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ABSTRACT

As an extension of Sezen's result, we convey the notion of bipolar controlled neutrosophic metric spaces.
The research topic is about our ongoing efforts to bring forth controlled metric spaces for neutrosophic
theory.We looked at and illustrated a few axioms of (Bipolar controlled Neutrosophic metric
space) BERIMS in this article. As a way to generalise the Banach contraction principle in the earlier
mentioned spaces, we employed BCIINS .For the purpose of reviewing what we discovered, we
graphically validated several examples and supported some findings. Furthermore, we provide evidence
of usage and implemented it by proving their presence with a distinctive and integrative solution.

Keywords: Fixed point, Bipolar controlled neutrosophic metric space, Integral equation.

1. INTRODUCTION

In his 1906 dissertation, Fretchet pioneered the idea of metric space. Later, in his doctoral dissertation,
Banach [3] demonstrated the Banach contraction principle in 1922. Numerous researchers have tried out
this idea in various circumstances since then. It is regarded as the most essential non-linear analysis tool.
It explains why every contractive mapping in whole metric spaces has a single fixed point. It is a
generalisation and extension of many kinds of metric spaces. In 1965, Zadeh [17] developed his concept
of a fuzzy set, characterised by a modified version of a conventional set in which each element bears a
membership value within an acceptable range. The term "neutrosophic set" was originated by
Smarandache in 1998, and it was demonstrated beside Sowndrarajan [9]. As a team, they illustrated
several significant discoveries from neutrosophic metric space. In 2019, Kirisci and Simsek [11] relocated
out with a proposal of neutrosophic metric space. Sowdrarajan and Jeyaraman et al. [9] confirmed
significant fixed point results in neutrosophic metric space in 2020.

The concept of bipolar metric spaces was introduced very recently, in 2016 by Mutlu and Gurdal [2].
Additionally, they looked into a few linked and fixed point outcomes on this space (see to [1] and [2] for
details). We shall carry on our investigation of fixed points in the bipolar metric-space frame in this paper.
More specifically, a few shared fixed-point outcomes for a pair of covariant and contra variant.

This topic was used to obtain different structures and to generalise the outcome in different spaces. Some
basic results on this subject may be retained, notably controlled metric type spaces and the related
contraction principle in [15], controlled neutrosophic metric spaces and some related fixed point results
in [5], and, more recently, the novel aspects of metric spaces in [15]. We show the efficacy and validity of
the results' hypotheses. The ideas in the paper [15] in several recent literatures are enhanced and
elaborated upon by the current findings.

2. Preliminaries
The definitions of a neutrosophic metric space that we begin with are as follows.

577 M.Rathivel et al 577-588


mailto:jeya.math@gmail.com

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

Definition 2.1[8]
An ordered 6-tuple (&, U, 3, D, %, ) is called NINGS if K is an arbitrary non empty set, *neutrosophic CTN,
oneutrosophic CTC and ¥, J, D are neutrosophic sets on & x& x (0,00) satisfying the following condition:
Forallf g,h €K, 0,x> 0.

a) 0<%U(tg0)<1;,0<3(£49,0)<1;,0<D(f,g,0)<1;

b) A% g,0))+3JI (I g, 0)+D(g,0)< 3;

) UF g,0)=1,V0>0, =t=g;

d) A, g,0)=U(g,f0);for®>0

e) U g,0)*A(g,bh,x) =AU D, 0+x) VO, x>0

f) AL g .):(0,+0)—-[0,1] is neutrosophic CTS and lim,_, ,,, At g,0) = 1

g) S(£g,0)=0,v0>0, = i=g;

h) 3(fg,0)=J(fg,0);for0>0

i) J3(g,0)03(g,hx)<I(£h,0+x) VO, x>0

j) S(ta,.):(0,+0)—[0,1] is neutrosophic CTS and lim,_,,,, 3(f,g,0) = 0

k) D(fg,0)=0,v0>0,=t=g;

) D(Fg,0)=D(0,¢,3); for® >0

m) D, g,0) D (g,h,x)<D(£H,0+x) VO, x>0

n) D(% g, .): (0,+0)—>[0,1] is neutrosophic CTS andlim,_,,,, D(f,g,0) = 0

Then, (], U, 3, D, *, ¢) is called a NIMNS .

