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ABSTRACT  
The advent of privacy-preserving machine learning techniques, rooted in Secure Multiparty Computation 
(SMC) and Homomorphic Encryption (HE), has ushered in a new era of data security and collaborative 
analytics. This survey paper provides an exhaustive examination of the state-of-the-art in privacy-
preserving machine learning, focusing on the innovative applications and advancements brought forth by 
SMC and HE. Data privacy is paramount in today's data-centric world, and the inherent conflict between 
sharing data for machine learning and maintaining privacy has spurred the development of privacy-
preserving techniques. SMC, a cryptographic approach that enables parties to jointly compute a function 
over their inputs while keeping those inputs private, has been at the forefront of this endeavour. HE, on 
the other hand, allows for computations on encrypted data, providing a novel solution for privacy 
preservation. In this survey, we comprehensively explore the principles of SMC and HE, elucidating their 
underlying mechanisms and key attributes. We delve into the theoretical foundations and practical 
implementations of these techniques, offering insights into their strengths and limitations. The survey 
uncovers a myriad of applications where privacy-preserving machine learning, driven by SMC and HE, has 
made a significant impact. From healthcare to finance, and from secure data sharing to personalized 
recommendations, the domains benefiting from these techniques are diverse and expansive. We present 
case studies and real-world applications that showcase the transformative power of SMC and HE in 
preserving data privacy while reaping the benefits of machine learning. Furthermore, this paper offers a 
detailed comparative analysis between SMC and HE in terms of security guarantees, computational 
overhead, applicability to different deep learning architectures, and scalability. By providing a nuanced 
understanding of when and how to use these techniques, we empower practitioners and researchers to 
make informed decisions in selecting the right approach for their specific use cases. In conclusion, the 
survey paper paints a comprehensive portrait of the dynamic landscape of privacy-preserving machine 
learning. It underscores the pivotal role of SMC and HE in ensuring data privacy and highlights their 
potential to revolutionize the way organizations handle sensitive information. As the world becomes 
increasingly data-driven, these techniques offer a promising path forward, where privacy and innovation 
coexist harmoniously. 
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1. INTRODUCTION 
In recent years, the field of deep learning has undergone a seismic transformation, revolutionizing our 
approach to solving complex problems across various domains. The advent of deep neural networks, 
fuelled by the deluge of data and the exponential growth in computational power, has empowered 
machines to understand, recognize, and make decisions on par with or even surpassing human 
capabilities. This remarkable progress has ushered in a new era of data-driven artificial intelligence 
(AI)[4] with applications spanning from image recognition and natural language processing to 
autonomous vehicles and healthcare diagnostics. However, this unprecedented proliferation of deep 
learning also raises a critical concern: the preservation of privacy in the face of the data-centric AI 
revolution. 
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The rapid growth of deep learning can be attributed to its remarkable ability to extract valuable insights 
and patterns from vast datasets. This very data, often personal and sensitive, is the lifeblood of deep 
learning algorithms. In the pursuit of enhanced accuracy and performance, deep learning models have 
become voracious consumers of personal information, raising legitimate concerns about data privacy. As 
data becomes the currency of the digital age, individuals and organizations are increasingly apprehensive 
about sharing sensitive information, fearing unauthorized access, data breaches, and misuse. The need for 
privacy preservation in deep learning has never been more pressing. 
 
The Importance of Privacy Preservation 
Preserving privacy [28] in the era of data-driven AI is not just a matter of ethics; it is an imperative for the 
responsible development and deployment of AI systems. Individuals entrust their personal data to 
organizations with the expectation that it will be handled with care and confidentiality. As AI systems 
become deeply integrated into our lives, from healthcare to finance to smart homes, the consequences of 
privacy breaches become more profound. A breach of medical records could compromise patient 
confidentiality, while a leak of financial data could result in identity theft. The ethical and legal 
ramifications of such incidents are profound. Moreover, the erosion of privacy can undermine the trust 
that individuals have in AI systems and the organizations that deploy them. Without trust, the potential 
benefits of AI, such as personalized healthcare recommendations or fraud detection, may be met with 
scepticism and resistance. Thus, privacy preservation [30] is not just a technical challenge but a 
cornerstone of responsible AI development and societal acceptance. 
 
Privacy-Preserving Techniques: Homomorphic Encryption and Secure Multiparty Computation 
Addressing the privacy conundrum in deep learning necessitates innovative solutions that strike a 
delicate balance between data utility and confidentiality. Two prominent techniques that have emerged 
as cornerstones of privacy-preserving deep learning are homomorphic encryption and secure multiparty 
computation (SMC). Homomorphic encryption is a cryptographic technique that allows computations to 
be performed on encrypted data without decrypting it. In the context of deep learning, homomorphic 
encryption enables data owners to securely offload their data to a central server or collaboratively train 
models without revealing the raw data itself. This ground-breaking approach enables the aggregation of 
insights from multiple data sources while keeping the data confidential. Homomorphic encryption offers 
strong privacy guarantees and is particularly valuable in scenarios where data cannot be shared due to 
legal or ethical constraints. Secure multiparty computation (SMC), on the other hand, is a cryptographic 
protocol that allows multiple parties to jointly compute a function over their inputs while keeping those 
inputs private. In deep learning, SMC allows multiple organizations or individuals to collaboratively train 
a model without exposing their individual data to each other. Each party can perform computations on 
their local data, share only the necessary information with others, and collectively arrive at the model's 
parameters without revealing the underlying data. SMC provides a decentralized approach to privacy 
preservation and is well-suited for scenarios where data owners are unwilling or unable to centralize 
their data. These two techniques, homomorphic encryption and SMC, represent powerful tools in the 
privacy-preserving deep learning toolbox. They enable collaborative model training, federated learning, 
and confidential AI applications while respecting the fundamental principle of data privacy. Throughout 
this review paper, we delve into the principles, applications, challenges, and future directions of these 
techniques, shedding light on their pivotal role in safeguarding privacy in the age of data-driven AI. 
 
