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ABSTRACT

In this paper, the author defined strong coupled fixed point, cyclic, Hutchinson operator, coupling,
Neutrosophic Iterated Coupling System(NICS), strong coupled fractal and neutrosophic contractive
coupling in Neutrosophic Metric Space (NMS). We used an example to demonstrate that there is a single
strong coupled fixed point in a neutrosophic contractive coupling with regard to non-empty closed
subsets in NMS. Also, we have proved that Hutchinson operator is a neutrosophic contractive coupling.
Next, we have proved that there is a unique strong coupled fractal in NICS.

Keywords: Neutrosophic metric space, Strong coupled fixed point, Hutchinson operator, coupling,
neutrosophic iterated coupling system, Strong coupled fractal.

1. INTRODUCTION

The main aim of this research is to give a method of generating strong coupled fractals in Neutrosophic
Metric Spaces (NMS). Strong coupled fractals is explained by Choudhury et al.[2] using the Hutchinson-
Barnsley operator. Strong coupled fractals are formed here by the creation of the Hutchinson-Barnsley
operator[1], which corresponds to a specific Iterated Function System termed Iterated Coupling System.
Iterated Function Systems (IFS) are a formalism for generating exactly self-similar fractals based on work
of Hutchinson[8] (1981) and Mandelbrot (1982), and popularized by Barnsley (1988). Xiao JZ et. al. [23]
defined the concept of IFS. Strong coupled fractals are cyclic generalizations of coupled mappings. The
concept of Coupled mappings are defined by the authors Jeyaraman et al [10], [22], Preeti Sengar et. al.
[16], Rajesh Shrivastava et. al [17] and the cyclic was defined by the authors Jeyaraman et. al.[11],
Pasupathi et. al. [15]. The fixed point problem related with the coupled mapping is known as the coupled
fixed point problem. Starting with two arbitrary points drawn from the two subsets that form the
coupling, we create two iterations, each of which converges to the coupled fixed point. Furthermore, it is
demonstrated that such a point is unique.

NMS concept is the extension of fuzzy and intuitionistic fuzzy metric space. There are different types of
NMS which is defined by many authours [9-10,12-13 & 18-20] and has vast application now-a-days. Fuzzy
metric space is defined by George and Veeramani [3]. Over the past three decades, fuzzy fixed point
theory has seen incredibly broad and varied development that are referred in [4,5,6 and 7]. Shakila and
Jeyaraman [14, 21] defined the concept of Hutchinson-Barnsley Operator in Neutrosophic Metric Spaces.
In this paper, the author present a Neutrosophic Contractive Coupling and acquire a strong coupled fixed
point result. The couplings are then utilized to introduce a Neutrosophic Iterated Coupling System.
Finally, we use the fixed-point result to produce strong coupled fractals using the Hutchinson-Barnsley
operator. Examples are provided to demonstrate both the fixed-point theorem and the fractal generating
process.

2. Preliminaries

Definition :2.1 [12]

A 6-tuple (A, T,0,Y,%,0) is said to be a Neutrosophic Metric Space (NMS) if Ais an arbitrary set, is
neutrosophic continuous t-norm, ¢ is neutrosophic continuous t-conorm, I', ©,Y are neutrosophic on Ax A
meets the following requirements: For ally,6,v € Aand {,pn > 0
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(1) 0<T({y,60<1,0<0(y,00)<10<0(,0,0)<1,
(2) T(v,6,0) +06(y,6,0) +6(y,6,0) <3,

(3) T'(y,6,0 =1iff y=8,

(4) I'(v,6,0) =T(6,v,0,

(5) I'(y,0,0*Ir(O,0,1W) <T(y,v,0+ ) forallq,u>0,

(6) T(y,9,):(0,0) - (0,1] is neutrosophic continuous,

@ "™ 1,8, = 1forall{> 0,

{ — 00
(8) 0(y,6,0) =0iff y=9,
(9) 0(y,6,0) =06(,y,9),
(10) 0(y,8,0) ¢ ©(6,u,1) = O0(y,v, ¢+ ) forall , u > 0,
(11) 0(y, 8,)): (0,0) = (0,1] is neutrosophic continuous,
(12) lemoo 0(y,0,0 = 0 forall { > 0,
(13)Y(y,6,0) =0iff y =6,
(14)Y(y,8,0 =Y(6,v,0,
(15)Y(y,6,0 o Y(B,u,1) = Y(y,v, 0+ ) forall{,p > 0,
(16) Y(y, 6,"): (0,0) — (0,1] is neutrosophic continuous,
(17) le)moo Y(y,6,0) = 0 forall > 0,
(18)If {< OthenT(y,6,0) =0, 6(y,6,0) =1and Y(y,0,0) = 1.
Then (T, 0,Y) is referred NMS on A. The functions T, ® &Y denote degree of closedness, neutralness and
non-closedness between y and 6 with respect to { respectively.

Definition :2.2 [19]

Let (AT,0,Y,x0)be a NMS. B(y,r,) ={0€A; I'(y,6,)>1—-r1, 0(y,6,0) <rand Y(y,6,0) <r}
defines the open ball B(y,r,{) with centrey € A, 0 <r < 1land ¢ > 0. The family {B(y,r,0) : YEA, 0<
r < 1and ¢ > 0} is a basis for a Hausdorff topology on A.

Definition :2.3 [19]
Let (A, T,0,Y,*,9) be a NMS.
(1) Asequence {yn} in A is said to be convergent if there exists some y € A such that

" rre0=1 " o(,00=0 " ¥(,6,0=0frali>o0.

n — oo l
M rly,y,, ) =1,

(2) Asequence {yn} in A is said to be Cauchy sequence if m,n — oo

lim
@(Yn,Ym,Z) = 0’ m,n — o

lim
mn o o 0(v,,v,,,¢) = 0for all > 0.
Definition :2.4 [21]
Let an NMS (AT,0,Y,*9) have two non-empty Compact subsets, £ and .The Hausdorff NMS H, Hy, Hy
on P(A) is defined by
HF(EI 'Q' () = mln{Q(E, Q’ {)l 19(5’ !2’ {)} where

0@0.0 =0, S rcon s@0n= " FErco,
Hy(2,0,0) = max{o(Z,2,0),9(5,2,0)} where .