Definition 2.2 [5]
Let & be a non empty set and 2 : ] x& — [1,+00), x neutrosophic CTN, ¢ neutrosophic CTC and ¥, 3, D are
neutrosophic sets on & xK x (0,00) satisfying the following condition: For all f, g, heK ,0,2> 0
a. 0<%(g,0)<1,0<3(£9,0)<1;,0<D(f4,0)<1;
A, g,0)+3 (£49,0)+D(f,8,0) < 3;
A(t,¢,0)=0
A(f,9,0)=1,V0>0,f= g;
A(T, g, 0)=A(g, 1, 0);

U(LH, 0 +3) 2 UL, 6.72-) *UA(6, b,

b
C.
d
e
f.
g Ut g .):(0,+00)~[0,1]is CTS and lim,_, ., A, g,0) = 1 ;
h. 3(fg,0)=1

i. 3(9,0)=0,Vo>0=t= g;

o 3(90) =3 (g1 ®)

k. 3J(%5,0+x)< 3(f, g,j(f )) 3 (a,b 3(95))

L 3(tga.):(0,+0)—-[0,1]is CTS and lim,, ., I(f, g,0) =

m. D(fg0)=1
n. D(g0)=0,V0>0f=
o. D(g0)=3(g10);
p-

q.
Th

D(EDHO+)< 3 (E, g.ﬁ) RYCAY 3(gb))

D(fg,.): (0, +0)—[0,1] is CTS and lim,_,,, I(f,g,0) =
en, (], U, 3, D, x, ¢) is called a NCMS .

Definition 2.3 [8]

Suppose &, £ #@ and 2 : & x& — [1,+00) are considered as a incompetent mappings, * as t-norm defined as
r*s = min {r,s} and oas t-conorm defined as r¢ s= max {r,s}, and %, 3, D are neutrosophic sets on & x & x
(0, +o0) is characterized MBIMS , if for each one (K, LY, I, D, *, ¢) fulfills allieK , [€EL and O, x, 3> 0 holds
the following:

0<YFLOKL0<IFLO)1;,0<D(f1,0)=<1;

AELO)+I (5L0)+D(0O)< 35

A(£,L,0)>0forallfle Kx

A, 1, 0)=1iff = for €K, [€Q ;

AR LO)=Y(LE O)forallEl eKNE

Ql(fl, 12,@ +x +3) = Ql(fl, 11!9) *QI(fz, Il,x)*QI(fz, 12,3), fOT' fl! fz €S and Il! IZ (S V@, X, 3> 0 H

A (£1,.): [0,+90)—[0,1]is CTS

A (£, .) is non decreasing for all €K, [€Q

J(fL0)<1forallf,le §x &

3 (51, 0)=1iff{=] for teK,1€L ;

T F@ e an oD
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J(ELO)=J(LE0)forallf,l e KN Q
I (1, L0 +x43) 23 (1,11,0) 031, 11,x)0 I (£,,11,3), for i, f,€ER and 4, [,ELVO, %, 3> 0;
3 (£1,.) : [0,+00)—[0,1] is CTS
3 (£ 1, .) is non decreasing for all €K, [€Q
D(FL0)<1lforallfle K x &
D (§1,0)=1iff t=[ for TeK , (€L ;
D(EL0)=J(L§0)forallfl € KnL
D(1,L,0 +x4+3) 2D(F,11,0) oD (£, [1,%)oD (£,,1,,3), fort, ;,eERand|,,EL,V0,%3>0;
D (f1,.):[0,+00)—[0,1] is CTS.
t. D (i1 .)isnon decreasing for all teR, [€L.
Then,(K, LU, J, D, %, ¢) is called a NBVBINES.

wnroooBsg R

3. Main results
Definition 3.1
K2 #0 and 2 : & xK — [1,+00) are considered as a incompetent mappings, * as t-norm defined as rxs =
min {r,s} andeas t-conorm defined as res= max {r,s}, and ¥, 3, D are neutrosophic sets on & x & x (0, +o0)
is characterized BERIMS on K , if for each one (K, LA, T, D, *, ) fulfills allieK ,[EL and x, O, 3> 0 holds
the following:

0<UAFLOKL0<I(FLO)<1,0<D(}1,0)<1;

AELO)+I(LLO)+D(E,0) < 3;

A%, 1,0)=0;

A(E, [, 0)=1iff t=1 for €K, 1€L;

AL L, 0)=A(L T, 0)forall f, I EKNG
A(t, 1,0 + = +3)2?I(1?1,Il,:(f ; )) A, l,——

A(EL,.) : [0,400)—[0,1] is CTS;

A (£, .) is non decreasing for all €K, [€L;

3 (£1,0)=1

3 (£ 1, )= 0ifft=I for teK, €L ;

I (ELO)=J (L% 0)forallfl E f|Ng;

3 (f,1,,0 + x+3) < (fl,ll,:(f 3 (fz,Il,ﬁ)oS (2, IZ,M o) for i hEeRand 1, LEY

3 (£1.):[0,+c0)—[0,1] is CTS;

3 (11, .) is non increasing for all f€K , [€L;

D (§1,0)=1;

D (1, 0)=0iff t=[ for IeK,[€Q ;

D (£L,0)=D(L%0)forallfI E KNEL;
DE,LO+ x4+3)< D (fl,Il,:(f ; )) oD (I, L,

D(£1,.):[0,+00)—[0,1] is CTS
t. D (1, .)isnon increasing for all feK , [€Q
Then, (], A, T, D, *, 0] is called a BENRINCS.

