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ABSTRACT 
A graph G with a power dominator coloring is a proper coloring that ensures that every vertex has power 
dominates over every other vertex in a specific color class. This paper focuses on determining the power 
dominator chromatic number for the Cartesian and Indu-Bala product of various graph classes, such as 
complete graphs, paths and Cycle, paths and star graphs as well as paths and wheel graphs. 
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1. INTRODUCTION 
The problems of domination theory and graph coloring are highly interesting within the realms of graph 
theory, algorithms, and combinatorial optimizations. In the applied sciences, both areas are enhanced by 
a broad depth of research. We refer [[9],[13],[14],[15]] accordingly for comprehensive results on coloring 
and domination in graphs. The concept of domination is associated with a dominating set, which needs to 
consist of the smallest possible number of vertices. This set ensures that every vertex in a graph not 
included in the set has at least one neighboring vertex within it.While coloring the vertices in a network 
requires applying distinct colors to each one such that the two end vertices of edges are colored 
differently. Domination problems and graph colouring problems are frequently related to one another. 
The graph 𝐺=(V(G), E(G)) is simple, connected, undirected, and finite, with a vertex set of V(G) and an 
edge set E(G).Graph coloring is the well-known process of assigning colors to the vertices of a graph in 
such a way that adjacent vertices do not have the same color. The function g : (𝐺) → {1,2, . . . . , m} is 
considered a proper m-coloring of a graph 𝐺 if g(x) ≠ g(y) for all x y ∈𝐸(𝐺), where x and y are adjacent 
vertices in 𝐺.The more compact set of colors for which such an assignment can be done is the chromatic 
number 𝜒(𝐺) of a graph G.The group of vertices sharing the same color is referred to as the color class. If 
x is an element of G, the open neighborhood is the set N(x) which includes all y in V(G) such that xy is an 
edge in G, and the closed neighborhood is the set N[x] which includes N(x) as well as x. All vertices in a 
graph 𝐺 that are neighbors of at least one element of 𝑆 or that are elements of 𝑆 are referred to as 
dominating sets. The domination number 𝛾(𝐺) represents the smallest number of vertices in a 
dominating set. If each vertex in the graph dominates every other vertex in the same color class, the 
coloring is known as dominator coloring.The dominator chromatic number, represented by 𝜒𝑑(𝐺), is the 
minimal cardinality of colors utilized in the graph for dominator coloring. For comprehensive results on 
dominator coloring we refer [[2],[9],[10],[13]]respectively.  
Electricity providers must regularly monitor the condition of their system based on many state variables, 
including the phase angle of the generator machine and the voltage at loads. Placing phase measuring 
units (PMU’s) at specific locations within the system is one method for monitoring these variables. 
Reducing the number of PMU’s while maintaining the capability to watch (monitor) the whole system is 
desirable due to their high cost. Finding the minimum number of PMU’s needed to continuously monitor 
the entire system is a problem in graph theory that has strong ties to the prominent vertex covering and 
domination problems. Haynes et al. [15]  introduced a modified version of graph domination, known as 
power domination, to address the issue of monitoring electric power system states. Power dominator 
coloring of a graph G is a new kind of coloring that was transplanted in [7] and is more precisely 
discussed here. It is built upon the concepts of  coloring and power domination. Consider a connected 
graph G and let S be a subset of its vertices. The set being monitored by S is represented by M(S), and the 
algorithmic outline for this process is as follows: 
1. M(S) ← S ∪ N(S)(domination) 
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2.  As long as there is some element u belonging to the set M(S)such that  
N(u) ∩ (V (G) − M(S)) = {x},set M(S) ← M(S) ∪ {x}(propagation). 
Thus, the set M(S) can be acquired as follows from S. First, add the vertices to M(S) from its  closed 
neighbours .Subsequently, add vertices w to M(S) so many times that every neighbour of v in M(S) is 
already in M(S).The set observed by S has been built once there doesn't appear to a vertex w of that 
kind.A set S is defined as a power dominating set of G if M(S) is equal to V(G), and the smallest size of a 
power dominating set is denoted by 𝛾𝑝(𝐺),the power domination number. The creation of a new concept, 