0@ = e M 0G0 9600 =8, Y ecwo,
Hy(2,0,0) = max{o(&,2,0),9(&,2,{)} where _

000 = W rwn 9@a0= 0 Y orcen>o

Lemma :2.5
Let (A,T,0,Y,%0) bea NMS. Suppose {si};’zl, {le-};’z1 c P(A)

[§3)]

= Uj_; 5 and 2 = U}, 2. Then for all

) i=
- min - - max - -
Z>01 HI’('::-QvZ)Zlglgp Hl"(:'jvﬂij)r HQ(:'Q'Z)S].S]S;’) H@(‘:jiﬂi!() and HY(:'!'Q!()S

max -
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Theorem :2.6
Let (A,T,0,Y,x0) be a NMS. Then (P(A), Hy, Hg, Hy,*,0) is a NMS. Also, if (A,T,0,Y ,*,0) is a Complete
NMS then (P(A), Hy, Hy, Hy,*,9) is also a Complete NMS.

Definition :2.7

Let T: AxA - Abe a mapping. An element (y,0) € Ax A is considered a Coupled Fixed Point of T if
T(y,0) =y andT(6,y) = 6.

A coupled fixed point is referred to as a strong coupled fixed point if y = 6, in which case T(y, y) =y. A
strong coupled fixed point is defined as (y, y) EAx A.

Definition :2.8

Suppose E and (Q are two non-empty subsets of A. A mapping T:AxA - Ais said to be cyclic
(witl@ respect to £ and Q) if T(Z) c Nand T(Q) c &.

Definition :2.9
Suppose E and ) are two non-empty subsets of A. A mapping T : Ax A — Ais considered Coupling with
respectto = and Qif T(y,0) € 2 and T(6,y) € E foreveryy € £ and 0 € 0.

Definition :2.10

Let (A,I,0,Y,x0)be a NMS and {TI] € Nn} be a finite set of continuous couplings on 4, each with
regard to two non-empty closed subsets = and {2 of A. The Hutchinson operator corresponding to
{T,ieN,}, Z: P(A) x P(A) - P(A), is defined as Z(Z,2) = UL, T,(£,2), where T, (5,0)=
{TI (w): ¢€Eiw E.Q}. The aforementioned definition is only applicable to couplings that are
continuous.

Definition :2.11

A Neutrosophic Iterated Coupling System (NICS) consists of a Complete NMS (4, I, 0,7 ,*,0). Assume that
the NMS is composed of two closed, non-empty subsets = and Q of A and is made up of limited number of
couplings T; : Ax A > A with respect to Zand @ for allj €N,. We denote it by((4,T,0,Yx
) E,0,T, i € N,

Definition :2.12

Let (A,T,0,Y,x,0) bea Complete NMS and E : P(A) x P(A) - P(A) be a mapping. A fractal Z € P(A)
is considered strong coupledif E(Z,5) = Z.

Definition :2.13

Let (A,T,0,Y,x,0)bea NMS and = and 2 consists of non-empty subsets of A. With regard to Z and £,
we refer to a coupling T: A x A—A as a Neutrosophic Contractive Coupling in the event that

p € (0,1) exists and such that

r(T(y,6),T(m,0),p) = (I'(y.n, ())31* (re.p, ())51. (2.13.1)
O(T(y,6),T(n,0),p0) < (6(y.n, ())f °(0(6,p, O)f, (2.13.2)
Y(T(y,6),T(@,0),p0) < (Y ¥,n.0)? o (Y(6,0.0)?

(2.13.3)

wherey.oc € £ and 6,7 € 1.
In this case, the coupling's contractivity factor is represented by the constant p.

3. Strong Coupled Fixed-Point in NMS

Theorem :3.1

Suppose Zand £ are two non-empty closed subsets of a complete NMS (A,I,0,Y,*,0) satisfying
(Definition 2.1 of (7), (12) and (17)). Assume that T+*A x A—A represents a Neutrosophic contractive
coupling concerning = and . T has a single strong linked fixed point if £ N 2 # @ and *is a t-norm, ¢ is
a t-conorm such that x=x; o<o,. Moreover, for arbitrary choice of y,€ Zand 6, € {2, the strong
coupled fixed point is reached by both sequences {y,}, {6, }, which are formed as y,,4;1 = T(8,,¥,) and
9n+1 = T(Yntgn)

Proof: The construction of {y,} and {6, } implies thatforalln =0, y, € £ and 6, € £2. Now,

r(ynt en' Z) = F(T(Hn—ll yn—l)v T(Yn—li en—l )v Z )
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1* <F (yn—l' -1, f;))
S (YO N (PR
;)

r(l’n—1'9n—1,%) (T(Qn 2Vn-2) T(Yn—2,0n2),

1

1 1
S (CAES) Y (Y ()
1

2 (F (Qn—z:)’n—z, l%))z *q (F (Yn—Zﬂgn—Z, !%))E =TI (]/n—Zlen—Z, :_z) wzT (Vo' 6o, ;—n)

@(Vn' en' Z) = @(T(gn—l' ]/n—l)v T(Yn—lv 9n—1 ) { )

5<9 (en—p)/n—l,%))E <@ Vn—1,0n_ )
1

g(@(en_l,yn_l,ﬁ)f < V-1, On— 22

) Q(T(gn 2:Vn- 2) T(yn 2: n— 2)%

< (0 (8a—z Yz, ,%))E o <@ (Yu-2: 60—z, %))

