autonomous operation of a micro-grid. Ain Shams
Engineering Journal 2021; Doi: 10.1016/j.asej.2020.10.020.

[5] Tabibi, S.; Ghaffari, A. Energy-Efficient Routing Mechanism for Mobile Sink in Wireless Sensor
Networks Using Particle Swarm Optimization Algorithm. Wirel. Pers. Commun. 2019, 104, 199–216.

[6] Shaheen MAM, Hasanien HM, Mekhamer SF, Talaat HEA. Optimal Power of Power Systems Including
Distributed Generation Units Using Sunflower Optimization Algorithm. IEEE Access 2019; 7:
109289-109300. Doi:10.1109/Access.2019.2933489.

[7] Alshammari, B. M., & Guesmi, T. (2020). New Chaotic sunflower optimization algorithm for optimal
tuning of power system stabilizers. Journal of Electrical Engineering and Technology.
https://doi.org/10.1007/s42835-020-00470-1

[8] Tawhid, M.A., Ibrahim, A.M. Improved salp swarm algorithm combined with chaos. Mathematics and
Computers in Simulation, Volume 202, December 2022, Pages 113-148. https://doi.org/10.1016/
j.matcom.2022.05.029.

[9] Liu, Q.; Li, N.; Jia, H.; Qi, Q.; Abualigah, L.; Liu, Y. A hybrid arithmetic optimization and golden sine
algorithm for solving industrial engineering design problems. Mathematics 2022, 10, 1567.

[10] Demir FB, Tuncer T, Kocamaz AF. A chaotic optimization method based on logistic-sine map for
numerical function optimization. Neural Computing and Applications 2020; 32: 14227-14239. Doi:
10.1007/s00521-020-04815-9.

[11] Wen, C.; Jia, H.; Wu, D.; Rao, H.; Li, S.; Liu, Q.; Abualigah, L. Modified remora optimization algorithm
with multistrategies for global optimization problem. Mathematics 2022, 10, 3604.

[12] Xiao, Y.; Sun, X.; Guo, Y.; Cui, H.; Wang, Y.; Li, J.; Li, S. An enhanced honey badger algorithm based on
Lévy flight and refraction opposition-based learning for engineering design problems. J. Intell. Fuzzy
Syst. 2022, 43, 4517–4540.

[13] Yang, J.; Liu, Z.; Zhang, X.; Hu, G. Elite chaotic manta ray algorithm integrated with chaotic
initialization and opposition-based learning. Mathematics 2022, 10, 2960.

[14] Pluhacek M, Senkerik R, Zelinka I. Impact of Various Chaotic Maps on the Performance of Chaos
Enhanced PSO Algorithm with Inertia Weight-An Initial Study. Nostradamus: Modern Methods of
Prediction, Modeling and Analysis of Nonlinear Systems, Advances in Intelligent Systems and
Computing; 2013; Berlin. 153-166. Doi: 10.1007/978-3-642-33227-2_18

https://doi.org/10.1007/s42835-020-00470-1
https://doi.org/10.3390/su15075759
https://doi.org/10.1016/

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 681 M.Bheemalingaiah et al 669-681

[15] Jia, H.; Sun, K.; Zhang, W.; Leng, X. An enhanced chimp optimization algorithm for continuous
optimization domains. Complex Intell. Syst. 2021, 8, 65–82.

[16] Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization
algorithm. Comput. Meth. Appl. Mech. Eng. 2021, 376, 113609.

[17] Xiao, Y.; Guo, Y.; Cui, H.; Wang, Y.; Li, J.; Zhang, Y. IHAOAVOA: An improved hybrid aquila optimizer
and African vultures optimization algorithm for global optimization problems. Math. Biosci. Eng.
2022, 19, 10963–11017.