known as power dominator coloring, involves the integration of power domination and coloring 
conceptsrepresented by𝜒𝑝𝑑 (𝐺), requiring for each vertex to power dominate every other vertex in a color 

class. Satheeshkumar et al. introduced the concept of a power dominator chromatic number, and they 
analyzed the power dominator chromatic number of various graph families in  [7].A. Uma Maheswari  [1]  
has examined the power dominator chromatic number for certain unique graphs as well. I.Chandramani 
et al. [4]has also explored power dominator chromatic number ofJahangir and associated graphs.  
The graphs G1 and G2  used to find the Cartesian product, indicated by  𝐺 = 𝐺1□ 𝐺2, has V(G) = V(G1) × 
V(G2) = {(x1, x2) | xi∈ V(Gi) for i = 1, 2}, andtwo vertices (u1, u2) and (v1, v2) in G are connected only if u1 = 
v1 and u2v2 is an edge in E(G2), or u2 = v2 and u1v1∈ E(G1).Power domination of the Cartesian product of 
graphs was derived by K.M. Koh [6]. 
The Indu-Bala product of  two graphs was given by G. Indulal and R. Balakrishnan [3]. This graph product 
is predicted  on classic loop switching problem analyzed by Graham and Pollack [12]. The classic loop 
switching problem was used for wireless communication network theory. The Indu-Bala product G1▼G2 
of graphs G1 and G2 is formed by combining two disjoint copies of the join G1∨ G2 where the 
corresponding vertices of two copies of G2 are connected by an edge. It is obvious that |V (G1▼G2)| = 2|V 
(G1∨ G2)| = 2 ( n1 + n2) and that |E (G1▼G2)| = 2|E(G1∨ G2)| + n2 = 2 (q1) + 2 (q2) + 2 (n1n2) + n2. M. 
Priyadharshini et al. [11] investigated the independent strong domination number of the Indu-Bala 
product of various distinct graphs.After reviewing the existing literature, we have discovered the power 
dominator coloring of certain graphs formed by the Cartesian and Indu-Bala products. 
 
2. Power Dominator Chromatic Number of Carteasian Product of Some Graph 
Theorem 2.1   

For any integer ,2 nm 𝜒𝑝𝑑  𝐾𝑚□𝐾𝑛 =  
𝑚, 𝑖𝑓 𝑛 = 2

𝑚 + 𝑛 − 1, 𝑖𝑓𝑛 ≥ 3
  . 

Proof 
Assume that the graph G= Km □Kn has a vertexset 𝑉 = {(𝑖, 𝑗): 1 ≤ 𝑖 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛}. 
If we take n=2 we get K2 which is a path of order 2. So G contains 2 cliques of order m. Thus we have 

𝜒𝑝𝑑 (𝐺) ≥ 𝑚.For a Latin rectangle 𝐵 =  𝛽𝑖𝑗  of order 𝑚 × 2of the set {1,2,3,….,m} define a function g on V 

for each vertex (𝑖, 𝑗), 𝑔(𝑖, 𝑗) = 𝛽𝑖𝑗 . The mapping g, which is power dominator coloring in G with m color 

classes, indicates that𝜒𝑝𝑑 (𝐺) = 𝑚.Our next assumption is 𝑛 ≥ 3. Let 𝑔 = {𝑣1 , 𝑣2 , . . . . , 𝑣𝑝} be a arbitrary 

power dominator coloring in G. Let 𝑆 = {𝑖:  𝑣𝑖 = 1} be a set of cardinality p. We assume that 𝑝 < 𝑚 + 𝑛 −
1. 
If p=0, then  𝑣𝑖 ≥ 2 for each i and 𝑝 ≥ 𝑚 + 𝑛 − 1. Let 1 ≤ 𝑠 ≤ 𝑚 − 1. There exist a 𝐾𝑛 - layer of {𝑖} × 𝐾𝑛  
such that no vertices is in 𝛵 =  𝑉𝑖𝑖∈𝑆 . Consider𝐶1 , 𝐶2, . . . . , 𝐶𝑛are n new colorsnecessary to color {𝑖} ×
𝐾𝑛 .If the condition is 𝑛 ≥ 3, it means that the color classes𝐶1, 𝐶2 , . . . . , 𝐶𝑛has cardinality more than 2. To 
color the remaining vertices, there is a requirement of at-least m-1 new colors.  Thus 𝑝 ≥ 𝑠 + 𝑚 + 𝑛 −
1 ≥ 𝑚 + 𝑛 − 1. 
If 𝑚 ≤ 𝑠 ≤ 𝑚 + 𝑛 − 2, then, according to the principle of pigeonhole, there exist a 𝐾𝑛 - layer of {𝑗} × 𝐾𝑛  
such that   and to color({𝑗} × 𝐾𝑛) ∩ (𝑉 − 𝑇), it is necessary to have at least n-1 new color. So we get 
𝑝 ≥ 𝑚 + 𝑛 − 1. Since we assumed that g is an arbitrary power dominator coloring in G, we get 

