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ABSTRACT 
The concept of neutrosophic subring of a ring, is initiated and some examples are discussed. Some of their 
properties are mentioned. The characterization of neutrosophic subring of a ring is obtained. 
 
Keywords: Ring, subring, neutrosophic subring, (α, β, ) – cut of neutrosophic subring, level subring of 
neutrosophic subring.  
 
1. INTRODUCTION 
In 1965, Lofti. A. Zadeh [9] introduced the concept of fuzzy sets, where each element of the set had a 
degree of membership. Zadeh had initiated fuzzy set theory as a modification of the ordinary set theory. 
In 1983, the notion of intuitionstic fuzzy set was introduced by K. Atanassov [1, 2] as a generalization of 
fuzzy set, where each element had the degree of membership and non- membership. The notion of 
neutrosophic set was initiated by Smarandache [7, 8]. The neutrosophic theory has set up the key stone 
for new mathematical theories inducing both the classical and fuzzy concepts. 
In classical theory, subrings associated to any ring, play a vital role. On considering this, in this article, we 
tried to discuss the algebraic nature of neutrosophic subrings of a ring.   

 
2. Preliminaries 
In this segment, the general idea of rings and neutrosophic sets are recalled. Throughout this article, it is 
assumed that every ring is commutative and has a multiplicative identity element. 

 
Definition 2.1 
Let (R, +, .) be a ring. A non – empty subset S of R is called a subring of R if it satisfies the following 
condition: 
x, y  S  x – y, xy  S  
 
Example 2.2 
(Z, +, .) is a ring. 
 
Definition 2.3 
Let X be a non – empty set. A set A = {<x, µA(x), σA(x), υA(x)>} is called a Neutrosophic set of X, where x X 
and the mappings µA, σA, υA: X  [0, 1]. Here µA is called as the membership function; σA is called as the 
indeterministic membership function and υA is called as the non-membership function and there is no 
restriction on sum of (µA(x), σA(x), υA(x)) so 0 ≤ µA(x) + σA(x) + υA(x) ≤ 3. 
 
Definition 2.4 
Let A be any Neutrosophic set of a set X and A = {<x, µA(x), σA(x), υA(x)>}. Then,      (α, β, ) – cut of A is 
defined as the subset {x X / µA(x) ≥ α; σA(x) ≤ β and υA (x) ≤ } of X, where α  Im µ, β  Im σ and  Im υ 
and the (α, β, ) – cut of A is denoted by Aα, β, . 
 
3. Neutrosophic subring 
Here the concept Neutrosophic subring of a ring is initiated and some examples are discussed. Some of 
their properties are established. The characterization of neutrosophic subring of a ring is obtained 
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Definition 3.1 
A Neutrosophic set A of a ring R, is considered as a Neutrosophic subring of R, if it satisfies the following 
conditions: For all x, y  R, 
(i) µA(x – y)   ≥ min {µA(x), µA(y)} 
(ii) µA(xy)       ≥ min {µA(x), µA(y)}, 
(iii) σA(x – y)   ≤ min {σA(x), σA(y)} 
(iv) σA(xy)       ≤ min {σA(x), σA(y)}, 
(v) υA(x – y)   ≤ min {υA(x), υA(y)} 
(vi) υA(xy)       ≤ min {υA(x), υA(y)}. 
 
Example 3.2 
Consider the Neutrosophic set A of a ring (Z, +, .).   

µA(x) =








5~2.

59.

Z

xif
  σA(x) =

.4 5

.6 ~ 5

if x

Z

 


 
 υA(x) =

.3 5

.7 ~ 5

if x

Z

 


 
 

Then A is a Neutrosophic subring of Z. 
 
Example 3.3 
Consider the Neutrosophic set B of a ring (Z, +, .). 

µB(x) =








4~9.

44.

Z

xif
  σB(x) =









5~2.

59.

Z

xif
 υB(x) =

.6 5

.3 ~ 5

if x

Z

 


 
 

Then B is not a Neutrosophic subring of Z. 
Hereafter, A is assumed as any Neutrosophic subring of a ring R. 
  