WA, I, ——), forty, L,ER and [, LEY;

:(f i :(f ko

—FTCOD@ M e AN oD

08T o B3

0 I) b(fz,[z,:(f I)fOTf1,f2€Rand11,IZEE

©

Example 3.2
Let & = (0,3], 8=[3,). Define U is a fuzzy set on & x & x (0, +), as
" ift=1
AL LO) = {H@ if T #1and® > 0,
N ~ iff=1
S(EL6) = {1 — 110 if t#andd > 0,
0 ift=1

DELO) = {% if t+1and@ = 0,

With the continuous t-norm * such that ; * 0, = min{ 04, 0,}.
1 iff € KRandle 8

Define 3 :% x& — [1,+c0) as] (} 1) = {1 + - otherwise

Now, (&, &, T, D, *,0) is aBENMES. It is easy to prove the first three conditions. To prove the fourth
condition.
Forf #1and 6 = 0, By assumingt; = 3,]; = 4,f, = 2, [, = 5, we obtain a non-trivial sequence as (f,,[,)

= {(3,4), 1,4), (%, 5), } and taking @ = 1,x = 23=3.
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At 1,0 +x +3) = A (3,5,6) = A4, (2 5

=Ql(f1'1113(f I)) QI(fZ'Ill:(f I) QI( 2 2'
S(f1,12,9+x+3)=”(356) < 3(34

) x9A(2,4,

—)
—) 3 (2,4,

2 )4A(2,5——)

:(2 4) :(z 5)

:(f I

o) S (255%)

"2(2, 3) ::(2 4) 3(2 5)

0 ~
- \S (fl' 1'36 1 )) (fZ;Ilp:(f I ) N ( 27 Zvj(f I )
(£,1,0 + 1 +3) = (3,5,6) <D (34—) oD (2,4,

2(2.3)
=D(f1111'](f I)) D(fZ'Ill:(f I) m(vaIZ':(f I)

By computing the above which satisfies condition of BEItIMS. But, if we take some other values which
does not satisfies the condition of CFINES.

—2 oD (2,5——)

:(2 4) :(2 5)

Example 3.3
Let £=[0,1), £=[1,00). Define U, J, D are neutrosophic sets on & x & x (0, +0) as A(f,[,O) = (HdL(ﬂ), 3
(tL0) = Gig'(?l) D (%1,0) =& I)w1th the continuous t-norm * such that @;*@, = min {0, , ,} and oas t-

conorm defined as 0; ¢ @,=max {0,,0,}.

! 1 iff e KRandle 2
Define 3:8 x§ > [1,+e0) as1 (L 1) = {maxi?{if I} otherwise

Then (& 22, S, D, *, ¢) be aBENMS.

Theorem 3.4
Let (] LU T3, D, *, 0) be aBERIMS withd : & x] — [1,+0) and suppose that
lim, ., AL 0O) =1lim,_,3I(EL0O) =0lim,_,DF0)=0 (3.4.1)

forallf € Kandle L.Ifr: KUL — K U Lsatisfies that:
a. w(]) S Kandn(R) C 8,
b. A(rt,nl,40) = AGF,1,,0), I(rt, nl,40) < I, 1,0), D(nt, nl,i0)< D(],1,0)(3.4.2)
where 4 € (0,1). Also, we assume that for everyt, € ,lim,_,2(%,, 1)
Exist and are finite.
Then 2 has a unique fixed point.
Proof
Let f) € Kand |y € L and define (f,,1,) as a sequence by f, = nf,_jand [, = wl,_for all n €N
on BENRMES (K, LA, J, D, *, 0). Iff, = f,_; then §, is a fixed point of T. Suppose that f, # §,_,forall @ >0
andn € N.
Successively applying inequality (3.4.2), we get

Aty L1, 0) = Uty 71, 0) = A(fp iy, 2)> (ot o)

L
(2] (0]
S, loss, 0) = I(mh,_y, 7Ly, 0) < S(fn_z,ln_l,—.> ss(fo,fl ﬁ)

i

~ 0 ~ 0
Dty a1, 0) = D(hy_1, 1, 0) < I Bz luor, D) o < S (B0, b 5s) (3.4.4)
Now, using the condition (iv), we have A, Lym, 0) =

0 0
u (f”’ b+, 3:(fn,1n+1)) b (f”“' 2 3:(fn+1.rn+z)) . 0
A (f )1 ,—)
n2 3:1(fn+2ﬂ1n+m)