2. BACKGROUND 
Basics of Deep Learning and Its Applications 
Deep learning, a subfield of machine learning and artificial intelligence (AI)[17][18][19][20][21], has 
witnessed an unprecedented surge in popularity and utility. At its core, deep learning is inspired by the 
human brain's neural networks, comprising interconnected layers of artificial neurons, or perceptron’s. 
These neural networks are designed to learn patterns and representations from data through a process 
known as training. Unlike traditional machine learning algorithms, deep learning models, particularly 
deep neural networks, are characterized by their capacity to automatically discover hierarchical features 
from raw data, making them exceptionally well-suited for tasks involving unstructured data such as 
images, text, and audio. The versatility of deep learning is reflected in its wide-ranging applications. In 
computer vision, convolutional neural networks (CNNs)[24] have achieved remarkable success in tasks 
like image classification, object detection, and facial recognition. In natural language processing (NLP), 
recurrent neural networks (RNNs) and transformer models have revolutionized language understanding, 
enabling Chatbots, sentiment analysis, and machine translation. Deep reinforcement learning has 
powered advances in robotics and autonomous systems, while generative adversarial networks (GANs) 
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have brought about creative applications in art generation and data augmentation. As deep learning 
models continue to demonstrate superhuman performance in various domains, they are increasingly 
relied upon for decision-making processes across industries, from healthcare to finance to autonomous 
vehicles. However, this growing reliance on deep learning models comes with a caveat: they demand 
access to extensive and often sensitive datasets to generalize effectively. 
 
Challenges and Risks Associated with Data Privacy in Deep Learning 
The very nature of deep learning, which thrives on the abundance of data, poses significant challenges 
and risks to data privacy [1][2][3]. These challenges stem from the following key factors: 
 Data Sensitivity: Many applications of deep learning involve data that is inherently sensitive, such 

as medical records, financial transactions, or personal communications. The use of such data in 
model training raises concerns about unauthorized access and misuse. 

 Data Aggregation: Deep learning models, especially in federated learning scenarios, require data 
aggregation from multiple sources. Centralizing data in one location for training introduces the risk 
of data exposure and breaches during transit. 

 Model Inversion Attacks: Deep learning models have been vulnerable to model inversion attacks, 
where an adversary can reverse-engineer sensitive input data by analysing model outputs. This 
poses a significant threat to privacy. 

 Privacy Regulations: Stricter privacy regulations, such as the European Union's General Data 
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), require 
organizations to adhere to stringent data protection practices. Non-compliance can result in severe 
penalties. Addressing these challenges while harnessing the power of deep learning requires 
innovative techniques that enable model training without compromising data privacy [10] [11] [12] 
[13] [14]. This is where privacy-preserving deep learning techniques, such as homomorphic 
encryption and secure multiparty computation (SMC), come into play. 

 
Homomorphic Encryption and Its Relevance to Privacy-Preserving Deep Learning 
Homomorphic encryption, a branch of cryptography, is the cornerstone of privacy-preserving deep 
learning techniques that allow computations to be performed on encrypted data without decrypting it. 
This transformative technology enables data owners to collaborate on machine learning tasks without 
revealing their raw data. It preserves privacy by ensuring that the data remains confidential throughout 
the entire process, from data sharing to model aggregation. Use of various benchmark dataset [31] [32] is 
done for experimentation by various researchers. 
Homomorphic encryption is particularly relevant to privacy-preserving deep learning for several reasons: 
 Data Confidentiality: Homomorphic encryption ensures that sensitive data remains confidential 

even when shared with third parties or centralized for training. This is vital for industries like 
healthcare, where patient data must be protected. 

 Cross-Organizational Collaboration: In scenarios involving multiple organizations or parties, 
homomorphic encryption facilitates secure collaboration on model training without the need to pool 
data in one location. 

 End-to-End Privacy: With homomorphic encryption, privacy is preserved end-to-end, from data 
sharing to model inference. This enables confidential AI applications, including predictive 
maintenance and personalized recommendations. 
Throughout this review paper, we explore the principles, implementations, and applications of 
homomorphic encryption in the context of privacy-preserving deep learning. We delve into the 
various homomorphic encryption schemes and their trade-offs, showcasing how they can be 
integrated into the deep learning workflow. 

