
Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024
 VOL. 33, NO. 2, 20

 507 V. Jeevika Tharini et al 507-517

A Canonical Particle Swarm Optimization(C-PSO) Approach
to Identify High Utility Itemset

V. Jeevika Tharini1, B.L.Shivakumar2

1Research Scholar, Sri Ramakrishna College of Arts & Science, Coimbatore,Email: jeevi153gv@gmail.com
2Principal, Sri Ramakrishna College of Arts & Science, Coimbatore

 Received: 17.04.2024 Revised : 13.05.2024 Accepted: 08.05.2024

ABSTRACT
High Utility Itemset Mining (HUIM) is the advanced process of identifying highly profitable items by
assessing the unit profit of each item within extensive transaction databases. Over recent years, HUIM has
emerged as a crucial subject with broad applications. It facilitates the identification of profitable items
based on factors such as profit and quantity, setting it apart from conventional algorithms. Numerous
algorithms have been developed to mine High Utility Itemsets (HUIs), addressing the challenge of
searching for these sets in databases containing many distinct items. HUIM incorporates optimization
techniques to reduce complexities and discover optimal solutions. This research uses Canonical Particle
Swarm Optimization (C-PSO) to identify high-profit items, effectively managing convergence
properties.Canonical Particle Swarm Optimization (C-PSO) is motivated by the imperative to enhance the
efficiency of HUIM. C-PSO aims to swiftly and accurately identify high-profit items within transaction
databases by optimizing the search space. Its advantages lie in superior convergence properties,
addressing challenges in navigating extensive item spaces, and its adaptability to diverse utility mining
scenarios, making it a robust and superior choice compared to existing techniques. The experimental
results, conducted on three benchmark datasets, illustrate that C-PSO outperforms existing state-of-the-
art techniques in the context of HUIM.

Keywords: High Utility Item, fitness function, transaction weighted utility model, threshold value.

1. INTRODUCTION
Conventional mining algorithms like Association Rule Mining (ARM) and Frequent Item Mining (FIM) are
mainly designed to compute the occurrence of individual items in the transactional databases,taking into
account their confidence or minimum support values [1]. While these algorithms work well in identifying
the most frequent itemsets, they are not very effective in finding dense itemsets, which yield high profits,
although they may be rare. For instance, in a supermarket setting, the supermarket may sell sugar in large
quantities daily, meaning frequent transactions, but the profit per unit is usually low. On the other hand,
products such as cashew nuts may be sold with low frequency compared to biscuits, but their profit may
be much higher [2]. This scenario shows how FIM and ARM have shortcomings in their little attention to
the less frequently sold but highly profitable items. High Utility Itemset Mining (HUIM) techniques have
been proposed to address these issues [3].
HUIM concentrates on mining itemsets with higher utility from the transaction databases. Utility mining
considers the number of items and the profit per unit of each item to derive the utility of the itemset. In
utility mining, the number of items appearing in a transaction is termed internal utility, and the profit of
individual items is called external utility [4]. High Utility Itemsets (HUIs) are the itemsets which have
utility greater than a specified minimum utility. This approach makes it possible to detect those items
that, while occurring less frequently, produce a large proportion of the total profits. Utility mining can be
applied to quantitative databases in which the transaction data contain the quantity of the items sold [5].
As a result of the development of HUIM, several algorithms and mechanisms have been developed to
identify high-utility item sets. These algorithms are expected to overcome the shortcomings of this
conventional mining process by targeting profitability rather than frequency. However, identifying
profitable items has some drawbacks, like high time consumption and memory usage, the appearance of
non-efficient candidate items, and the absence of required items at the stage of item creation. For such
complexities, advanced optimization methods are needed [5].
Evolutionary computing, as a technique based on the principles of natural selection, is excellent for
finding efficient optimal solutions [6]. Particle Swarm Optimization (PSO) is a bio-inspired optimization
algorithm that belongs to the population-based optimization technique in which the solutions are