1
(0 (gn—Z:Vn—z, piz)>2 g <@ (Vn—Zr 0n_, I%))Z =0 (Vn—zx On—2, :2) <0 (Vo' 6o, pZ )

Y(yn' Hn' () = Y(T(en—lﬂ yn—l)' Tl()/n—li 0 n—1 ) ( )

2
< (Y (en—1.yn-1, %)) <Y Yn-1,On- Z))
l 1
2 2
< (Y (Qn—lfyn—l,§)> (Y Yn-1,6n- )
¢
Y ()’n_1. Hn—L p) (T(Qn 2 Vn— 2) T(]/n 2,0 n— 2 )
V) ¢ ;
< (Y' (gn—Z: Yn-2, ﬁ)) N <Y (yn—z’ 971—2, p_2)>

=< (Y (Qn—z' VYn—2, piz)>_ % (Y (Vn—Z: On—, piz)f =Y (yn—2: On—2, [%) - =Y (Vo' 6o, !%)

When we apply (Definition (2.1) condition (7), (12) and (17) to the inequality above, when n — oo, we
obtain

1
2

N

0 (]/n—l' 9

'DlJ\

1
2

IA

N =

*c|m’°l“N

2

lim _

no o [ Fnbnd)=1, (3.1.1)
lim

o 00 Wm0, O) =0 (3.1.2)
im o g ¢)=0 forall¢ >0 (3.1.3)

n —> o

Againforalln € N and ¢ > 0,
F(yn+1' Gn' () = F(T(Qn' yn): T(lyn—lﬂ en—l ): ( )

= (r ()/n—l,en'g))E * <r (Ynlen—l, %))2

=T (Vn—1,9n;§) *I (yn, 0,1, %) (t-norm is monotonic)

P(r@u 2 TG 10005 ) P (16010 T 2002, )
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1 1

1 1 1 1
(p (Vn—l,@l-Z’%))z * (F <yn_2,9n_1, /%))2 * (F <]/n—2,9n—1, /%))2 * (F (]/n—l,gn—Z'%)>2
1 1
= (F ()/n—l,gn—z'!%)) *q (F <Yn—2'9n—1,/%>>2 *q (F (Vn—b%—l,%))z *q (F (yn—l,gn—Z'%)>2
Yn-1,0n- )* r(]/n—Z'Qn—l,‘l%)
r
( ; ;
r Vn 3,0 3)> *q (F Vn 2,0n-3,—3 3 > ( Vn 2,0 %)) < (Vn—3,9n—2'p(—3)>
)’n 3,0n2, p{)* F(Yn 2,003, 3) = (Vo:91 )* F(y1,90 in) (3.1.4)

0(yn+1'9n'() Q(T(en'Yn):Tgyn—lr n—l) 5)

1 1
= (0 (yn—l,enr§)>2 ¢ <@ (Yn: gn—l, 5))2

<0 (yn 1, Bn,i) 00 (yn, 0,1, %) (t-conorm is monotonic)

¢
0 (1602127100105 ) 8 (T 001 Vo) T 20,020,

1 1 1 1

yn 1, gn Z'pcz)>2 ° (0 <yn—21 en—l, PZ_Z)>2 N (@ (yn—Zt en—l, P(_2>)2 ¢ (@ (yn—l,en—Z!'[%))Z

% 4 % 4 2 4 2

(0 yn 19n 2y 2)) % (0 (yn—Zten—l, ?)) % (9 (yn—Zten—l, P_2>) % (9 (yn—l,gn—Z!?))

v

N =

I
~

¢ ¢
T n—21Vn— 2) T(]/n 3' n— 3):p2) q <T(9n—3ﬂyn—3)'T(]/n—2'911—2) [y

(

(r¢ 1 ! z

(r Yn-3,0n— 3)>2 * (F (yn_z,en_g,/%)z *q (1" (yn_z,en_g,%> (F (Vn—3,9n—2:/%>>
(

N———

N =
N =

v

v

b

Yn-1,0n- )" @(yn—Zlen 1, )

i
2
¢
T n—2,¥Yn- 2) T(yn 3' n— 3)1 2 T(gn 3 Vn- 3) T(yn 2) n— 2) 2

o

@( l 1

((9 Va3, O 53)>2<> (0 (yn_z,an_3,%)>2 ‘. (0 (yn_z’gn_&/%
-

=o(

IA

~
N =
°
/N
&}
—
=
&
()
B
|
N
w
~—
|

IA

¢ : ¢ : VY
@ Vn- 3' - 3)) % (9 Vn— Zgn 33 3 ) ( yn—Zien—3,?)> % (@ (Yn—S,gn—ZJF)>

Yn-3,6n— M O(Yn 2,003, 3) Y0'91 )° 9(7’1:90 n) (3.1.5)

Y(Yn+1t en' {) = Y(T(en' Yn)' T(Yn—l: 6n—1 )' ( ) < <Y (yn—l,gnﬂ§)> ¢ <Y (Vnﬂ gn—l, %))

<Y (yn 1,60, ) (yn, 0,1 %) (t-conorm is monotonic)

V(16T 1005 ) o7 (1601 TG 20020, )
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1 1

1 1 1
(y <yn_1’9n_2,p(_2)>2 o (Y (]/n—z; On-1, %))2 0 (Y <Vn—2, On1, /%)) 3 (Y (]/n—l,gn—Z'%)>2
1

N =

IA

I
h<

<
2

N———

T n—2»Vn— 2) T(Yn 3' n— 3)' 2>°q Y(T(en—3'yn—3)lT(yn—21gn—Z)