Proposition 3.4 
For any A, µA(1) ≤ µA(x) ≤ µA(0); A(1) ≥ A(x) ≥ A(0) and υA(1) ≥ υA(x) ≥ υA(0), for all x  R where 0 is the 
additive identity and 1 is the multiplicative identity in R. 
Proof 
Given A is any Neutrosophic subring of a ring R with additive identity 0 and multiplicative identity 1. 
To prove     µA(1) ≤ µA(x) ≤ µA(0), for all x  R.  
Allow x  R be arbitrary. Then, 

    µA(x) = µA(1. x)  ≥ min {µA(1), µA(x)}  ≥  µA(1) ------------ (1) 
And       µA(0) = µA(x – x) ≥ min {µA(x), µA(x)} ≥ µA(x) ---------------- (2) 
From (1) and (2), we have µA(1) ≤ µA(x) ≤ µA(0), for all x  R. 
To prove     A(1) ≥ A(x) ≥ A(0), for all x  R.  
Allow x  R be arbitrary. Then, 

   A(x) = A(1. x)  ≤ min {A(1), A(x)}  ≤  A(1) ------------- (3) 
And       A(0) = A(x – x) ≤ min {A(x), A(x)} ≤ A(x) ---------------- (4) 
From (3) and (4), we have A(1) ≥ A(x) ≥ A(0), for all x  R. 
To prove     υA(1) ≥ υA(x) ≥ υA(0), for all x  R.  
Allow x  R be arbitrary. Then, 

   υA(x) = υA(1. x)  ≤ min {υA(1), υA(x)}  ≤  υA(1) ------------- (5) 
And       υA(0) = υA(x – x) ≤ min {υA(x), υA(x)} ≤ υA(x) ---------------- (6) 
From (5) and (6), we have υA(1) ≥ υA(x) ≥ υA(0), for all x  R. 
 
Proposition 3.5 
For any A, µA(x) = µA(– x); A(x) = A(– x) and   υA(x) = υA(– x), for all x  R. 
Proof 
Allow A be any Neutrosophic subring of a ring R, Allow x  R be arbitrary. Then, 

          – x = 0 + (– x) = 0 – x -------------------------- (1) 
Now, µA(– x) = µA(0–x) ≥ min {µA(0), µA(x)} ≥ µA(x) ------ (2) 
Again     µA(x) = µA( – ( – x))≥ µA(– x), by (2) 
               ≥ µA(x), by (2) 
 µA(x) = µA(– x). 
And A(– x) = A(0–x) ≤ min {A(0), A(x)} ≤ A(x) ------- (3) 
Again     A(x) = A( – ( – x))≤ A(– x), by (3) 
               ≤ A(x), by (3) 
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 A(x) = A(– x). 
And υA(– x) = υA(0–x) ≤ min {υA(0), υA(x)} ≤ υA(x) --------- (4) 
Again     υA(x) = υA( – ( – x))≤ υA(– x), by (4) 
               ≤ υA(x), by (4) 
 υA(x) = υA(– x). 
Hence µA(x) = µA(– x); A(x) = A(– x) and υA(x) = υA(– x), for all x  R. 
 
Proposition 3.6 
For any A, for all x, y  R,  
µA(x + y) ≥ min {µA(x), µA(y)}; 
σA(x + y) ≤ min {σA(x), σA(y)} and 
υA(x + y) ≤ min {υA(x), υA(y)}. 
Proof 
Allow x, y  R be arbitrary. Then,  
 x + y = x + (– (– y)) = x – (– y)  
Now, µA(x + y) = µA(x – (– y)) ≥ min {µA(x), µA(– y)} 

                          ≥ min {µA(x), µA(y)}, by Proposition 3.5 
 µA(x + y) ≥ min {µA(x), µA(y)},  x, y  R 
And, σA(x + y) = σA(x – (– y)) ≤ min {σA(x), σA(– y)} 

                         ≤ min {σA(x), σA(y)}, by Proposition 3.5 
 σA(x + y) ≤ min {σA(x), σA(y)},  x, y  R 
And, υA(x + y) = υA(x – (– y)) ≤ min {υA(x), υA(– y)} 

                         ≤ min {υA(x), υA(y)}, by Proposition 3.5 
 υA(x + y) ≤ min {υA(x), υA(y)},  x, y  R 
 