0] (0] 0]
ST (o PV RN P (S )
m Y 33(f Lge) 2 3:(f5+1,1n+2) M2 (3)23(E, 42 Lam )3 (Fnrzs nrs)

* QI( n+3» n+4: o] 4 )
3 (3)22(fn+2' Tl+m) (fl 3’ n )
* QI (fn+4,I

e (B)ZD(fn+2: In+m)3(fn+4' In+m))
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0] 0]
ZQI<f,I ,—)* Ql(f ,1 ,—)* 91<f ) Ry )
o 33(fnﬂln+1) b2 33(fn+1' n+2) ne s (3)23(fn+2'In+m)3(fn+2'ln+3)

* A

* QI(f ) ) )
n+3 n+4 (3)23(fn+2v n+m)3(fn+3’ n+4

<n+4' n+5'(3)33(fn+2v n+m)3(fn+4’ n+5)

* A

afhet )
+5 o (3)33(fn+2' n+m)3(fn+5' n+6)

Liver n+7'(3)33(fn+2, n+m)3(fn+6: n+7

QI(fn'In+m' @) = Pl (fO'fl rgin— o ) * [H:l:nn-ll—_‘l—z A <f01 Il ) - 7 i )] *

1At lh 1) G LTy g 3G b +m )3 Eliv)

) ~ ~ 0
[QI (fo' b Gyt 1(“"*£”+113(fj.1n+m))>] (3:4:3)3(, Lo, 6) S"(f”’l"“’w(fn,rnﬂ)) °
0] 0]
3 <fn+lrIn+217> ° 3 <fn+21 In+m17>
33(fn+1:In+2) 33(fn+211n+m)
3 (b)) )
— ‘\S ) F— o \S ) I— 0 ’\S ) )
o 33(fn'1n+1) 2 32(fn@+1lln+2) e s (3)23(fn+2'1n+m)3(fn+2!In+3)

0 S(f ) Sy )
3t (3)23(fn+2'1n+15)3(fn+3tIn+4)

o (f ,1 , )
T (3)22 (42 Tt )2 Tk

0] (0]
] (o R DY R D] (S )
o 33(fn'1n+1) L 33(f6+111n+2) e (3)23(fn+211n+m)3(fn+2'In+3)
03 (fuia t

e (3)23(fn+2: n+m)3(fn+3' n+4))

4

n+4, n+5’ (3)33(fn+21 n+m)2(f‘n+4’ n+5)

4

(1 )
’ (n+5’ " (3)32(faa | n+m)3(fn+5' n+6))
(1 )

n+6 n+7t(3)33(fn+2’ n+m)2(f'ﬂ+6’ Li7)

~ ~ 0 ~ 0
\s(fnﬂln+m'0) =3 (fO'fl ) ain— ) ° [ :[+n”-li-+1—2‘5 (fOJ I1 ’ i i )] ©

3413, 41) 3)m-14i-1 H}:n+1 J(fj,In+m )J(fi,IH.l)

[\S (fo’ b @ym-tantm= 1(Hn+1:n+11 J(fj'1n+m ))>](3.4-6)®(fn’ln+m’ 9) =9 (fn'LnH' 33(fn11n+1)) °

[¢] [¢]
D (f"“’ bn+2, 3:(fn+1.ln+z)) ¢ D (f”“’ b 33(fn+z.ln+m))

e )
Si)(f n! ,7> iD(f n! ,7) 5D<f ntss )
ot 33(fnﬂln+1) ’ b 3:(fn+1'1n+2) ’ e s (3)23(fn+2:In+m)ﬂ(fn+2'1n+3)
)
0 (fus 1

Q)(f ) S )
° n+4r n+m (3)22(%, 12 Lo )AE s Lipn)

e (3)2:(fn+2' In+ng)):1(fn+3' In+4)>
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0 0
< v - -
<D <fn, In+1, 33(fn, In+1)) ° D <fn+1’ In+2’ 33(fn+1; In+2)>
0]

Lol (PR A )
ni2: T3 (3)23(fn+2! n+0m)3(fn+2' n+3)

4

<n+3' e (3)23(fn+2, n+én)3(fn+3' n+4))
<n+4' n+5 (3)33(fn+2‘ n+0m)3(fn+4' n+5))

f ’ 4
<n+5 n+6 (3)3:(fn+2’ n+78)3(fn+5' n+6)

4

D
D

o b(f s, )
0 n+6, n+7 (3)33(fn+2,1n+m)3(fn+6'In+7)
bl ©) <0 (to 1 3omm )
D(n n+m ) D 0,1 3ln_13(fniln+l) ’
n+m+2 0
[Hi=n+l b (f()' Il ’(3)m71ii*1 H;:n+1J(fj,1n+m)3(filli+1)>:| °
2]
N 3.4.7
[ (0 1 gym—tgn+m= 1(H"+,Z"+113(fﬂn+m))>] w7

Therefore, by taking limit as n - o in (3.4.5),(3.4.6),(3.4.7) , from (3.4.4) together with (3.4.1),we
have lim, o, U, [i1m,0) = 1x1x1x . x1=1,

lim, .3, L1, 0) < 000000.. .00=0and

lim, oD, l14m, @) < 000000, . 00=0,forall® >0,n<mandn,mE€EN.