𝜒𝑝𝑑 (𝐺) ≥ 𝑚 + 𝑛 − 1.Let 𝐵 =  𝛽𝑖𝑗   be a Latin rectangular of order  𝑚 − 1 × 𝑛  on the set {1,2,3, . . . . , 𝑚 −

1}.A function g on V is defined so that for a vertex (i, j),    

𝑔(𝑖, 𝑗) =  
𝑗 + 𝑚 − 1,   𝑖 = 1
𝛽𝑖,𝑗 ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

Thus, the function g is a power dominator coloring in G with n+m-1 color classes. This gives that 
𝜒𝑝𝑑 (𝐺) ≤ 𝑚 + 𝑛 − 1. Thus 𝜒𝑝𝑑 (𝐺) = 𝑚 + 𝑛 − 1. 

 
Observation 2.1.1 

For any integer ,2n 𝜒𝑝𝑑  𝐾𝑛□𝐾𝑛 = 2𝑛 − 1 can be shown by taking m = n in theorem 2.1. 
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Theorem2.2  

For any integer ,2,2  nm 𝜒𝑝𝑑  𝑃𝑚□𝐾𝑛 =  
𝑛, 𝑖𝑓 𝑚 = 2

𝑚 + 𝑛 − 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Proof 
We name the vertices of 𝑃𝑚  by 𝑥1 , 𝑥2, . . . , 𝑥𝑚 and 𝐾𝑛  by   𝑦1 , 𝑦2 , . . . . 𝑦𝑛 . According to the definition 
of the Cartesian product of two graphs, the vertices of 𝑃𝑚□𝐾𝑛 may be labeled as  (𝑥𝑖 , 𝑦𝑗 )  where 

1 ≤ 𝑖 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛.
 

Every vertices of   𝐾𝑛  power dominates and adjacent to each other. So we have to assign n colors for  𝐾𝑛 . 
In𝑃𝑚□𝐾𝑛    we have m cliques. The same n color classes can be used for the end clique in 𝑃𝑚□𝐾𝑛   because 
every vertex in those cliques power dominates all the remaining vertices of 𝑃𝑚□𝐾𝑛 .So n colorclasses are 
enough when m takes the value two. While 𝑚 > 2, the vertices in the clique which are appeared in middle 
power dominates only the vertices of the same. Along with the existing n-1 color classes m-2 new colors 
can be used for the cliques in the middle. 

 
Theorem 2.3 

For any integer ,2, mn            𝜒𝑝𝑑   𝑃𝑛□ 𝐾1,𝑚 =  
2,   𝑛 = 𝑚 = 2

𝑛 + 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

Proof 
We name the vertices of 𝑃𝑛   by 𝑥1 , 𝑥2, . . . , 𝑥𝑛and m+1 vertices of 𝐾1,𝑚  by𝑦1 , 𝑦2 , . . . . 𝑦𝑚+1. Where 𝑦1 is the 
middle vertex. Cartesian product of these graphs denoted by 𝑃𝑛□𝐾1,𝑚  can be named as  (𝑥𝑖 , 𝑦𝑗 ) where 

1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 + 1.While n and m take the value 2 by theorem 2.1,two  colors are enough to 
power dominate the graph. For the cases 𝑛, 𝑚 > 2, n new colors can be assigned to all the middle vertex 
of  𝑃𝑛□𝐾1,𝑚   because every vertex in 𝐾1,𝑚  power dominates its middle vertex. Two more new color classes 

can be used for the remaining vertices by assigning different color class to adjacent vertices.  
 