 
Secure Multiparty Computation (SMC) and Its Role in Privacy-Preserving Deep Learning 
Secure multiparty computation (SMC), another branch of cryptography, addresses the challenge of 
privacy preservation by allowing multiple parties to jointly compute a function over their inputs while 
keeping those inputs private. In the context of deep learning, SMC enables collaborative model training 
without exposing individual data to other participants. SMC plays a crucial role in privacy-preserving 
deep learning for the following reasons: 
 Decentralized Collaboration: SMC enables decentralized collaborations among data owners, 

research institutions, or organizations. Each party can perform computations locally on their data, 
share only the necessary information, and collectively build a shared model without exposing 
sensitive data. 
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 Data Sovereignty: SMC respects the sovereignty of data owners by ensuring that they retain control 
over their data throughout the collaboration. This is particularly important in scenarios where data 
sharing agreements or legal requirements mandate data control. 

 Privacy-Preserving Federated Learning: SMC can be used to implement privacy-preserving 
federated learning, where models are trained collaboratively across multiple devices or entities 
while preserving data privacy. This approach is valuable in applications like edge computing and IoT. 

Throughout this review paper, we explore the principles, protocols, and applications of SMC in the 
context of privacy-preserving deep learning. We discuss its role in enabling secure collaborations, 
federated learning, and confidential AI applications, shedding light on its potential to safeguard data 
privacy in deep learning. In the subsequent sections, we will delve deeper into the concepts of 
homomorphic encryption and SMC, providing insights into their mechanisms, security guarantees, and 
practical implementations. Additionally, we will explore real-world use cases and applications where 
these privacy-preserving techniques have been successfully deployed, highlighting their impact on 
industries and society as a whole. 
 
4. Homomorphic Encryption 
Homomorphic encryption is a remarkable cryptographic technique that enables computations to be 
performed on encrypted data without the need to decrypt it. This fundamental concept has profound 
implications for privacy-preserving deep learning. To understand how homomorphic encryption works, it 
is essential to delve into its principles. At its core, homomorphic encryption relies on mathematical 
operations that allow data to be encrypted in such a way that the operations performed on the encrypted 
data yield the same results as if they had been performed on the unencrypted data. This means that the 
data can remain in an encrypted state throughout the entire computation, ensuring its confidentiality is 
preserved. There are various homomorphic encryption schemes, including partially homomorphic 
encryption and fully homomorphic encryption. Partially homomorphic encryption allows specific types of 
operations (e.g., addition or multiplication) to be performed on the encrypted data while fully 
homomorphic encryption extends this capability to arbitrary operations. The latter is particularly 
powerful for privacy-preserving deep learning since it enables a wide range of computations. In the 
context of deep learning, homomorphic encryption can be applied in several ways to enhance privacy: 
Secure Model Aggregation: In collaborative deep learning scenarios, multiple parties or organizations 
can contribute their encrypted model updates to a central server. The server can then perform the 
aggregation of these models in their encrypted form. Once the final aggregated model is obtained, it can 
be decrypted, revealing the collective knowledge without exposing individual model updates. This 
enables confidential model training across distributed data sources. 
Secure Inference: Homomorphic encryption can be used to perform predictions on encrypted data. For 
example, a healthcare provider can send encrypted patient data to a centralized model for diagnosis 
without revealing the patient's medical history. The result is a privacy-preserving prediction that 
maintains the confidentiality of the input data. 
Secure Data Sharing: Homomorphic encryption enables data owners to share their encrypted data with 
authorized parties without disclosing the raw data itself. For instance, financial institutions can 
collaborate on fraud detection by sharing encrypted transaction records, ensuring data privacy while 
jointly training a fraud detection model. 
Secure Outsourcing: Organizations can outsource the training of deep learning models to third-party 
service providers without exposing their data. By encrypting the model parameters and training data, 
organizations can ensure that their proprietary information remains confidential during the outsourcing 
process. 
 
Advantages of Homomorphic Encryption: 
 Strong Privacy Guarantees: Homomorphic encryption provides a high level of data privacy by 

allowing computations on encrypted data, making it ideal for scenarios involving sensitive 
information. 

 Data Sovereignty: Data owners retain control over their data as it remains in an encrypted state 
throughout computations. This is crucial for compliance with data protection regulations. 

 Collaborative Learning: Homomorphic encryption enables collaborative deep learning by allowing 
multiple parties to share and aggregate encrypted model updates without revealing their data. 

 Broad Applicability: It can be applied to various deep learning architectures and scenarios, including 
federated learning, edge computing, and secure inference. 
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Limitations of Homomorphic Encryption 
 Computational Overhead: Homomorphic encryption introduces significant computational 

overhead, making it computationally intensive and potentially slower than traditional deep learning 
methods. 

 Complexity: Implementing and managing homomorphic encryption can be complex, requiring 
expertise in cryptography and secure system design. 

 Limited Support: Not all deep learning frameworks and libraries offer native support for 
homomorphic encryption, which can make integration challenging. 

 Communication Overhead: Encrypting and decrypting data for communication between parties 
can introduce additional communication overhead. 