Proposition 3.7 
For any A, if µA(x – y) = µA(0), then µA(x) = µA(y) where         x, y  R.  
Proof 
Allow x, y  R. 
Assume that µA(x–y) = µA(0) ------- (1) 
Here,   x = x + 0 = x + ((– y) + y) = (x + (– y)) + y = (x – y) + y 
         µA(x) = µA((x – y) + y) ≥ min {µA(x – y), µA(y)}, by Proposition 3.6 
                             = min {µA(0), µA(y)}, by (1) 
                                        = µA(y) -------------- (2), by Proposition 3.4 
Again,  y = 0 + y = (x – x) + (–(– y)) = (x – x) – (– y) = x – (x – y) 
         µA(y) = µA(x – (x – y)) ≥ min {µA(x), µA(x – y)}  
                            ≥ min {µA(x), µA(0)} --------- (3), by (1) 
But min {µA(x), µA(0)} = µA(x), by Proposition 3.4 
(3)   µA(y) ≥ µA(x) ------------ (4) 
From (2) and (4), we have µA(x) = µA(y). 
 
Proposition 3.8 
For any A, if σA(x – y) = σA(1), then σA(x) = σA(y) where      x, y  R.  
Proof 
Allow x, y  R. 
Assume that µA(x–y) = µA(1) ------- (1) 
Here,   x = x + 0 = x + ((– y) + y) = (x + (– y)) + y = (x – y) + y 
         σA(x) = σA((x – y) + y) ≤ min {σA(x – y), σA(y)}, by Proposition 3.6 
                             = min {σA(1), σA(y)}, by (1) 
                                      = σA(y) -------------- (2), by Proposition 3.4 
Again,  y = 0 + y = (x – x) + (–(– y)) = (x – x) – (– y) = x – (x – y) 
         σA(y) = σA(x – (x – y)) ≤ min {σA(x), σA(x – y)}  
                            ≤ min {σA(x), σA(1)}, by (1) 
                                                  = σA(x), by Proposition 3.4 
(3)   σA(y) ≥ σA(x) ------------ (3) 
From (2) and (3), we have σA(x) = σA(y) 
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Proposition 3.9 
For any A, if υA(x – y) = υA(1), then υA(x) = υA(y) where x, y  R.  
 
Proposition 3.10 
For any A, µA(x + y) = µA(y) for all x, y  R if and only if µA(x) = µA(0). 
Proof 
Allow x, y  R be arbitrary. 
Assume that µA(x + y) = µA(y), for all y  R. 
As 0R, µA(x + 0) = µA(0) 
 µA(x) = µA(0) 
Conversely, assume that µA(x) = µA(0) ------------- (1) 
Now µA(x + y) ≥ min {µA(x), µA(y)}, by Proposition 3.6 
  = min {µA(0), µA(y)}, by (1) 
  = µA(y), by Proposition 3.4 
  µA(x + y) ≥ µA(y), for all x, y  R ---------- (2) 
Again y = y + 0 = y + (x – x) = (y + x) – x = (x + y) – x  
Hence   µA(y) = µA((x + y) – x) ≥ min {µA(x + y), µA(x)} 
       = min{µA(x + y), µA(0)}, by (1) 
       = µA(x +y), by Proposition 3.4 
  µA(y) ≥ µA(x + y) ---------- (3) 
From (2) and (3), we have µA(x + y) = µA(y). 
 
Proposition 3.11 
For any A, σA(x + y) = σA(y) for all x, y  R if and only if σA(x) = σA(1). 
Proof 
Allow x, y  R be arbitrary. Assume that σA(x + y) = σA(y), for all y  R. 
As 0R, σA(x + 0) = σA(0) 
 σA(x) = σA(0) 
Conversely, assume that σA(x) = σA(1) ------------- (1) 
Now σA(x + y) ≤ min {σA(x), σA(y)}, by Proposition 3.6 
  = min {σA(1), σA(y)}, by (1) 
  = σA(y), by Proposition 3.4 
  σA(x + y) ≤ σA(y), for all x, y  R ---------- (2) 
Again y = y + 0 = y + (x – x) = (y + x) – x = (x + y) – x  
Hence   σA(y) = σA((x + y) – x) ≤ min {σA(x + y), σA(x)} 
       = min{σA(x + y), σA(0)}, by (1) 
       = σA(x +y), by Proposition 3.4 
  σA(y) ≤ σA(x + y) ---------- (3) 
From (2) and (3), we have σA(x + y) = σA(y). 
 
Proposition 3.12 
For any A, υA(x + y) = υA(y) for all x, y  R if and only if υA(x) = υA(1). 
 