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 508 V. Jeevika Tharini et al 507-517

updated based on pbest and gbest values. In PSO, particles are potential solutions that move through the
solution space and update their positions according to their own experience as well as the experience of
the other neighbouring particles [7]. This method blends the exploration and exploitation strategies to
find the best solutions. However, PSO has been able to solve continuously optimizing problems but has
struggled in discrete-valued search spaces.
Due to the limitations of the conventional algorithms in mining high-utility itemsets, researchers have
developed several enhanced techniques. Such approaches frequently include components of evolutionary
computing like PSO to improve the efficiency and effectiveness of the mining process [8]. For example,
some studies integrate PSO with other optimization methods to deal with the discrete characteristics of
utility mining issues. These techniques combine the best features of several methods to increase the
efficiency and accuracy of the results [9].
The most prominent issue in the recent studies of HUIM is how to mine high utility itemsets since the
utility values depend on users’ preferences and are dynamic. The utility rate of a given product depends
on the user, meaning these factors must be incorporated into the mining process. Many algorithms have
been developed to solve the identification problems of the most profitable items. Still, they all have
different issues: they take more time and memory, generate repeated and unnecessary items, and may
lose essential items. To overcome these limitations, new optimization techniques are needed.
Optimization problems are significant in many application areas, such as data mining, to overcome the
deficiencies of existing methods [10]. Therefore, by applying sophisticated optimization methods,
researchers can enhance the performance and effectiveness of HUIM to find highly useful itemsets for
profitability and importance. All these advancements not only increase the effectiveness of utility mining
but also offer insights into the preferences and trends of the users, thus improving decision-making and
strategic planning in different fields.
Conventional mining algorithms such as ARM and FIM cannot discover the most profitable items, hence
the need to develop HUIM approaches. Utility mining considers the number of items and their profit,
which helps generate PSO. An example of an evolutionary computing technique provides optimal
solutions to enhance the mining process; however, they have issues in discrete search spaces. In this
regard, developing sophisticated optimization methods and combined algorithms is critical, opening up
new opportunities for high-utility itemset mining with higher efficiency.
The paper is organized as follows: Section 2 provides a review of the existing literature on utility mining.
Section 3 outlines the architecture of the HUIM-based C-PSO and includes a running example. Section 4
presents the results and compares the performance of various algorithms. Finally, Section 5 offers
conclusions and future recommendations.

2. RELATED WORKS
Fournier-Viger, P., et al [11] studied the restrictions of HUIM by explaining the issues of identifying
Local HUI’s (LHUI) and Peak HUI’s (PHUI), which typically creates time periods of itemset and higher
utility. PHUI-Miner and LHUI-Miner were developed to retrieve profitable patterns. LHUI used the data
structure titled as LU-list, and further implements the general search procedure of HUI-miner. PHUI is
appropriate in market basket analysis and efficiently discovered the time periods with HUI’s in a
prominent way. Non-redundant Peak HUI’s (NPHUIs) is employed to identify the reduced set of patterns.
All the above mentioned proposed algorithms were used in discovering the beneficial patterns where it
identifies greater utility pattern rather than the high utility pattern.
Liu, M., et al [12] addressed the drawbacks of existing algorithms and designed an algorithm that incurs
the features of list structure to store itemsets utility information and search space’s heuristic information
that is related to pruning. List structure has reduced the computation of utility values and several
recursive generations of an itemset. The utility list is generated from the retrieved data that had
prominently mined the HUI’s. The main intent of HUI-Miner is to discover the HUI’s without losing any of
the important patterns in the database. HUI-miner showed the best result by acquiring lesser utilization
of memory and reduced run time.
Ahmed, C. F., et al [13] proposed high utility pattern (HUP) mining, which computed the dissimilar profit
values for every single item and the non-binary existence of items. Interactive as well as incremental data
mining incorporates the previous structures of data and also lessens the redundant calculation whenever
the threshold is changed or updated. HUP incorporated tree structures and achieved HUP mining. Each
incidence of an item in the transaction is arranged in an item’s lexicographic order that is called as
Incremental HUP Lexicographic Tree (IHUPL-Tree) and it doesn’t use any restructuring procedure to
mine the incremental data. Based on the incidence of the items in a transaction, the items are arranged
that are in decreasing order which is called an IHUP Transaction Frequency Tree (IHUPTF-Tree).