<(r (yn_l,en_z,;_z)f oo (7 fran g)f (g (Yn_l,an_z./;))%
(T
r( 1 1 :
((Y Vo500 i))7o<y(n_z,9ﬂ_3.§)>i N (y(yn_z,en_&%) 0<Y'<]/n—3,9n—2:%)>
(e e e )
(Faos 602, 5) o0 ¥ (a2 s 5) = = ¥ (10,01, 5) g ¥ (12,60, %5). (3.1.6)

Followmg the sequence in the same manner as before I'(y,, 0,41,{), © ¥y, 0n11,¢) and
Y (¥, 0,41, ¢) for all n € Nand { > 0, we get

N =
N =

IA

IA

I'(Vpy 011,6) = F(Vo.el,,f—n) *q r()’1.90,;—n) (3.1.7)
O, 011,9) < 0 (10,01, %) o4 0 (11,60, %) (3.18)
Y (019 < Y (¥0,01,%5) 0 ¥ (11,60, %) (3.1.9)

Forall neNand { >0, let®,({) =T (Vo’91, pin) xg T (V1'90, pin),

¢ ¢ ¢ ¢
X2 =0 (v, 01, %) g 0 (1,600, %) and %) =¥ (v0, 61, %) o ¥ (11,00, 5):
Using (3.1.4), (3.1.7) and (Definition(2.3) condition (7) we get Lim %@ =1,

using (3.1.5), (3.1.8) and (Definition (2.3) condition (12)) we get ll_>m X, () =0and

using (3.1.6), (3.1.9) and ( Definition (2.3) condition (17)) we get Lim lP (@) =0 for all¢ > 0.

Alsoforp>n and0<p<1,1>1—p’™" =(1—p)(1+p+p2+ +p" n-1),
Hence, for every > 0,{ > {(1 —p)(1 + p + p? + -+ + pP 7).

Now, we demonstrate thatin =, {y,,} is a Cauchy sequence. Forp > n,

We take into account the next two scenarios.

Casel: p —niseven.

P (€)= T (Y Y (L= pY(A + p o+ p? + oo pP 1))
> I'(Yn, 0041, (A = ) * T (041, Y0428 (X = p)p) * ¥ T (Vp—2, 0 -1, (1 — p)pP72 )
* 1—‘(90 1'Yp' ((1 - P)Pp_n_l)

— — 1—
2 (w0 252 (52 ) o 2

(1-p) (1=p)pP 1 (=p)pP 1\
r(yl,eo_fp 20 sk I"()/O,GLZL) % r(yl,eofL) (using (3.1.4), (3.1.7))

n+1 pp—l pp—l
=0,((1=p)) *x D, (A = p)) * .. x D, (1 = p))

(p—n)times

0 (Y 10,9) < 0 (Y Yo S = ) (1 + p + p? - 4+ pP 1))
< OV, 0041, =) © O(Bps1, Vns2,l (L = pIp) 0 o© O(¥Vp—2, 0 51, {(1 — p)pP"72)
00(6,-1,7, (1 — p)p*™ 1)

- 1- 1
(00 552 0 52 ) oo SG50)-

523 V.B. Shakila et al 518-531



Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

() 1-p)pP "t (1=p)p™™
0 (1,00, X522 o .0 0 (v, 0, U5 o, 0 (1, 0, UL (using (3.15), (3.1.8))

pPt

=X, (1= p)) 0 X, (L = ) 0 ..o X, (1 = p)

(p—n)times

Y () <Y (h Y C(L = p)A + p o+ 2 + o4 pP 1))
= Y(Yn' Ont1, Z(l - P)) ¢ Y(9n+1. ]/n+2,{(1 - p)p) % .,.0 Y(yp_z, gp—l! ((1 — p)pp_"_z )
orwppnxu—pmwwﬂ

- 1- 1-

{(—p) {—p)pr~1 {=p)pP™
Y ()/1,90 #) oY (yo, o, L) % ()/1,90 Z—p) (using (3.1.5), (3.1.8))

n+1 pP-1

=% (@A-p) %A -p)e .o ¥ (A -p).
(p—n) times
Casell: p —n isodd.
pp n—1 pp n—1
(V¥ $) Z T { Voo ¥V §(1 = p)<1+p+p FodpP R ——— st )
> I'(Yn, 0041, CA = ) * T (041, ¥n+2,0(1 = p)p) * ..o F(lyp_l, 0,,{(1—p)pP"2)

p—n-—1 p—n
*1“(9p_1n@,c(1—-p)p )*1‘<9p4@.<(1—-p)p 5 )
o2 822

{(1—plp {1-pp
(e 22 222)
1— p—n-—2 1— p—n-—2
({0 SO e )

{@-pprt {@-pprmt {@-pprt
*<F<V0'91,T *q r YPHO'T * yo,el‘z—pp

1- 1-
=3,((1-p)*®,(C(1 = p)) * ..x D, (“ > p)) « T <y0, 6, %)

(p—n) times

ppn 1 ppn 1

2 2
sOwwmﬂxu—pno@wmpn”;u—pm)«o@@wp%xﬁ—pm”“ﬂ

p—n—1 p—n—
°0(9p_1.yp.((1—p)p )00( p,yp,((1—p)p )

— 1-—

< (600 2952) 0 152)
1- 1-
* (@ <y0, 0, ((pnijl))p) 0, O ()/1, 0, ((pni*_'f)p>> o
1— p—n-—2 1— p—n-—2
(oo ST o2
{1 —-p)pr ! {1 —p)pr ™t (1 —p)pP "t

o (@ ()/0, 01' ZPT) Oq 6 <]/1, 90' T)) X0 <]/0, 91, 2—‘[)p>

1 —
= X,(¢(1 = p)) o X, (C(L = p)) 0 .0 X, <<( _ p)) 0 r<y0,91_ %)

(p—n) times

pp n—1 pp n—1
Y(Ynﬂ)’p' () <Y ()/n! Ypi((l - ,0) <1 + p + pZ + et ,Dp_n_z + + ))