Proposition 3.13 
For any A, if µA(x) < µA(y) for some x, yR, then µA(x – y) = µA(x) = µA(y – x). 
Proof 
Given A is a neutrosophic subring of R. 
Allow x, y  R. 
Here x – y = – (– (x – y)) = – (–x + y) = – (y – x). 
Therefore, µA(x – y) = µA(– (y – x)) = µA(y – x), by Proposition 3.5   
Assume that µA(x) < µA(y) ------- (1) 
Now µA(x – y) ≥ min {µA(x), µA(y)} = µA(x) -------- (2), by (1) 
And x = x + 0 = x + (– y + y) = (x – y) + y 
Therefore, µA(x) = µA((x – y) + y) ≥ min {µA(x – y), µA(y)}, by Proposition 3.6 
                  = µA(x – y) as µA(x) < µA(y) 
 µA(x) ≥ µA(x – y) -------- (3) 
From (2) and (3), we have µA(x) = µA(x – y). 
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Proposition 3.14 
For any A, if σA(x) > σA(y) for some x, yR, then σA(x – y) = σA(x) = σA(y – x). 
Proof 
Given A is a neutrosophic subring of R. Allow x, y  R. 
Here x – y = – (– (x – y)) = – (–x + y) = – (y – x). 
Therefore, σA(x – y) = σA(– (y – x)) = σA(y – x), by Proposition 3.5   
Assume that σA(x) < σA(y) ------- (1) 
Now σA(x – y) ≤ min {σA(x), σA(y)} = σA(y) < σA(x) -------- (2), by (1) 
And x = x + 0 = x + (– y + y) = (x – y) + y 
Therefore, σA(x) = σA((x – y) + y) ≤ min {σA(x – y), σA(y)}, by Proposition 3.6 
                 = σA(x – y) as σA(x) > σA(y) 
 σA(x) ≥ σA(x – y) -------- (3) 
From (2) and (3), we have σA(x) = σA(x – y). 
 
Proposition 3.15 
For any A, if υA(x) > υA(y) for some x, yR, then υA(x – y) = υA(x) = υA(y – x). 
Now, the relation between a non – empty subset of a ring and the neutrosophic subring of the ring, 
defined in terms of that subset, is established. Then it is also proved that the converse relation is also true. 
 
Theorem 3.16 
Let H be any non – empty subset of a ring R, H  R. If A is a neutrosophic subring of R, defined by  

µA(x) 
1

1 ~

s if x H

t if x R H


 


where s1, t1  [0, 1], s1 > t1,  

and σA(x) 
2

2 ~

s if x H

t if x R H


 


where s2, t2  [0, 1], s2 < t2, 

and υA(x) 
3

3 ~

s if x H

t if x R H


 


where s3, t3  [0, 1], s3 < t3, 

then H is a subring of R. 
 
Proof 
Allow H be any non– empty subset of a ring R, H  R. 
Allow x, y  R be arbitrary. 

Consider the functions, µA(x) 
1

1 ~

s if x H

t if x R H


 


where s1, t1  [0, 1], s1 > t1,  

and σA(x) 
2

2 ~

s if x H

t if x R H


 


where s2, t2  [0, 1], s2 < t2, 

and υA(x) 
3

3 ~

s if x H

t if x R H


 


where s3, t3  [0, 1], s3 < t3, 

Assume that A is a neutrosophic subring of R. Then, 
(vii) µA(x – y)   ≥ min {µA(x), µA(y)} 
(viii) µA(xy)       ≥ min {µA(x), µA(y)}, 
(ix) σA(x – y)   ≤ min {σA(x), σA(y)} 
(x) σA(xy)       ≤ min {σA(x), σA(y)}, 
(xi) υA(x – y)    ≤ min {υA(x), υA(y)} 
(xii) υA(xy)        ≤ min {υA(x), υA(y)}, 
for all x, y  R. 
To prove H is a subring of R. 
Allow a, b  H be arbitrary.  
Then,      µA(a) = s  and  µA(b) = s. 
Here min {µA(a), µA(b)} = min{s, s} = s 
Hence all the values of µA(a – b) and µA(ab) are greater than or equal to s. 
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But µA has only two values s and t with s > t. 
Therefore, all the values of µA(a – b) and µA(ab) are equal to s. 
This implies (a – b) and (ab)  H. 
This proves that H is a subring of R. 
 