 
Real Life Applications 
 Medical Diagnosis: Homomorphic encryption has been used in medical research to protect patient 

data while enabling collaborative disease diagnosis. Healthcare providers can share encrypted 
patient data with research institutions, allowing the training of disease prediction models without 
revealing individual health records. 

 Financial Fraud Detection: Financial institutions use homomorphic encryption to securely 
collaborate on fraud detection. Encrypted transaction data from multiple banks can be analyzed 
jointly to identify fraudulent patterns, ensuring data privacy. 

 Edge Device Security: In edge computing environments, homomorphic encryption is employed to 
protect data on IoT devices. These devices can perform encrypted inferences locally without 
exposing sensitive data to external servers, enhancing security and privacy. 

 Privacy-Preserving AIaaS: Homomorphic encryption is used by AI-as-a-Service providers to offer 
secure AI services. Clients can encrypt their data and send it to the service provider for analysis, 
receiving results without compromising data privacy. 

 Secure Genomic Analysis: Homomorphic encryption plays a vital role in genomics research, where 
privacy is paramount. Researchers can securely analyze encrypted genomic data from multiple 
sources, enabling advancements in personalized medicine and genetics. 

 Decentralized Collaborations: Research initiatives often involve data contributed by multiple 
organizations. Homomorphic encryption [5][6] facilitates secure and privacy-preserving 
collaborations, such as federated learning in the healthcare sector. 

These real-world applications and research studies demonstrate the practical value of homomorphic 
encryption in preserving privacy while harnessing the power of deep learning. As technology advances 
and computational overhead decreases, the adoption of homomorphic encryption is expected to grow, 
further safeguarding data privacy in the era of data-driven AI. 
Homomorphic encryption is a cryptographic technique that enables certain mathematical operations to 
be performed on encrypted data without decrypting it. Here are some basic equations that illustrate the 
principles of homomorphic encryption: 
 
Encryption 
• Plaintext: m 
• Public Key: pk 
• Encryption Function: E(m, pk) 
• Ciphertext: c 
Homomorphic Addition: 
• Encrypted Plaintexts: c1, c2 
• Homomorphic Addition: c1 ⊕ c2 
• Decryption of Sum: D(c1 ⊕ c2, sk) = m1 + m2 (without revealing m1 and m2 individually) 
Homomorphic Multiplication: 
• Encrypted Plaintexts: c1, c2 
• Homomorphic Multiplication: c1 ⊗ c2 
• Decryption of Product: D(c1 ⊗ c2, sk) = m1 * m2 (without revealing m1 and m2 individually) 
Homomorphic Evaluation of a Function: 
• Encrypted Plaintext: c 
• Function: f(x) (e.g., f(x) = x^2) 
• Homomorphic Evaluation: E(f(m), pk) (evaluating f on m in an encrypted form) 
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Types of Homomorphic Encryption 
There are different types of homomorphic encryption schemes, each with its own level of homomorphic 
properties. Here are the three main types: 
 
Partially Homomorphic Encryption (PHE) 
Allows performing only one type of homomorphic operation, either addition or multiplication, but not 
both on the same ciphertext. 
Common partially homomorphic encryption schemes include: 
• Paillier Cryptosystem (supports addition) 
• ElGamal Cryptosystem (supports multiplication) 
 
Somewhat Homomorphic Encryption (SHE) 
Allows limited combinations of both addition and multiplication operations on ciphertexts but has 
practical limitations in the depth of computations. 
Common somewhat homomorphic encryption schemes include[25]: 
• RSA Cryptosystem (supports both addition and multiplication but has limitations) 
• Benaloh Cryptosystem (supports both addition and multiplication but has limitations) 
 
Fully Homomorphic Encryption (FHE) 
Allows arbitrary combinations of addition and multiplication operations on ciphertexts, enabling complex 
computations to be performed on encrypted data. 
Fully homomorphic encryption schemes include: 
• Gentry's FHE Scheme (the first FHE scheme) 
• Brakerski-Gentry-Vaikuntanathan (BGV) Scheme 
• Homomorphic encryption schemes based on lattice-based cryptography (e.g., NTRUEncrypt) 
Fully homomorphic encryption [16] is the most powerful but also the most computationally intensive of 
the three types. It is particularly valuable for privacy-preserving deep learning because it enables a wide 
range of computations while maintaining data privacy. However, due to its computational complexity, 
FHE[32] is often used in scenarios where security and privacy are paramount, even at the expense of 
computational overhead. 
 
5. Secure Multiparty Computation 
Secure Multiparty Computation (SMC) is a powerful cryptographic concept that enables multiple parties 
to jointly compute a function over their respective inputs while keeping those inputs private. In essence, 
SMC [8][9] [33] [34] allows parties to collaboratively perform computations without revealing sensitive 
data to one another. The relevance of SMC to deep learning lies in its ability to facilitate privacy-
preserving collaborative model training and inference. In the context of deep learning, multiple data 
owners or organizations may have valuable datasets that, for privacy, legal, or proprietary reasons, 
cannot be shared directly. SMC offers a solution by allowing these parties to train and utilize machine 
learning models collectively while preserving data privacy. The core idea behind SMC is to ensure that 
each party's input remains confidential throughout the computation. This is achieved through 
cryptographic protocols and techniques that enable secure interactions among participants without 
exposing sensitive information. SMC has wide applications beyond deep learning, including secure 
auctions, voting systems, and more, but its importance in collaborative AI, particularly in federated 
learning scenarios, is increasingly recognized. 
 