2 2
<Y (Y, 0041, CA = ) 0 Y (041, Yns2,(A = pIp) © 0 Y (¥p-1,0,,{(1 — p)pP ™72 )
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P pr
°y<9p—1'ypr€(1_p) >°Y<9p'yp'{(1_p) 2 )

2
— 1 —
< ( (]/0181 y) °q Y<Y1'90 {(pip))>
{1 =p)p (1 —pp
(o )
1— p—n-—2 1— p—n-—2
(w0 OS2 )

{(1—p)p> "t (1 —p)p" ! {(1—p)p> !
O(Y(YO,GLT Oq Y yl,GO‘T OY ]/0,91‘2—,0;)

1 —
=¥ (CA-p)o¥({{A—-p))e..o ¥, <(( > p)> ol <y0, 0, %)

(p—n) times
Combining the above two cases and (Definition (2.1) condition (7), (12) and (17)) and &,({) =1,
X,(0) =0 and ¥,({) =0 asn — oo for all { >0, we find that {y,} is a Cauchy sequence in £. In the
same way we may demonstrate that {8, } is also a Cauchy sequence in 2. Since £ and 2 are closed
subsets, there exists y € £ and 6 € {2, such that

p—n-—1

limy oo T (¥, v, §) = Llimy o, ['(6,,6,0) = 1, (3.1.10)
lim, 0 O(¥,,v,{) =0,lim,_,,0(6,,0,{) =0 and (3.1.11)
Limy, o Y (7,7, ) = 0, limy, o0 Y(6,,6,0) = 0. (3.1.12)
{=p¢ {=p¢
Also, I'(v,6,8) 2 T (v, Yo, %) * 0, 60, 08) * T (6,6,F), (3113)
01,6,0) <0 (1,7 2) 0 0(,0,,0) 2 0 (6,,6,°%) and (3.1.14)
Y@,0,0) <Y (1,70, 52) 0 Y (1, 6,00 o ¥ (6,,60,52) (3.1.15)

Taking limit as n — oo in the above inequalities and using ((3.1.1), (3.1.2), (3.1.3), (3.1.10), (3.1.11) and
(3.1.12)) ,wegety = 6. Hence, ENN+# @ and y =0 € EnN.

NOW F(yn,T(y, 9) () = F(Vn;T(%H) p() - F(T(Hn 1, Vn— 1) T(% 9) p()

> (O 1,¥,08)2 * T (Y1, 6,p8) = (B _1,6,p0)7 * T V1,7, P07,
Q(Vn'T(y' 9), () IS Q(Vn’T(%H):PlO - Q(T(Qn—liyq—l) T(}/, 9) p() )

< 0(911—1' Y, POE 4 Q(Vn—ll 6' p{)f = @(en—ll 6! p()E ° O(V‘n—ll Y, p()f and
Y(yn' T()/, 9)' Z) 1S y(yn' T(]/, 6)1 Plo = Y(T(en—ll Y‘q—l)t T(Yﬂ 9)) PZ)

1
< Y(Hn—l' Y, ,D()E ¢ Y(yn—l' 9' p{)f = Y(en—ll 6! p()E ¢ Yr()/n—ll Y, p()f
Taking limit as n — oo in the above inequalities and using ((3.1.10), (3.1.11) and 3.1.12)),
we get y,, = T(y,y). Since the topology of the NMS is Hausdorff, we get T(y,y) =
As aresult, T's strong coupled fixed point is (y, y). To demonstrate the uniqueness of the strong
coupled fixed point, consider v # y € A where T(v,v) =v. Then
1 1

ryv,)=rT,y),Tv,v),{) = <F (y, v,l%))E * <F (y, v,%))E >T (y, v,/%), (3.1.16)
Oy, v,) =0(T(y,y), T(v,v),{) = <@ (y, v, %))E 3 <@ (y, v, I%))E <o (y, v, /%)' (3.1.17)
Y00 = YT, Tw,v),0) = <y (vv, %))2 o <y (v, %))2 <7 (yv.f) (3.1.18)

By applying ((3.1.16), (3.1.17) and (3.1.18))repeatedly we get for all n:
rty,v,{) = I"(y, ,5) > I"(y,v,piz) = 2 I"(y,v,p{—n),
O, v,)) <06 (y, v, ) <6 (y,v,[%) <--<0 (y,v,:—n) and

Y(y,v,0) < Y(y, v, ) < Y(y,v,l%) < < Y(y,v,;—n).

Taking limit as n — oo in the above inequalities, using (Definition (2.1) condition (7), (12) and (17)), we
have I'(y,v,{) =1,0(y,v,{) =0 and Y(y,v,{) = 0. Therefore, y = v. Hence, T has a unique strong
coupled fixed pointin = N 1.

525 V.B. Shakila et al 518-531



Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

Example :3.2
Let A=R and & = [o,%], 0= [—%,o]. Consider the NMS (4,T, 0,Y,%9), where
_lo—rl _lo—vl
* is the product t-norm, o¢ is the algebraicsum, I'(y,8,{) =e ¢ , 0(y,0,0))=1—e ¢
lo—yl
and Y(y,0,{) =e ¢ —1. Let T: Ax A —» A be a mapping given by
9—)/.(9)6[11 [11
T(V.9)={ g U 221 1722
2y otherwise.