Theorem 3.17 
If H is any subring of a ring R, H  R, then the neutrosophic subset µ of R defined by  

µA(x) 
1

1 ~

s if x H

t if x R H


 


where s1, t1  [0, 1], s1 > t1, 

and σA(x) 
2

2 ~

s if x H

t if x R H


 


where s2, t2  [0, 1], s2 < t2, 

and υA(x) 
3

3 ~

s if x H

t if x R H


 


where s3, t3  [0, 1], s3 < t3, 

is a neutrosophic subring of R. 
Proof 
Allow H be any subring of a ring R, H  R. 
Consider the neutrosophic subset µ of R defined by  

µA(x) 
1

1 ~

s if x H

t if x R H


 


where s1, t1  [0, 1], s1 > t1, 

and σA(x) 
2

2 ~

s if x H

t if x R H


 


where s2, t2  [0, 1], s2 < t2, 

and υA(x) 
3

3 ~

s if x H

t if x R H


 


where s3, t3  [0, 1], s3 < t3, 

Allow x, y  R be arbitrary. 
To prove   A is a neutrosophic subring of R. 
It is enough to prove that  
(i) µA(x – y)   ≥ min {µA(x), µA(y)} 
(ii) µA(xy)       ≥ min {µA(x), µA(y)}, 
(iii) σA(x – y)   ≤ min {σA(x), σA(y)} 
(iv) σA(xy)       ≤ min {σA(x), σA(y)}, 
(v) υA(x – y)    ≤ min {υA(x), υA(y)} 
(vi) υA(xy)        ≤ min {υA(x), υA(y)}, 
for all x, y  R. 
We prove this in three cases: 
Case (i):   x, y  H 
Then, µA(x) = s1, µA(y) = s1 
 min {µA(x), µA(y)} = min {s1, s1} = s1. 
And σA(x) = s2, σA(y) = s2 
 min {σA(x), σA(y)} = min {s2, s2} = s2. 
And υA(x) = s3, υA(y) = s3 
 min {υA(x), υA(y)} = min {s3, s3} = s3. 
Here, x, y  H  x – y, xy  H, since H is a subring of R. 
Now, µA(x – y) = s1 = min {µA(x), µA(y)}  µA(x – y) ≥ min {µA(x), µA(y)} 
          µA(xy) = s1 = min {µA(x), µA(y)}  µA(xy) ≥ min {µA(x), µA(y)} 
And    σA(x – y) = s2 = min {σA(x), σA(y)}  σA(x – y) ≤ min {σA(x), σA(y)} 
           σA(xy) = s2 = min {σA(x), σA(y)}  σA(xy) ≤ min {σA(x), σA(y)} 
And    υA(x – y) = s3 = min {υA(x), υA(y)}  υA(x – y) ≤ min {υA(x), υA(y)} 
           υA(xy) = s3 = min {υA(x), υA(y)}  υA(xy) ≤ min {υA(x), υA(y)} 
Then all the inequalities are satisfied in this case. 
Case (ii):  x, y  R ~ H 
Then, µA(x) = t1, µA(y) = t1 
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 min {µA(x), µA(y)} = min {t1, t1} = t1. 
And σA(x) = t2, σA(y) = t2 
 min {σA(x), σA(y)} = min {t2, t2} = t2. 
And υA(x) = t3, υA(y) = t3 
 min {υA(x), υA(y)} = min {t3, t3} = t3. 
Here, x, y  H  x – y, xy  H, since H is a subring of R. 
Now, µA(x – y) = t1 = min {µA(x), µA(y)}  µA(x – y) ≥ min {µA(x), µA(y)} 
          µA(xy) = t1 = min {µA(x), µA(y)}  µA(xy) ≥ min {µA(x), µA(y)} 
And    σA(x – y) = t2 = min {σA(x), σA(y)}  σA(x – y) ≤ min {σA(x), σA(y)} 
           σA(xy) = t2 = min {σA(x), σA(y)}  σA(xy) ≤ min {σA(x), σA(y)} 
And    υA(x – y) = t3 = min {υA(x), υA(y)}  υA(x – y) ≤ min {υA(x), υA(y)} 
           υA(xy) = t3 = min {υA(x), υA(y)}  υA(xy) ≤ min {υA(x), υA(y)} 
Then all the inequalities are satisfied in this case. 
Case (iii):    x  H, y  R ~ H 
Then,  µA(x) = s1, µA(y) = t1 
 min {µA(x), µA(y)} = min {s1, t1} = t1. 
And σA(x) = s2, σA(y) = t2 
 min {σA(x), σA(y)} = min {s2, t2} = s2. 
And υA(x) = s3, υA(y) = t3 
 min {υA(x), υA(y)} = min {s3, t3} = s3. 
Here, x, y  H  x – y, xy  H, since H is a subring of R. 
Now, µA(x – y) = s1 > t1 = min {µA(x), µA(y)}  µA(x – y) ≥ min {µA(x), µA(y)} 
          µA(xy) = s1 > t1 = min {µA(x), µA(y)}  µA(xy) ≥ min {µA(x), µA(y)} 
And    σA(x – y) = s2 < t2 = min {σA(x), σA(y)}  σA(x – y) ≤ min {σA(x), σA(y)} 
           σA(xy) = s2 < t2 = min {σA(x), σA(y)}  σA(xy) ≤ min {σA(x), σA(y)} 
And    υA(x – y) = s3 < t3 = min {υA(x), υA(y)}  υA(x – y) ≤ min {υA(x), υA(y)} 
           υA(xy) = s3 < t3 = min {υA(x), υA(y)}  υA(xy) ≤ min {υA(x), υA(y)} 
Then all the inequalities are satisfied in this case. 
Thus µ is a neutrosophic subring of R. 
 