Thus, (,,1,) is a BPC- (Bipolar controlled) Cauchy sequence in X. From the completeness of(&, £, 3, D
%, o)there exits u € &N & which is a limit of the both sequences {f, }and {I,,} such that,

limUA(mu,u,0) =1, llmo(nu u,0) =0, llmL’D(nu u,0)=0forall® > 0.

n—-oo

Now, we show that 0 is a fixed point of 7. For any © > 0 and from the condition (iv) we have,

) 0 )
9A(m, 1, 0 291( , 7) QI( , 7> %I( Furt) 7)
(w1, ) = A\, w2 y) * ¥\ T g ) M (Tl g

6 0 6
sme—) 08 (T Tl gm0 3 (P o)
32(7Tu,7TIn)) °"<" w39, )/ S 3G, )

0 6 E;
_— SD( f,, ml ,—) CD( o1 .—)
33(my, nIn)) CP\ T b 39, L)/ T 3G )

By taking limit as n — o in above equation and using (3.4.5),(3.4.6),(3.4.7) we getlimU(mu,u,0) =1,
n—oo

lim3(mu,u,0) =0, lim®D(mru,u,0) = 0forall® > 0 thatis mu = u.

n—oo n—-oo

For uniqueness, let w € & N £ is another fixed point of = and there exists ® > 0 such that 2(u, w, O) #
1,30, m,0) # 0, D(u, w, O) # 0, then it follows from (3.4.2) that

e %] 0]
Ay, w, 0) = A(mu, tw, O) > ‘21(11 w, ) > Ql(u,m,i—2> " QI(u,m,i—n)

JI(mu,1,0) < J (nu, ml,,

D(mru,u,0 <D (nu, ml,,

@ ) 0
S, w,0) =J(muy, mw, 0) < J (u m,7> <3 (u, m,i—2> <3 (u, m’i_")
D, w,0) = D(mu, 1w, @) < CD(u w, ) < 1)( 9) < D(u,m,i%) (3.4.8)
forall n € N. By taking limitas n - o in (3.8), (1, w,®) = 1 forall @ > 0 thatis
u = w. This completes the proof.

Example 3.5
Let & = [0,3) and & = [3, ). Define A, J, D: & X & X [0,0) = [0,1] as
1 if t=1
6 ifteRandl e
— i an
0+2
AE1,0) = o
( ) 5 Iff€ERKandleR
O +¥
L th ]
9—+1 otnerwise
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(0 if t=1
2
L iffeKandleg

0+
3(51,0) =4 2
f

5 iftefandle

0+
° th i
0—+1 otherwise
if =1

iftefKandle

iffefandle

otherwise

D(E,1,0) = !
I
\

Q%‘l'\’@l

For CTS product t-norm and t-conorm.
Consider2: K x 2 —» [1 )whereB € (0,1) and n € Nas
1 if L1eMm
D = {max{f, [}  otherwise
Clearly, (& LU, 3, D, x, ) be a BERIMES. Considern: K U L - K U Lby
() = { ifveIn
Ty 2+1 ifvew
Forall v € & and B = 0.5.For each of the four scenarios listed below, the disparity needs to be confirmed.
Case I: Iff = [then there’s wf = nl. In the present case:U(nt, nl,10) = 1 = A, 1, 0)

,I(rt,wl,i0) = 0 =3, 1,0), Dt n,i0) = 0 =D, 1,0) (3.4.9)
Casell: Ifft e S and1 € &,wehave nif € &, ]l € L.
. i0 0.50 )
= = > =
W(nt, 7, i0) er% 050+ 2+1 > 9*1%1 A1, 0) (3.4.10)

.........................

il
T LCLL i

value of [in U value of @ in A
(a) (b)
Figure 1. Fluctuation of A(xt, nl, 10) with A(%, 1, ©) of case Il on 2D view, for:
(a) U(nt, 7], 10)blue curve vsA(E, 1, O) green dotted curve atd® = 1 and I € (3,50).
(b) U(mt, 1, 1@)violet curve vsU(E, [, @)black dotted curve at ® € (1,50)and I = 3.