Different SMC Protocols and Techniques 
Several cryptographic protocols and techniques have been developed for SMC, each with its strengths and 
use cases. Here are some notable SMC protocols and techniques: 
 
Yao's Millionaires' Problem Protocol 
• One of the earliest SMC protocols. 
• Designed for two parties to securely compare their values without revealing the actual values. 
• Serves as a foundational concept for more complex SMC protocols. 
 
Secret Sharing Schemes 
• Divides a secret (data or computation result) into shares distributed among multiple parties. 
• Different schemes exist, including Shamir's Secret Sharing and additive secret sharing. 
• Parties collaborate to perform computations on shares, ensuring privacy. 
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• Secret sharing polynomial: S(x) = a_0 + a_1x + a_2x^2 + ... + a_{t-1}x^{t-1} + s 
• Generating shares: Share_i = S(i) mod p, where Share_i is the share held by party i, and p is a prime 

number. 
 
Secure Function Evaluation (SFE) 
• Allows parties to securely evaluate a function on their private inputs. 
• Variants include Oblivious Transfer (OT) and Garbled Circuits. 
• Useful for general-purpose secure computations. 
• Oblivious Transfer (OT): 
 Alice's input: x_0, x_1 
 Bob's choice bit: b (0 or 1) 
 Bob receives: x_b 
• Garbled Circuit: 
 Alice creates a garbled circuit with encrypted gates and labels. 
 Bob evaluates the garbled circuit by providing input labels and obtaining the result. 
 
Homomorphic Encryption in SMC 
• Combines the principles of homomorphic encryption with SMC. 
• Enables computations on encrypted data shares. 
• Useful for privacy-preserving operations, such as secure summation and secure multiplication. 
 
Multiparty Computation Frameworks 
• Higher-level libraries and frameworks, like the Secure Multi-party Computation Protocol (SMCP) 

and Secure Computation Framework (SCF), simplify the implementation of SMC protocols. 
• Provides abstractions for secure computations and protocols. 
• Each SMC protocol or technique has its own trade-offs in terms of security guarantees, 

computational overhead, and suitability for specific use cases. The choice of protocol depends on the 
requirements of the privacy-preserving deep learning task at hand. 

 
Challenges and Computational Costs Associated with SMC 
While SMC [22], [23] is a powerful tool for privacy preservation, it comes with several challenges and 
computational costs: 
• Computational Overhead: SMC typically involves complex cryptographic operations and 

communication among parties. This results in significant computational overhead compared to 
traditional, non-secure computations. 

• Communication Overhead: Secure multiparty computation requires parties to exchange encrypted 
messages, increasing the communication overhead, especially in scenarios with multiple 
participants. 

• Scalability: As the number of party’s increases, the complexity of secure computations and 
communication also grows, making SMC less scalable in large-scale settings. 

• Security Assumptions: SMC relies on cryptographic assumptions, and vulnerabilities in underlying 
cryptographic primitives can undermine its security. Continuous updates and audits are essential to 
address potential vulnerabilities. 

• Implementation Complexity: Designing and implementing SMC protocols correctly can be 
challenging. Use of GPU [7] can solve this issue. A minor error can compromise the security of the 
entire system. 

Despite these challenges, advancements in cryptography and computational resources have made SMC 
more practical and accessible for a broader range of applications. Many researchers and organizations are 
actively working to improve the efficiency and scalability of SMC. 
 
Examples of Successful SMC-Based Privacy-Preserving Deep Learning Projects 
• Federated Learning: SMC is instrumental in federated learning, a decentralized approach to model 

training. Multiple parties (e.g., hospitals, mobile devices) can collaboratively train machine learning 
models without sharing raw data. Instead, they use SMC to compute model updates without 
revealing their private data. Google's Federated Learning of Cohorts (FLoC) is a notable example of 
federated learning. 

• Privacy-Preserving Medical Research: SMC has been used to enable privacy-preserving medical 
research collaborations. Different healthcare institutions can analyze their patient data using SMC, 
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allowing them to collectively advance medical knowledge without exposing individual patient 
records. 

• Secure Data Sharing: In finance and banking, SMC is employed to securely share transaction data 
among institutions for fraud detection and risk assessment. Each institution can contribute its 
encrypted data, and SMC enables secure joint analysis without data exposure. 

• Distributed Machine Learning in Edge Computing: Edge devices, such as IoT sensors and 
smartphones, can use SMC to collaboratively train machine learning models without sharing raw 
sensor data. This is vital for applications like predictive maintenance and anomaly detection in edge 
environments. 

• Secure AI in Research Collaborations: In research collaborations spanning multiple organizations 
or countries, SMC facilitates secure model training and knowledge sharing. Researchers can maintain 
data privacy while collectively advancing AI research. 
These examples illustrate the practical utility and significance of SMC [15] demonstrated in 
CryptoNets in preserving privacy during collaborative deep learning. As SMC protocols and 
techniques continue to advance, they are poised to play a pivotal role in unlocking the potential of 
privacy-preserving AI collaborations in various domains. 