Remark 3.18 
¥H is the characteristic function of the subset H of R. 

That is, ¥H 









HRxif

Hxif

~0

1
 

 
Corollary 3.19 
If a non – empty subset H of a ring R, is a subring of R, then ¥H is a neutrosophic subring of R.  
Proof 
Take s1 =1, t1 = 0; s2 = 0, t2 = 1; and s3 =0, t3 = 1 in the above theorem. 
Then ¥H is a neutrosophic subring of R. 
From Theorem 3.16 and Theorem 3.17, we have, 
 
Theorem 3.20 
Let H be any non – empty subset of a ring R, H  R. Let A be any neutrosophic subset of R defined by   

µA(x) 
1

1 ~

s if x H

t if x R H


 


where s1, t1  [0, 1], s1 > t1, 

and σA(x) 
2

2 ~

s if x H

t if x R H


 


where s2, t2  [0, 1], s2 < t2, 

and υA(x) 
3

3 ~

s if x H

t if x R H


 


where s3, t3  [0, 1], s3 < t3.  

Then µ is a neutrosophic subring of R iff H is a subring of R. 
Here, the concept of level subring of a ring is introduced. Then the necessary and sufficient condition of a 
neutrosophic subset of a ring to be a neutrosophic subring of that ring is obtained. 
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Proposition 3.21 
For any A, the (α, β, ) – cut of A, Aα, β, , where αIm µ, βIm σ and Im υ are subrings of R.  
 
Proof 
Given µ is any neutrosophic subring of R and t  Im µ is arbitrary. 
Consider the (α, β, ) – cut of A, Aα, β,  = {xR /µA(x) ≥ α, σA(x) ≤ β, υA(x) ≤ }. 
By Proposition 2.4, µA(x) ≤ µA(0), for all xR. 
 µA(0) ≥ µA(x) ≥ α; σA(0) ≤ σA(x) ≤ β; υA(0) ≤ υA(x) ≤  
Hence 0 Aα, β, , for all α, β, . 
Thus Aα, β,     
Allow x, y  Aα, β, . Then, 
 µA(x) ≥ α and µA(y) ≥ α; σA(x) ≤ β, σA(y) ≤ β, υA(x) ≤ ; υA(y) ≤ ----------- (1) 
Now µA(x – y) ≥ min {µA(x), µA(y)} ≥ α, by (1) 
And σA(x – y) ≤ min {σA(x), σA(y)} ≤ β, by (1) 
And υA(x – y) ≤ min {υA(x), υA(y)} ≤ , by (1) 
 x – y  Aα, β, . ----------- (2) 
Again µA(xy) ≥ min {µA(x), µA(y)} ≥ α, by (1) 
And σA(xy) ≤ min {σA(x), σA(y)} ≤ β, by (1) 
And υA(xy) ≤ min {υA(x), υA(y)} ≤ , by (1) 
 xy  Aα, β, .  ----------- (3) 
From (2) and (3), we get,  
x, y Aα, β,    x – y, xy  Aα, β, . 
Thus the (α, β, ) – cut of A, Aα, β, , where α  Im µ, β  Im σ and  Im υ are subrings of R.  
 