2 2

2
o 0y — _a_ _ Tl o Bl _
3(nt, 71, 10) w+% 06+, ZH < o0 H—Ll RI(ANC)) (3.4.11)

583 M.Rathivel et al 577-588



Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

value of [in ¥ value of @in J
(a) (b)
Figure 2. Fluctuation ofJ3(7f, 1, 40) with I(%, [, ©) of case Il on 2D view, for:
(a) 3(mt, 1, i@)blue curve vsI (I, 1, ©) green dotted curve atd = 1 and ! € (3,50).
(b) 3(mt, ml, i@)violet curve vsI (%, [, ®)black dotted curve at @ € (1,50)and [ = 3.

Q) = > = z _
Dt L i0) =~ = s < e = D11 6)(34.12)

N N

value of [in D value of  in D
(a) (b)
Figure 3. Fluctuation ofD(xf, ], 10) with D(%, 1, @) of case Il on 2D view, for:
(@) D(nt, ], 10)blue curve vsD(%, 1, @) green dotted curve at® = 1 and [ € (3,50).
(b)D(mt, 71, i@)violet curve vs (%, [, @)black dotted curve at ® € (1,50)and [ = 3.

Table 1 and 2 shows the fluctuation between
A(nt, wl, 10)and A®F, |, ©), J(rt, 7], 10) and I, 1, ©), D(nt, 7, BO) and D(,1,0) as a mapping of [ with
relative to 6.The contour for the estimation of @ is towering to 50 as a mapping of [.

AtO =70,

A(rt, ml, i@)changed to 1, and after higher values of @ , it changeless, (0 = 1).

A(%, [, @)doesn’t change till @ = 100, but it arrived nearer to 1.

J(nt, ml,i@)changed 0, and after higher values of @, it changeless, (0@ = 0).3(f, 1, ®)doesn’t change till
0 = 100, but it arrived nearer to 0.

D(rt, nl, i@)changed 0, and after higher values of @, it changeless, (@ = 0).D(f,1, ®)doesn’t change till
® = 100, but it arrived nearer to 0.

Table 1.Fluctuation between
A(rt, nl, i@)and AL, [, ), I(rt, nl, BO) and I(%, [, 0), D(nt, nl, i0) and D, 1, ©) as a mapping of [ with
unchanged estimation of @ = 1 and 6 = 50.

Value Value of | A(nt, 7], 410) AE, [, O) 3(mt, 71, 10) RI(ANC)) D(rt, 1, 10) D(,1,0)

of @ [

1 2 0.5556 0.5000 0.2857 0.4444 0.8000 0.4000
20 0.9901 0.9091 0.0050 0.0099 0.0100 0.0050
50 0.9984 0.9615 0.0008 0.0016 0.0016 0.0008
100 0.9996 0.9804 0.0002 0.0004 0.0004 0.0002

50 2 0.9843 0.9804 0.0079 0.0157 0.0160 0.0080
20 0.9998 0.9980 0.0000 0.0002 0.0002 0.0001
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50 1.0000 0.9992 0.0000 0.0000 0.0000 0.0000
100 1.0000 0.9996 0.0000 0.0000 0.0000 0.0000

Table 2. Fluctuation between
A(rt, nl, i@)and U, |, ), I(xt, 1], 10) and I, 1, 0), D(rt, 1], 10) and D(%,], @) as a mapping of @ with
unchanged value of [ = 3 and [ = 50.

Value Value A(nt, ml, 109) A1, 0) J(nt, w1, 10) RI(ANC)) D(nt, nl,10) D1, 1,0)
of [ of ©
2 1 0.7143 0.6667 0.4444 0.2857 0.8000 0.4000
20 0.9615 0.9524 0.0385 0.0196 0.0400 0.0200
50 0.9843 0.9804 0.0157 0.0079 0.0160 0.0080
100 0.9921 0.9901 0.0079 0.0040 0.0080 0.0040
50 1 0.9984 0.9615 0.0016 0.0008 0.0016 0.0008
20 0.9999 0.9980 0.0000 0.0000 0.0000 0.0000
50 1.0000 0.9992 0.0000 0.0000 0.0000 0.0000
100 1.0000 0.9996 0.0000 0.0000 0.0000 0.0000

Case III: Iff € W, 1 € M, we have it € W, il € IN.