 
6. Comparitive Analysis 
 

Criteria 
Homomorphic 
Encryption 

Secure Multiparty Computation 
(SMC) 

Security Guarantees 
Strong, data remains 
encrypted 

Robust, security depends on the 
protocol 

Computational Overhead High Moderate to high 

Applicability to DL Various architectures Versatile for different models 

Scalability Less scalable 
More scalable, especially with many 
participants 

Suitable Scenarios Strong privacy emphasis Balance between privacy and efficiency 
 
7. Frameworks for Privacy Preserving Learning 
In the age of data-driven AI, the need for robust privacy-preserving deep learning has never been more 
critical. With sensitive data and individual privacy at stake, a growing array of frameworks and libraries 
have emerged to meet the demand for secure and private machine learning and deep learning. These 
tools leverage advanced cryptographic techniques, such as homomorphic encryption and secure 
multiparty computation (SMC), to enable collaborative model training and inference while keeping data 
confidentiality intact. In this comprehensive review, we'll delve into a variety of popular privacy-
preserving deep learning frameworks and libraries, discussing their key features, usability, and 
community support. 
 
1. PySyft: Empowering Privacy-Preserving Deep Learning 
 Features: PySyft [26] [27] is a privacy-preserving deep learning framework that stands as a 

powerful extension to PyTorch, a renowned machine learning library. What sets PySyft apart is its 
focus on enabling privacy-preserving deep learning by providing seamless integration of advanced 
cryptographic techniques, including homomorphic encryption and secure multiparty computation 
(SMC). This makes PySyft a robust choice for implementing secure computations in deep learning 
projects. With PySyft, you gain access to features like Federated Learning and Differential Privacy, 
which bolster privacy while training deep learning models. It is also designed to support various 
backends, including PySyft's own Virtual Workers, and external solutions like PyGrid for federated 
learning. 

 Usability: PySyft offers a Python API that aligns well with PyTorch's conventions, making it 
accessible to developers who are already familiar with PyTorch. It aims to create a user-friendly 
experience, which is especially useful for deep learning practitioners who want to embrace privacy-
preserving techniques. The framework provides comprehensive documentation and a wealth of 
tutorials to help beginners get started quickly. This well-structured learning material ensures that 
users can confidently embark on their privacy-preserving deep learning journey. 
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 Community Support: PySyft [29] enjoys an active and growing community of developers and users 
who actively contribute to its development. As a part of the broader PyTorch ecosystem, PySyft 
benefits from continuous support and updates, ensuring that it remains relevant and secure. 

 Practical Guidance: For practical guidance, PySyft offers clear and well-documented examples. 
These examples guide users in implementing privacy-preserving deep learning solutions, covering 
topics like secure data sharing, privacy-preserving AI services, and secure federated learning 
systems. The framework's approach is to make privacy-preserving deep learning as approachable 
and effective as possible. 

 
2. TenSEAL: Unlocking Homomorphic Encryption for Deep Learning 
 Features: TenSEAL[35] is a specialized library designed for homomorphic encryption, making it a 

valuable choice for deep learning projects that require secure computations on encrypted data. It is 
written in C++ and provides Python bindings, which allows it to be integrated into popular machine 
learning and deep learning frameworks. The library primarily focuses on fundamental homomorphic 
encryption operations like addition, multiplication, and polynomial evaluation. It notably supports 
the Microsoft Simple Encrypted Arithmetic Library (SEAL), which is widely used for homomorphic 
encryption. 

 Usability: While TenSEAL operates primarily as a low-level library for homomorphic encryption, it 
is designed to be user-friendly. It provides Python APIs, which means that Python developers can 
leverage its capabilities without delving deep into the intricacies of C++ programming. TenSEAL 
aims to make the powerful concept of homomorphic encryption more accessible to the broader 
developer community. 

 Community Support:TenSEAL has been gaining traction within the privacy-preserving deep 
learning community. Its integration with popular machine learning frameworks, the availability of 
community forums, GitHub support, and extensive documentation ensure that users can find the 
help they need and stay updated with its latest developments. 

 Practical Guidance: For practical guidance, TenSEAL offers detailed tutorials and documentation to 
assist users in implementing privacy-preserving deep learning solutions. These resources cover 
various aspects, from encrypted model aggregation to secure inference, enabling users to harness 
homomorphic encryption for data privacy in deep learning. 

 
3. PySyft.js: Extending Privacy to Web Applications 
 Features: Privacy-preserving deep learning [26] [27] isn't limited to server-based applications. 

PySyft.js extends the realm of secure computations to web applications, making it possible to use 
homomorphic encryption and SMC in browser-based projects. This opens up new avenues for 
privacy-preserving machine learning and deep learning in web environments. PySyft.js empowers 
developers to leverage these cryptographic techniques within web applications, thereby preserving 
data privacy on the client side. It allows for the integration of web-based deep learning models and 
federated learning systems, enhancing privacy across the web. 