Theorem 3.22: [Characterization Theorem] 
A neutrosophic subset A of a ring R, is a neutrosophic subring of R iff, the (α, β, ) – cuts of A, Aα, β, , where 
α  Im µ, β  Im σ and  Im υ are subrings of R. 
Proof 
First part is shown Proposition 2.16. 
Conversely, assume that (α, β, ) – cuts of A, Aα, β, , where α  Im µ, β  Im σ and  Im υ are subrings of R. 
Then for all x, y  Aα, β, , iff µA(x) ≥ α, µA(y) ≥ α; σA(x) ≤ β, σA(y) ≤ β, υA(x) ≤ ; υA(y) ≤  
To prove   A is a neutrosophic subring of R. 
Allow x, y  R be arbitrary. 
It is enough to prove that,  
(i) µA(x – y)   ≥ min {µA(x), µA(y)} 
(ii) µA(xy)       ≥ min {µA(x), µA(y)}, 
(iii) σA(x – y)   ≤ min {σA(x), σA(y)} 
(iv) σA(xy)       ≤ min {σA(x), σA(y)}, 
(v) υA(x – y)   ≤ min {υA(x), υA(y)} 
(vi) υA(xy)       ≤ min {υA(x), υA(y)}, 
Allow min {µA(x), µA(y)} = r ;  min {σA(x), σA(y)} = s ; min {υA(x), υA(y)} = t 
Now consider min {µA(x), µA(y)} = r 
Then Either µA(x) = r and µA(y) ≥ µA(x) = r Or µA(y) = r and µA(x) ≥ µA(y) = r 
 µA(x) ≥ r and µA(y) ≥ r 
Again, consider min {σA(x), σA(y)} = s 
Then Either σA(x) = s and σA(y) ≤ σA(x) = s Or σA(y) = s and σA(x) ≤ σA(y) = s 
 σA(x) ≤ s and σA(y) ≤ s 
Again, consider min {υA(x), υA(y)} = t 
Then Either υA(x) = t and υA(y) ≤ υA(x) = t Or υA(y) = t and υA(x) ≤ υA(y) = t 
 υA(x) ≤ t and υA(y) ≤ t 
Hence µA(x) ≥ r and µA(y) ≥ r ; σA(x) ≤ s and σA(y) ≤ s ; υA(x) ≤ t and υA(y) ≤ t . 
 x, y  Ar, s, t. 
 x – y, xy  Ar, s, t., since Ar, s, t. is a subring of R. 
µA(x – y) ≥ r and µA(xy) ≥ r ;  σA(x – y) ≤ s and σA(xy) ≤ s ;                                                                    
υA(x – y) ≤ t and υA(xy) ≤ t --------------- (1) 
 
For (i): 
Allow µA(x – y) = s1 ------------- (2) 
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To prove   µA(x – y) ≥ min {µA(x), µA(y)} 
That is to prove  s1 ≥ r 
Suppose s1 < r. ------------- (3)  
From (2) and (3), we have, µA(x – y) = s1 < r. 
 µA(x – y) < r.  
This is a contradiction to (1). 
Hence s1 ≥  r. 
Thus µA(x – y) ≥ min {µA(x), µA(y)}. 
 
For (iii): 
Allow σA(x – y) = s2 ------------- (4) 
To prove   σA(x – y) ≤ min {σA(x), σA(y)} 
That is to prove  s2 ≤ s 
Suppose s2 > s. ------------- (5)  
From (4) and (5), we have, σA(x – y) = s2 > s. 
 σA(x – y) > s.  
This is a contradiction to (1). 
Hence s2 ≤  s. 
Thus σA(x – y) ≤ min {σA(x), σA(y)}. 
 
Similarly, we can prove others. 
Thus A is a neutrosophic subring of R. 
 
Definition 3.23 
Let A be any neutrosophic subring of R; the (α, β, ) – cuts of A, Aα, β, , where α  Im µ,β  Im σ and  Im υ 
are subrings of R. Then the subring (α, β, ) – cut of A, Aα, β, , of R is called a level subring of A. 
 
Remark 3.24 
Let A be any neutrosophic subset of R. Then A is neutrosophic subring of R; iff the level subrings of A are 
subrings of R. 
 
CONCLUSION 
The concept of neutrosophic subrings of a ring, are studied with examples. Some of their properties are 
also studied. The characterization of neutrosophic subring of a ring is obtained as The neutrosophic 
subset of a ring is a neutrosophic subring of the ring; iff the level subrings of the neutrosophic subrings, 
are subrings of the ring. 
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