Ant, il i0) = —2 = —22% > & —9(%,1,0)(3.4.13)

2
19+ﬁ 0.59+f—m O+—

i+1

value of fin U value of ® in A
(a) (b)
Figure 4. Fluctuation of2(nf, [, @) with A(%, 1, @) of case Il on 2D view, for:
(a) A(wt, 7, 10)bluevsA(L, [, ©)green dotted at @ = 1and f € (3,50).
(b)U(mt, 1, 1@)violetvsA(E, [, @) black dotted at ® € (1,50) and f = 3.
2 2 2

S(nt, l, 0) T TsenT S ik 3(@,1,0) (3.4.14)

"5wmw ............................... J#f,‘.“’

value of @in J
(a) (b)
Figure 5. Fluctuation of3(rf, 1, 10) with J(%, [, @) of case Il on 2D view, for:
(a) 3(nt, 1, i0)bluevsI (%, I, @) green dotted at ® = 1and f € (3,50).
(b) J(mt, I, i0)violetvsI (%, [, @) black dotted at ® € (1,50) and f = 3.

oy 2 _ 2 2
DL, i0) = 5 = (oo < i = D(1,1,6)(34.15)
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value of {in® value of @ in D
(a) (b)
Figure 6. Fluctuation of D (7i, ], 10) with D(%,1, @) of case III on 2D view, for:
(@) D(nt, ], 10)bluevsD(E, [, @) green dotted at @ = land € (3,50).
(b) D(mt, w1, i0)violetvsD (3,1, @) black dotted at @ € (1,50) and f = 3.

Case IV

If il does not belongs to above any cases, then

A(qt, g, BO)and U, 1, 0), I(nt, nl,10) and I(E, 1, 0), D(rt, nl, BO) and D(1,[,0) depends on only O, we
9)=_L - _1 A

have U(nt, nl,10) = o1 " osom1 ? o A%, 1,0)(3.4.16)

~ N B 9 _«

(Ll i0) = —— = —— < =3(11,0)(34.17)

D(rt, nl,i0) = i0=0.50 <60 =D(},1,60)(3.4.18)
Which implies that all the condition of theorem 3.5 hold and & has a unique fixed point f = 1.

Theorem 3.6
Let (], U T, D, *,0) bea BEIWSand 7 :RU L - K U L be a mapping satisfying lim,,_., At O) = 1,
lim, -3 1,0) =0, lim, ., D 1,0) =0
. . A(t,mli0) AELO)
Suppose there exist a constant < € (0,1) such that fo p)dt = fo p(t)dt,
fOS(nf,nI,iQ)(p (O)dt < fOS(f,I,B)(p ()dt, fosa(nf,m,w)(p (O)dt < J«OD(f,I,@)(p (t)dt (3.4.19)
Forallf € &,1€ £.Then r has a fixed point.
Proof

By taking ¢ (t) = 1in equation (3.4.19) we obtain the above theorem (3.5).

4. Application for the spring mass system

It is commonly recognised that an automobile suspension system is a practical application for the spring
mass system in engineering challenges. Examine the motion of an automobile spring on a rough, pitted
road, where the road acts as a forcing term and shock absorbers act as a dampening agent. The system
may be affected by tension force, earthquakes, ground vibrations, and gravity, among other external
influences.

The following initial value issue governs the critically damped motion of this system when it is subjected
to an external force F. Let m be the mass of the spring and F be the external force acting on it.

d%q | ,dq
mW+ l%—mF(@,q(@)) =0
q(0) =0 (1)
q(0)=0
Where [ > 0 is a continuous function that represents the damping constant. It is simple to demonstrate
that the integral equation and problem (4.1) are equivalent.

T
q(0) = [, Y(0,7)F(0,y,u(y))dy. (4.2)
Where Y(0, y) is Green'’s function given by

1—eH(©@-y) |
Y0,y) = ——— if0<y<O<T (4.3)

0 if0<O=<y<T
Where u = [/mkeeps constant. This section goes over the existence of q as a solution to the integral
problem using theorem ( 3.5)

(@) = [, G(6,v,u@))dy. (4.4)
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Let & = C([0,T]) be the set of real continuous functions defined on [0, T].
For k € (0,1) we define
)
AELO) = su ( )
PoctonI\6 + (1x(0) — (@)

~ lx (@)—y ()] (Ix(@)-y @D .
S L 0) = Infoepor (m), D(E1,0) = Infoepon (%), Forallf € Rand [ € 8. Define 2:§

x§® = [1,+0) as
1 if fefKand [e g
ALD = { max{ i1} otherwise
It is easy to prove that (&, &2, 3, D, x, ¢) is a BERINES.

consider the mapping w :RU & —» K U & defined by wi(0) = fOT G(@,y, q(y))dy.

Theorem 4.1
Suppose that
1. There exist a continuous function ¥: [0,T] X [0, T] - R* such that

supeeror fy Y&, P)dy < 1

2. A:[0,T] x[0,T] x R - R* is continuous such that
|A(0,y,f(y)) - A(@,y, I(y))| > | t(y) — U(y)|, for all < € (0,1). Then, the integral equation (4.4) has
a unique solution.