It is evident from the Definition that T is a coupling with regard to £ N 2. We demonstrate that, with
regard to £ N N T is a Neutrosophic contractive coupling

1 _ly=nl _lo=al
Let p=§. Fory,aEEand 6,n €, weget(F(y n, {))2 =e 2 (1"(9 0'())2 =e 2,
1 _ly-nl _lo=al
(@0.n.0)* = L-e (0(9 7, {))2 —1-¢ % and
|9 ol
(Y@.m, C))2 —e 7 -1, (ree, cf,Z))2 —e X —1.
IT(.0)-T(@,0)I 16 —y)—(c—n)I |(n=y)+(6—-0)l
r'(T(y,6),T(n,0),p¢) =e P =e 6p¢ =e %
Also, m—y)+ (0 —0) < In—yl(+ I)G(—r)fl e
—-y)+@ -0 —yl+l0—0c

or (n—y)2+{(9—a) < In—ylz+<|0—<rl ore” " m >e X

1 1
or I'(T(y,0),T(,0),p{) = (F¥,n,9)?*(I'6,0,9)?

_ITG.0)-T®,0)l _1=y)=(a—n)I _1=y)+(6-0)l
Similarly, @(T (y,0),T(n,0),p{) =1—e pS =1—e 6p¢ =1-—e 2
Then, M —y)+ (@ —0)<|n—y|l+180 —0a]| or (n—y);(e—a) < In—yl2+6|6—o|

=)+ —0) In—yl+16—al _(=y)+-09) _In—yl+l6—al

or e 24 =>e 2 orl—e % <l-e %

1 1
or 0(T(y,0),T(n,0),p0) < (0(,n,9))? » (6(6,0,9))* and

IT.0)-T1,0)l [(6—y)—(e—n)| | =y)+(6—0)l
Y(T(y,6),T(n,0),p{) =e ke —1=e ©OF —1=e % -1
Then, (n—y)+ (0 —0) <In —(VIT(IG—)GI e
n-y)+(@-a n—yl+l6—c
or (n—y)2+{(9—0) < |n—y|2+<I9—0| or e 2 <e 20
—y)+(—0) In—yl+l6 -0l

ore 2 —1>e 24 -1

Thus, with contractivity factor p=1/3, we deduce that T is a Neutrosophic contractive coupling. Thus,
Theorem 3.1's requirements are all met. There is a strong coupled fixed point (0,0) of T, according to
Theorem (3.1); thatis, T(0,0) andalso 0 € Z N 2. Hence, Z N N2 is non-empty.

Corollary :3.3
Let (A,T,0,Y %) be a Complete NMS satisfying (Definition 2.1 of (7), (12) and (17). with * and ¢ being
stronger than the product t-norm and algebraic sum t-conorm. Let T : AxA - A be a mapping that
satisfies the following inequality for every y,0,n,0 € A:

1 1

r(T(y,6),T(m,0),p) = (I'(y.n, o)fl «(r,o, z))fl, (3.3.1)
0T (¥,6),T(,a),p0) < (0,1, o)f ° (0,0, c))f and (3.3.2)
Y(T(y,6),T(n,0),p0) < (Y(¥,1,0))? e (Y(6,0,0)). (3.3.3)
T then has a fixed point that is strongly linked.

Proof:

Take Z = = A in Theorem(3.1). Theorem (3.1) yields the desired outcome.

Remark: 3.4
In Example (3.2), T is a Neutrosophic contractive coupling, but the inequality (Definition (2.13) equation
(2.13. 1] (2.13.2) and (2.13.3) ) is not satisfied for all y, 8,7, 0 € A: For example, take

Y=30=-30=50==5 ThenI(T(.6)701,0),00) =T (=5,3,p¢) = e,
o(T(y,6), T(n.a) p() = (—— 3, pz) S —ew YT (,0), T(n,a) pO) =Y (=%,3,P) = e — 1.

Also, (F(y,n Z))Z (F(G o, Z))2 =e f (@(y.n Z))Z (0(9 o, ())2 =1l—-e < and
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19 1
19 1

1 11
Y@ mnd)e(Y(0,0,0)) =€l —1.
= eb0—1 ef-1

If inequalities ((2.13.1), (2.13.2) and (2.13.3)) holds, e 6% >e ¢ , —— < — and

e6r¢ el
19 1

e%¢ —1 < e? — 1 which implies p >1 > 1

This demonstrates how Corollary (3. 3) of Theorem (3.1) is correctly contained in it.

It should be noted that the aforementioned result holds true for a variety of t-norms and t-conorms that
are stronger than the product t-norm and algebraic sum t-conorm, such as the minimum t-norm, the H-
type t-norm, the maximum t-conorm, etc.

4. Neutrosophic Contractive Coupling in Hausdorff NMS
Theorem :4.1
Let (A,T,0,Y,%,0) be a NMS satisfying (Definition (2.1) conditions (7), (12) and (17)), £,2 be two non-
empty subsetsof A, T : AxA — A be a continuous Neutrosophic contractive coupling with regard to =
and 2 with contractivity factor p. Then
T :P(A)xP(A) - P(A) definedas T(5,02) ={T(§,w): § €5, w € N} is a Neutrosophic
contractive coupling with regard to P(Z) and P(£2) in the NMS (P(A), Hr, Hg, Hy,*,0) with the same
contractivity factor.
Proof:
By the Definition (2.1) of T(Z, ) it follows that forall € € P(Z) and D € P(2),
T(€,D) € P(2) and T(D,E) € P(8). Let €,,C, € P(5) and D;,D, € P(2). Then
Q(T(GLQQ'T(GZ,QZ)'P() =0({T(¢c1,01) : ¢ € Cy,01 € D1},{T(c2,02) : ¢; € €y, 0, € Dy}, p{)
inf sup

= €6 © €6, I'(T(cy,01),T(cz02),p0)

2, €D 0 ED;

inf  sup
> €6 €L (F(CLCZ,O)Z (F(bl;bz,o) (by 2.13.1)
bl € Dl bZ

1 1
_ lTlf sup 2 lnf sup
= <c1 c (21 C2 c 62 F(Cl; CZJ()) * <b1 € Dl bz € D r(bl,bz,{))