Theorem 2.4 

For any integer𝑛 ≥ 2 𝑎𝑛𝑑 𝑘 ≥ 4,            𝜒𝑝𝑑   𝑃𝑛□𝑊𝑘 =  
𝑛 + 2, 𝑘  𝑖𝑠 𝑜𝑑𝑑
𝑛 + 3, 𝑘 𝑖𝑠  𝑒𝑣𝑒𝑛

 . 

Proof 
We name the vertices of 𝑃𝑛  by 𝑥1 , 𝑥2 , . . . , 𝑥𝑛and the vertices of 𝑊𝑘  by 𝑦1 , 𝑦2 , . . . . 𝑦𝑘  in which𝑦1is connected 
to all the other (k-1) vertices of a cycle. Cartesian product of these graph denoted by 𝑃𝑛□𝑊𝑘  can be named 
as  (𝑥𝑖 , 𝑦𝑗 ) where 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑘.Every wheel graph occur in  𝑃𝑛□𝑊𝑘 is power dominated by its 

middle vertex. So n new colors are needed for middle vertex of every wheel graph to power dominate 
remaining vertices. For coloring the (k-1) vertices in every cycles two more color classes can be used 
while k is odd and 3 color classes can be used while n is even. 
 
Theorem 2.5 
For any integer𝑚, 𝑛 ≥ 3,  𝜒𝑝𝑑   𝐶𝑚□𝐾𝑛 = 𝑛 + 𝑚 − 1 

Proof 
Indicate the vertices of Cm with𝑥1 , 𝑥2, . . . , 𝑥𝑚 and the vertices of  𝐾𝑛with𝑦1 , 𝑦2 , . . . . 𝑦𝑛where 𝑦𝑗 (1 ≤ 𝑗 ≤

𝑛)are adjacent with each (n-1) vertices in it. Cartesian product of these graph denoted by 𝐶𝑚□𝐾𝑛  can be 
labeled as  (𝑥𝑖 , 𝑦𝑗 ) where 1 ≤ 𝑖 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛.

 The graph 
𝐶𝑚□𝐾𝑛  contains m number of cliques of 

order n. Every vertices of the clique power dominates the vertices in the corresponding clique. To power 
dominate 𝐶𝑚□𝐾𝑛 , m number of colors can be used to each clique and n-1 color classes can be used for the 
remaining vertices. 
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Theorem 2.6 

 For any integer 𝑚, 𝑛 ≥ 3,            𝜒𝑝𝑑   𝐶𝑚□  𝐾1,𝑛 =  
𝑚 + 2, 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑚 + 3, 𝑚 𝑖𝑠 𝑜𝑑𝑑

  . 

Proof 
The vertices of Cm are labeled as 𝑥1 , 𝑥2 , . . . , 𝑥𝑚 and the vertices of  𝐾1,𝑛with𝑦1 , 𝑦2 , . . . . 𝑦𝑛+1 where 

𝑦1is the 

middle vertex. 
Cartesian product of these graph denoted by 𝐶𝑚□𝐾1,𝑛  can be labeled as  (𝑥𝑖 , 𝑦𝑗 ) where 

1 ≤ 𝑖 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛 + 1.
Every 

𝑦1in 
𝐾1,𝑛  of 

𝐶𝑚□𝐾1,𝑛  power dominate 𝑦𝑗 (2 ≤ 𝑗 ≤ 𝑛 + 1). m number of 

color can be assigned to each  𝑦1in 
𝐾1,𝑛   and two more color classes are assigned alternatively 

to
𝑦𝑗  (2 ≤ 𝑗 ≤ 𝑛 + 1)when n is even or 

two more color classes can be  assigned alternatively to 
𝑦𝑗  (2 ≤ 𝑗 ≤ 𝑛 + 1)when n is odd.   

 
Theorem 2.7 

For any integer 𝑚, 𝑛 ≥ 3,  2m 𝜒𝑝𝑑   𝐶𝑚□𝑊𝑘 ≤ 𝑚 + 4 

Proof 
The vertices of 𝐶𝑚aredesignated as𝑥1 , 𝑥2 , . . . , 𝑥𝑚 and the vertices of  𝑊𝑘  by𝑦1 , 𝑦2 , . . . . 𝑦𝑘+1 where 

𝑦1is the 

middle vertex. 
Cartesian product of these graph denoted by 𝐶𝑚□𝑊𝑘  can be named as  (𝑥𝑖 , 𝑦𝑗 ) where 

1 ≤ 𝑖 ≤ 𝑚 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑘 + 1.
 