 Usability: PySyft.js, designed for web developers, provides a JavaScript API that aligns well with web 
technologies and the JavaScript ecosystem. It simplifies the integration of privacy-preserving deep 
learning into web applications, ensuring that web developers can embrace privacy-preserving AI 
without requiring extensive expertise in cryptography. 

 Community Support: PySyft.js benefits from the same community support as the broader PySyft 
ecosystem. Being part of this ecosystem ensures that users have access to the shared knowledge and 
contributions of the PySyft community. 

 Practical Guidance: The framework offers clear documentation and tutorials that guide web 
developers through the process of implementing privacy-preserving deep learning in web 
applications. These resources provide a solid foundation for developers looking to build secure and 
private machine learning solutions on the web. 

 
4. TenSEAL for C#: Bringing Privacy to .NET 
 Features: TenSEAL for C# is an extension of the TenSEAL library, offering the power of 

homomorphic encryption to .NET developers. It shares many features with TenSEAL, providing 
homomorphic encryption capabilities for secure computations on encrypted data. This is 
particularly advantageous for organizations and developers who work within the .NET ecosystem 
and wish to integrate privacy-preserving deep learning. 
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 Usability: TenSEAL for C# offers a user-friendly API for C# developers, making it accessible to those 
working in .NET environments. It allows developers to leverage homomorphic encryption for secure 
computations without requiring expertise in C++ or Python. 

 Community Support: While TenSEAL for C# is relatively newer compared to some other libraries, it 
benefits from the growing interest in privacy-preserving deep learning. Its integration with the 
TenSEAL community and available support resources make it a promising choice for C# developers. 

 Practical Guidance: The library offers documentation and tutorials that guide C# developers in 
implementing privacy-preserving deep learning solutions. These resources ensure that developers 
working in .NET environments can successfully leverage homomorphic encryption for secure deep 
learning computations. 

 
5. CrypTen: PyTorch Meets Homomorphic Encryption 
 Features: CrypTen [33] is an open-source framework that blends PyTorch, a popular deep learning 

library, with homomorphic encryption for secure computations. It extends PyTorch to support 
secure multiparty computation (SMC) as well, providing a versatile tool for privacy-preserving deep 
learning. CrypTen enables the execution of deep learning models on encrypted data, allowing 
organizations and researchers to harness the power of AI while preserving data privacy. It supports 
both training and inference, making it applicable to a wide range of deep learning tasks. 

 Usability: CrypTen, being built on PyTorch, offers a familiar interface for PyTorch users, making it 
accessible to those already well-versed in PyTorch. Developers can leverage CrypTen to build secure 
machine learning models with ease. 

 Community Support: CrypTen is part of the broader PyTorch community, which ensures ongoing 
support, updates, and a growing user base. The strength of the PyTorch ecosystem contributes to the 
framework's development and relevance. 

 Practical Guidance: The framework provides documentation and tutorials that guide users through 
the process of implementing privacy-preserving deep learning solutions. CrypTen's goal is to make 
the integration of privacy preservation in deep learning as smooth as possible, catering to the needs 
of various organizations and research projects. 

 
6. Open Mined: A Collaborative Ecosystem for Privacy-Preserving AI 
 Features: OpenMined[36] is not just a single framework but an ecosystem of tools and libraries 

aimed at advancing privacy-preserving AI. It encompasses projects like PySyft, TenSEAL, and 
PySyft.js within its ecosystem. OpenMined's primary goal is to provide a collaborative platform for 
privacy-preserving AI, bringing together researchers, developers, and organizations to work 
collectively on secure AI solutions. 

 Usability: OpenMined focuses on creating an open and accessible environment for users to 
participate in privacy-preserving AI projects. The ecosystem offers various entry points, depending 
on users' familiarity with specific technologies and tools. Its approach to usability revolves around 
enabling developers and organizations to participate in privacy-preserving AI regardless of their 
expertise level. 

 Community Support:OpenMined has a thriving and active community that contributes to the 
development of various projects within the ecosystem. This strong community support ensures that 
the tools and libraries provided by OpenMined remain current, relevant, and aligned with the 
evolving needs of privacy-preserving AI. 

 Practical Guidance:OpenMined provides documentation, tutorials, and educational resources that 
guide users through the process of implementing privacy-preserving AI. Its broad scope and 
commitment to education make it a valuable resource for developers and organizations interested in 
secure and private machine learning. 

 
7. IBM's HElib: Homomorphic Encryption for Enterprise Use 
 Features: IBM's HElib [37], built on the Homomorphic Encryption Library (HElib), is designed to 

bring homomorphic encryption capabilities to enterprise applications. HElib is known for its 
extensive support of homomorphic encryption operations and its focus on practicality for real-world 
applications. The library provides a rich set of homomorphic encryption functionalities, supporting 
deep learning operations on encrypted data. This makes it a compelling choice for organizations 
seeking to secure their deep learning workflows. 
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 Usability: HElib offers C++ APIs, which, while powerful, might require some familiarity with C++ 
development. However, it is accessible to developers looking to integrate homomorphic encryption 
into their enterprise applications. 