1 1
= (0(51,@2,0)7 * (0(591;592,5))2 = (?fr(Gl,Gz,C))f *1(3"[1"(91.:92'0)7 )

Similarly,ﬁ(T’(Eil,fDl),T(gz,sz),P() = (}[r(((/l'@}'())i * (}fr(Dp:Dz.O)E- R R
Therefore }[F(T((lgl,fbﬂ' T(C;,D,), Plf) = min{o(T(€;, D), T(C;, D,), p7), 9(T (€1, 1), T(€2, D), p{)}

> (Hr (G, 6, )2 * (Hr (D1, Dy, 0))?
Q(T(G:l,@ﬂ T(C,,D,), Pf) o({T(c1,01) 2 ¢ €€y, €D} {T(c2,03) ¢ ¢ € €y, 0, € Dy}, p0)
sup lnf
=0 €6 ¢ €6, O(T(¢y,d1),T(cz,0z),00)
€D, €D,
sup lnf
<u€C EGC, (@(cl,cz,())z (@(bl,bz,()) (by 2.13.2)
€D b,ED, X .
sup  in 2 sup in 2
= <c1 €C, ¢, efcsz Q(CI'CZ'O) ° (bl € D1 b, ef:D Q(t’l’bz'o)

1
—(9(0:1,(52,5))2 (Q(Dlrsz»())z (7'[9(@:1,(52;0)2 (%0(91,92'5))

Similarly, 9(7 (€, D,), T(€,,D,), p{) < (7{9(@:11(52,0)2 (%0(91,92'5)) A R
Therefore 3y (T(C1, D1, T(62, D), p¢) = max{e(T (€1, D), T(E5, 2, p¢), (T (€1, D), T(€2. D), p0)}

1
< (Ho(€1,6,5,0))2 0 (Hp(D1, Dy, )2
o(T (€, Dy), T(Cy, D), p¢) = 0({T(c1,01) ¢ ¢ € €y, 01 € Dy} {T(cz,0,) ¢ ¢ € €y, 0, € Dy}, p0)
sup inf
=6 €C ¢ €6, Y(T(¢,b1),T(c2,02),p0)
bl S ®1 bz € DZ
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sup inf
SGEG G () (O o
bl € D1 bZ € ®2
1 1
_( sw_ inf z sup  inf 7
= (Cl (S (Sl CZ € 62 y(cll CZ!{)) 4 <b1 € Dl bz € @2 Y(bl,bz,()>

1 1 1 1
= (9(0:1'(52'())2 ¢ (Q(Dl'bz:f))z < (7{}’(0:1,62,())2 °1(7{Y(91,DZ‘O)2

similarly, 9(T(C;, 1), T(€2,D2),p7) < (3 (€1, €5, D) o (Hr (D1, D2, D). A
Therefore Hy (T(C1, D), T(C2, Dz), p¢) = max{e(T (€1, 1), T2, ), p¢), 9(T (61, 0), T(C2, ®2), p¢))

< (7'[}’ (€, €y, O)E o (7{1/(331.32. {))E-
Thus, T : P(A) x P(A) - P(A) is a Neutrosophic contractive coupling with regard to P(£) and P(2) in
the Hausdorff NMS (P(A), Hr, Ky, Hy,*,0) with the same contractivity factor P.

Lemma: 4.2
Let (A,T,0,Y,%,0) bea NMS satisfying (Definition (2.1) conditions (7), (12) and (17)). Let Ty T, ... T, be
a finite number of continuous Neutrosophic contractive coupling on A x A with regard to = and {2, each
having a contractivity factor pq,p,, ... pp, correspondingly. Then the Hutchinson operator Z : P(A) x
P(A) - P(A) is a Neutrosophic contractive coupling in the NMS (P(A), Hr, Hg, Hy,*,0) with respect to
P(&) and P() with contractivity factor p = max{ p, ;n € N, }.
Proof:
By the definition of Z, it follows that for all € € P(Z) and D € P(12),Z(€,D) € P(R) and Z(D,C) €
P(%). Let €;,C, € P(Y) and D;,D, € P(0);

n

‘7{1’(2(61'31)'2(62'32)'!){) =Hr U T] (€, 1), U TI (€2, D7), ¢
j=1 i=1

N min

~1<ij<n

But, since each T’I is a Neutrosophic contractive coupling, we have forj = 1,2, ...n,

Hr (T (€, D), T; (€, D,), p0) = My (T (G, :Dl): T (6,,D,), Pj()
= (}fr(@p@z;f))z (}[r(po:Dz»O) [by 2.13.1)
Hence, ; < ILZ n}[r(T (€1, D), T; (€, D), p{) = (7'[1"(51,@2»0)2 (7'[1"(591,592;())

Therefore, H(Z(€,,D1),2(C,,D,),p) = (}fr(sl,@z,())z * (}[p(fol,'bz,()) .

Hr (T (€1, D), T; (€, D), p{) (by Lemma 2.5)

}[@(2(51, 501)'2(0:2, D), P() =Ho ﬂ T} (€, D), ﬂ TI (€3, D,),p¢

i=1 i=1
max N .
S1< i< nHo (TI (€, D1), T, (C;,D,), P() (by Lemma 2.5)

But, since each T"- is a Neutrosophic contractive coupling, we have forj = 1,2, ...n,
Ho (T (€, D), T (€, D), p¢) < Hy (T (€, 91), T, (€, D), pli)

< (7'[9((51»@2;0)2 (:}{F(DlﬂDZrZ)) (by 2.13.2)
Hence, 1 <i< n}[@(T (€, D), T; (€3, D,), p) < (7'[0(@:1, @z,o)z (%9(91'92;0)2
Therefore, Ho(Z(C,,D1),Z(C,, D,),p) < (H@((Sl,csz,z))z 0 (%@(91,202,{)) :