 
Case 1 

Suppose 
𝜒𝑝𝑑 (𝐺) < 𝑚 + 2

, all the vertices occurred in the cycle of each Wk power dominates its own 
middle vertex. So for  cycle of order m we need m different colors.For the remaining vertices occur in the 

cycle,at least two color classes are required to  power dominates the graph. So  
𝜒𝑝𝑑 (𝐺) ≥ 𝑚 + 2.

 
 
Case 2 
Suppose  𝜒𝑝𝑑 (𝐺) > 𝑚 + 4

 , as a continuation of case 1,  when m is odd, assigning two color classes is not 
satisfying the condition of power dominator coloring. so, one more new color  is needed. Also if k even 
means one more additional color class  will power dominate the same. More than m+4 color class will 
violate the condition.

 

 
 3. Power Dominator Chromatic Number of  Indu-Bala Product of Some Graphs: 
Theorem 3.1 
For any integer 𝑘 ≥ 2, 𝑛 > 2𝑎𝑛𝑑𝑘 < 𝑛, 𝜒𝑝𝑑 (Pk▼Pn) = 6. 

Proof 

Consider the Indhu-Bala product of two pathsPk▼Pn. Let (𝑥1 , 𝑥2, . . . , 𝑥𝑘), (𝑥1
′ , 𝑥2

′ , . . . , 𝑥𝑘
′ ) be the vertices of 

two copies of 𝑃𝑘and (𝑧1 , 𝑧2, . . . , 𝑧𝑛), (𝑧1
′ , 𝑧2

′ , . . . , 𝑧𝑛
′ )be the vertices of two copies of 𝑃𝑛 , ∀𝑘 < 𝑛. By the  

definition of  the Indu-Bala product , all the vertices of 𝑃𝑘are adjacent with n vertices of 𝑃𝑛 .Then the 

vertices (𝑧1, 𝑧2 , . . . , 𝑧𝑛) and (𝑧1
′ , 𝑧2

′ , . . . , 𝑧𝑛
′ )connected by an edge. Between the two copies, it forms a ladder. 

The vertices of ladder dominates all vertices of both copies and itself.The degree of Pk is always more than 
or equal to the degree of Pn since k < n. 
Assign colour class C1 and C2 alternatively to 𝑥𝑖(1 ≤ 𝑖 ≤ 𝑘) and the colour classes C3 and C4  alternatively 

to 𝑥𝑖
′(1 ≤ 𝑖 ≤ 𝑘) and the color classes C4 and C5 alternatively to 𝑧𝑗 (1 ≤ 𝑗 ≤ 𝑛) and the colour classes C2 and 

C6  alternatively to 𝑧𝑗
′(1 ≤ 𝑗 ≤ 𝑛) will make the possible power dominator coloring of Pk▼Pn. 
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Observation 3.1.1 
Let the Indu-Bala product of cycle and Path Ck and Pn be Ck▼Pn. Then for 𝑘 ≥ 3 𝑎𝑛𝑑 𝑛 ≥ 2, we have 

𝜒𝑝𝑑 (Ck▼Pn)=  
7, 𝑘 𝑖𝑠 𝑜𝑑𝑑

6, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

 
Observation 3.1.2 
Let the Indu-Bala product of two  cycles Ck and Cn be Ck▼ 𝐶n. Then  we have 

𝜒𝑝𝑑  (Ck▼𝐶n)=  
6, 𝑏𝑜𝑡ℎ  𝑘 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛

7, 𝑒𝑖𝑡ℎ𝑒𝑟 𝑘 𝑜𝑟 𝑛 𝑖𝑠 𝑜𝑑𝑑
8, 𝑏𝑜𝑡ℎ  𝑘 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑜𝑑𝑑

 . 

 
CONCLUSION 
In this article, the power dominator chromatic number of Cartesian and Indu-Bala Product of Some 
Graphs are obtained. It will be interesting to find power dominator chromatic numbers of Indu-Bala 
Product of Some of other classes of graphs. 
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