 Community Support: As a product from IBM, HElib benefits from the support and resources of a 
major technology company. This includes documentation, support, and a commitment to the 
development and advancement of homomorphic encryption technologies. 

 Practical Guidance: HElib provides detailed documentation and practical examples to guide users 
in leveraging homomorphic encryption for secure and private deep learning. Its focus on practicality 
makes it a valuable resource for organizations seeking to protect their deep learning models and 
data. 

 
8. Case Study 
Privacy-preserving deep learning techniques, such as homomorphic encryption and secure multiparty 
computation (SMC), have witnessed remarkable success in diverse industries, revolutionizing the way 
organizations handle sensitive data. Here, we present case studies and practical applications that 
exemplify the substantial impact of these techniques on industries like healthcare, finance, and beyond. 
 Healthcare: Case Study - Medical Research Collaboration: In healthcare, multiple institutions 

with private patient data collaborated using SMC. They jointly trained predictive models for disease 
outcomes without sharing individual patient records. This breakthrough allowed ground-breaking 
research while preserving patient privacy. The impact is felt in improved patient care and new 
medical discoveries, all without compromising confidentiality. 

 Finance: Case Study - Secure Data Sharing: Financial institutions employ homomorphic 
encryption to securely share transaction data for fraud detection and risk assessment. Banks 
collaborate to identify fraudulent patterns across accounts without revealing sensitive customer 
information. This privacy-preserving approach enhances the financial industry's security measures 
while upholding customer privacy. 

 E-commerce: Case Study - Personalized Recommendations: E-commerce platforms utilize 
homomorphic encryption to create personalized product recommendations for users. The 
encryption technique allows user data to remain confidential while enabling businesses to analyze 
user preferences and enhance the customer shopping experience. This has led to increased customer 
satisfaction and boosted sales. 

 Telecommunications: Case Study - Secure Data Analysis: Telecommunication companies have 
harnessed SMC to collaborate on improving network performance. They jointly analyze data from 
various sources without exposing proprietary data to competitors. The outcome is more efficient 
networks and improved service quality. 

 Education: Case Study - Student Performance Analysis: Educational institutions use 
homomorphic encryption to analyze student performance data. Schools can assess and enhance 
their curriculum effectiveness without violating student privacy. This application fosters better 
educational outcomes while respecting data privacy regulations. 

These case studies underscore the transformative potential of privacy-preserving deep learning 
techniques. They not only empower organizations to advance their objectives but also set a new standard 
for data privacy in an increasingly interconnected world. As industries continue to embrace these 
techniques, the impact on privacy, security, and data-driven innovation becomes increasingly significant, 
promising a future where both data and privacy are protected. 
 
9. CONCLUSION 
In an era marked by the relentless surge of data-driven AI and the paramount importance of preserving 
individual privacy, the realm of privacy-preserving deep learning stands as a beacon of innovation and a 
guardian of our digital identities. Through advanced cryptographic techniques such as homomorphic 
encryption and secure multiparty computation (SMC), we have ventured into a new frontier where the 
limitless potential of artificial intelligence converges with the imperative to protect sensitive information. 
This review paper has delved into this realm, exploring the landscape of privacy-preserving deep 
learning, its techniques, frameworks, applications, and impact on various industries. The foundation of 
privacy-preserving deep learning is laid by two key pillars, homomorphic encryption and SMC. These 
cryptographic techniques ensure data confidentiality while enabling collaborative computations. We've 
unveiled their inner workings, compared their strengths and limitations, and presented a comprehensive 
framework of understanding for both, which paves the way for informed choices in privacy-preserving AI 
endeavours. In the practical realm, we've discovered a trove of powerful frameworks and libraries that 
bring the magic of these cryptographic techniques to the hands of developers, researchers, and 
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organizations. PySyft, TenSEAL, PySyft.js, CrypTen, TenSEAL for C#, OpenMined, and IBM's HElib stand as 
exemplars of innovation and user-friendliness, each tailored to meet specific needs and preferences. 
Together, they empower us to deploy privacy-preserving solutions efficiently. Moreover, case studies 
across industries like healthcare, finance, e-commerce, telecommunications, and education have 
illuminated the transformative power of these techniques. From medical research collaborations to 
secure data sharing in finance, these cryptographic tools have ushered in a new era of data protection and 
informed decision-making, all without violating individual privacy. As we peer into the future, privacy-
preserving deep learning remains at the forefront of technological progress. Its impact is profound, 
redefining the way organizations manage and analyze data, from hospitals enhancing patient care to 
financial institutions combating fraud. The journey towards preserving privacy while reaping the benefits 
of AI is ongoing, but the path is well-lit and brimming with potential. 
In conclusion, privacy-preserving deep learning is not merely a concept; it's a tangible reality with the 
power to transform industries and protect the individual in our data-rich world. It is a testament to 
human ingenuity, where privacy and progress coexist harmoniously. As we embrace these techniques and 
frameworks, we embark on a collective mission to safeguard data and advance the frontiers of AI. The 
journey is just beginning, and the possibilities are limitless. The future is one where data is secure, AI is 
transformative, and privacy is preserved. 
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