HY(Z\(@D:DI):Z\(@Z':DZ): P() =Hy ﬂ T} (€1, D1), ﬂ TI (€2, D2),p¢

=1 =1
max ~ ~
Si1<j<n¥lr (T, (€, D), T; (€,,D,), p?) (by Lemma 2.5)

But, since each T"I is a Neutrosophic contractive coupling, we have forj = 1,2, ...n,

Hy (T} (€1, D), T (€2, D,), p¢) < Hy (7 (€, ), T; (€, D), p 19
< (Hy (€1, 65,0))% o (Hy (D1, D2, ))? (by 2.13.3)
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max A - L 1
Hencev 1< I < n“]{}’(Ti (Q:ligl)vTj (Q:ZvEZ)v p() < (}[}’((51!(52! ())2 ® (‘7{}’(31!921 ())2

1 1
Therefore, .7'[}/(2((51,@1),2(62,@2), p{) < (j{y((gl, 62,6))2 4 (}[y(bl,bz,())z.
Hence proved.

Theorem :4.3

Let (A,T,0,Y %) be acomplete NMS satisfying (Definition (2 1) condition (7), (12) and (17)). Consider
a Neutrosophic Iterated Coupling System ((A,T,0,Y,x,9); £, 0, T;i € N,,) made up of a finite number of
continuous Neutrosophic contractive couplings on A x A with regard to two closed subsets =,02 of 4,
and the associated Hutchinson operator is denoted by Z : P(A) x P(A) — P(A); then there is only one
strong coupled fractal for Z, ie. there existsa M € P(8) N P(2), suchthat Z(M,M) = M

Further, both the iterations {Z,} and {2,} constructed as 0, = Z(%8,,02,), 5,41 = Z2(2,,5,),n >0,
with £, € P(Y) and 0, € P(Q) selected at random, they approach the strong coupled fractal.

Proof:

By (Lemma 4.2),Z is a Neutrosophic contractive coupling with contractivity factor p = max{p,, : n €
N,}. But, since (A4,I,0,Y,*e) is complete, (P(A), Hy, Hg, Hy,*,0) is also complete. Since, =, are
closed subsets of A, P(£) and P(Q) are also closed subsets of the NMS (P(A), Hp, Hg, Hy,*,¢). An
application of Theorem (3.1) comes next in the theorem.

Example: 4.4
Let A = Rand & =[-2,2],2 = [—1,2]. Consider the NMS (A, T, 0,7 ,x,0), where * is the minimum t-norm
_ly=el

and o is the maximum t-conorm. Let I'(y,6,{) =e ¢ ,

Iy ol

7 _ lr—6l 9|

0,0, = —=g Land Y(y,6,0) =e ¢ —1.

e (

Let Ty,T,: A xA - Agiven byTy(y,0) ==L, T,(,0) =1+=L. ForyeZ=[-22]and €0 =
[-1,2],T1(y,0), Ty (y,0) € 2 and T,(0,y),T,(0,y) € E. Then Ty, T, are couplings with regard to =, 2. Then
the ICS ((4,1,0,Y ,%,0); E,0,T,,i € N;) generates a strong coupled fractal.
Let 5y =10y = [— %,%] Next, the following are the first four steps of the iteration that lead to the strong
coupled fractal:
1 3]

2’2
T = T(5 _Z 9 13
5 =TE5) = [ 11 11] [11 11]

— —_ - 106 114 117 125 128 136
5y = (5 = |- 0 [ 1) [

121’ 121] [_H 121] [121 121] 1217121

1217121 121’121
g, = T(, 5) = [_ 151 —91] [_ ] [ 151] [1180 1240] [1301 1361] [1422 1482
=4 =323 1331’ 1331 1331’ 1331 1331’ 1331 13311331 1331’ 1331 1331’ 1331

T a™jteration
3™ jteration
2™ jteration

15" iteration

Figure 1. illustrates the first four iterations.
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Example : 4.5
Let A = Rand & =[-2,2],2 = [—1,2]. Consider the NMS (A, T, 0,7 ,x,0), where * is the minimum t-norm
|V 0l
_lr=6l 7
and o is the maximum t-conorm. Let I'(y,6,{) =e ¢ , 0(y,6,0) = =) gl ! and
e [4

lr=6l

Y(,0,0))=e ¢ —1.Let T,T,: A xA - Agivenby T;(y,0) = y , T,(y,0) =1 +—.
Then the ICS ((4,T,0,Y *,9); £,2,T;,j € N;) has an attractor.

~ 13

B=h= ‘5'5]

_ o 8 10

5 =TG5 =55 0[5

= _mrm o=y 11 151 155 80 82 169 173

=3 _T(“z""Z)_[ 162’ 162] [ 81’ 81] [162 162] [162 162] [81'81] [162’162]

(o = 11 -1 [ —46] [ 140 —148 U[—149 =170

B4 =T(55) = 1458’ 162 2916’ 729 2916’ 2916 2916’ 2916

y -175 13 ]U 1 11 U[140 148]LJ[149 170 U[175 46
2916°2916l ~ [16271458] ~ 12916’ 2916] ~ [2916° 2916/ ~ 12916’ 729

683 2741] 2746 2767 [2768 2776] [1447 161 [2903 2929

Y1729'2916] Y 12916° 2916) © 12916 2916) ” |1458° 162!  [2916° 2916
163 1469] 3056 3064 [3065 3086] [3091 775

Y162 1438 VY [2916’2916) ¥ [2916°2916) ¥ [2916" 720

CONCLUSION

In this study, the author defined the concept of coupling. In a complete NMS, we have defined a mapping
which is a neutrosophic contractive coupling and proved that this mapping has a unique strong coupled
fixed point with an application. Also, the author defined Hutchinson operator which is a neutrosophic
contractive coupling in the NMS with contractivity factor.
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