Proof
i0

Let f €Rand € £, by using of assumptions (1) - (2), we have(wf, wl,40) = supge(o, B r(or®) o@D

10
Vio+([fy ao 1))dy-a(0.y 1n)dv]
0

= SUPgeo,T

10

=su > su >
Pocpor) 0-+(fy [4(8,y,10))dy—-A(0,y,11)dy]) PoeloT] 0-+(Jy 11— 10)1)dy
0
. >

SUPee[o,T] ®+(f(;r| )y - A, 1,0)

S(wf, wl, i0) = Inf (1 ® )

) J/L = I
See Moctn 1~ 78+ (lox(®) — wy(@)D)

= Inf 1- ©
T ORI T ey a0 tn)dy-a(0y1m)dv])

= Infgefo,m (1 —— 2 ~ )
10 +(Jy |A(0,y,5())dy—A(0,y,1(y))dy|)
3 10
i@+ (Jy 110 — 101 dy
0

o+ (1w - 1)) ay
(lox(©) - wy(®)|)>

< InfGe[o’T] 1

< Infgeom <3 1,0)

D(wf, wl,kO) = Infoefo <

0
(|f(;rA(G),y,f(y))dy—A(@,y,I(y))dy|) Uo 18 (0.7 30r))dy—=A(8,v,1(0)dy )
= Infoepor) - = Infoepom o
Joy 1€ =101 )dy Iy 1E)= 1)1 )dy
< Inf@E[O,T] (%) < Il’lf@e[o‘rp] (% < :D(f, I @)

Therefore, all the conditions of (theorem 3.5) are satisfied. As a result, mapping S has a unique fixed point
t € 8 U £, which is a solution of the integral equation(4.4).

CONCLUSION

By introducing BENIMS and a number of new verifiable FIP theorems, we enhance Sezen's CFIMES in the
current investigation. We additionally addressed a few complex cases. Due to the fact that our structure is
more generic than a category of fuzzy and BEINMS, our verdict and notions add to a number of
previously reported findings that have been more specifically applied.

587 M.Rathivel et al 577-588



Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

REFERENCES

[1]  Ali Mutlu, Kubra ozkan, Utku Gurdal, Coupled fixed point theorems on bipolar metric spaces.
European journal of pure applied mathematics. Vol.10,N0.4,(2017)655-667.

[2] Ali Mutlu,UtkuGurdal, Bipolar metric spaces and some fixed point theorems. ]. Non linear Sci.
Appl.9(9),(2016)5362-5373.

[3] Banach.S, Surles operations dans les ensembles abstraits et leur application aux equations
integrals, Fund Math 3 (1) (1922),133-181.

[4] Dutta P.N, Choudhury B.S, A generalization of contraction principle in metric spaces. Fix. Point
Theo. Appl, 18,Article ID:406368.(2008)

[5] Fahim Uddin, Umar Ishtiag, Naeem Saleem,Fixed point theorems for controlled neutrosophic
metric-like spaces, AIMS Mathematics 2022,vol 7,20711-20739.

[6] George.A and Veeramani.P, On some results in fuzzy metric spaces, Fuzzy Sets Systems 64 (3)
(1994), 395-399.

[7] Grabiec. M,Fixed points in fuzzy metric spaces, Fuzzy Sets Systems 27 (3)(1988),385-389.

[8] Jeyaraman. M and Shakila V.B, Common Fixed Point Theorems For a-Admissible Mappings In
Neutrosophic Metric Spaces, Advances And Applications In Mathematical Sciences Volume 21,
Issue 4, February 2022,2069-2082.

[9] Jeyaraman. M, Sowndrarajan. S “Common Fixed Point Results in Neutrosophic Metric Spaces.”
Neutrosophic Sets and Systems 42,1 (2021).

[10] Kamran.T,Samreen.M and q.ul A in, A generalization of b-metric space and some fixed point
theorems , Mathematics 5(2)(2017),19.

[11] Kirisci, M, and Simsek.N Neutrosophic metric spaces.(2019).

[12] Kramosil and Michalek.]. Fuzzy metrices and statiscal metric spaces,Kybernetika 11(5)
(1975),336-344.

[13] Rakesh Tiwari and Shraddha Rajput, A new fixed point result in bipolar controlled fuzzy metric
spaces with application, Malaya J. Mat. 10(03)(2022),224-236.

[14] Sezen Muzeyyen Sangurlu, Controlled fuzzy metric spaces and some related fixed point results,
Numerical partial Differential Equations (2020) 1-11.

[15] Sezen.M.S, Controlled fuzzy metric spaces and some related fixed point results, Numer Meth part
Differ Equation37(2020),583-593.

[16] Sowndrarajan.S; Jeyaraman.M; and Florentin Smarandache.”Fixed Point Results for Contraction
Theorems in Neutrosophic Metric Spaces.” Neutrosophic Sets and Systems 36, 1 (2020).

[17] Zadeh.L.A, Fuzzy sets,Inf Cont 8(3)(1965),338-353.

588 M.Rathivel et al 577-588