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 509 V. Jeevika Tharini et al 507-517

IHUPTWU-Tree is developed by incorporating the TWU model and the items were effectively mined with
reduced time.
VikramGoyal et al [14] designed an algorithm called UP-Rare Growth and it implemented the UP-Tree
data structure that fetched the rare HUI’s from an operational database. UP-Rare Growth works on both
the utility and incidence of itemsets together. The author has also suggested two more effective schemes
to avoid the examination of inappropriate branches of the tree. Extensive experiments indicated that the
developed algorithm outperforms the available algorithm in terms of generated candidate item count.
Peng, A. Y., et al [15] proposed a mHUIMiner algorithm for the proficient identification of HUI’s. The
main intent of HUIM is to forecast the items whose utilities are higher than or equivalent to a definite
threshold value. The mHUIMiner integrated the structure of a tree to make the development process of
itemset to neglect the unavailable itemset in the database. In mHUIMiner, complicated pruning schemes
are not necessary that need costly computation overhead. In the sparse dataset, running time is
comparatively reduced.
Kannimuthu, S., et al [16] had shown a contribution in reclaiming the HUIs which faces major issues
namely threshold assignment and search space. When the items count and generation of items is huge
then the search space eventually increased. The analyst had stated the threshold values without having
any idea about the dataset. Based on the dataset’s nature thresholds were generated automatically to
avoid manual threshold assignment that is achieved using the GA. The auto-generation method showed
better performance.To obtain HUI's effectively, HUIF-PSO (High Utility Itemset Framework based Particle
Swarm Optimization) is improved utilizing the Frequent Pattern tree structure. Performance variables
include the HUI's count, memory, and time utilization. The revised HUIF-PSO Tree method outperforms
previous algorithms, according on the results of the experiments [17].
Song, W., et al [18] had shown recent advancements in bio-inspired computing and it had attracted
attention that leads to the establishment of HUI mining algorithms. The HUI identification without any
loss of HUI from the database is. It has maintained the optimal values of the population. Thus, the
replication within populations was enhanced. It was developed using the GA, PSO and BAT algorithm. An
extensive test report shows that the Bio-HUI framework outperforms the existing algorithm by
comparing the performance factors efficiency, convergence speed, and result’s quality.
Lin, J. C. W., et al [19] had conversed significant issues of HUIM. A heuristic HUPEumu-GRAM algorithm
is proposed to reclaim HUIs based on GA. In PSO requirement of the parameter is less when compared to
the GA-based approach. The discrete particles are encoded as the binary variables in the PSO. On the basis
of the PSO algorithm, a new approach is formulated and it is called HUIM-BPSOsigwhich efficiently acquire
the HUIs. The combinational problem is reduced by the size of a particle assigned based on the TWU
model in the evolution process. The sigmoid function is employed for updating the particles in the HUIM-
BPSOsig algorithm.
Wu, et al [10] depicted the foremost issue in data mining which is HUI mining and it is a contrast factor
of FIM. Factors like capacity and the profit were utilized for the HUI retrieval process. In HUIM, the
process of handling the HUI identification space is tedious for varied size and the item of various type.
The author had designed an algorithm using the optimization strategy called ACO based method which
was mined effectively with the items holding greater profit values. PSO and GA are also used for acquiring
utility items and these algorithm results in huge computational time. To attain the results with limited
computational time ACO is introduced. HUIM-ACS (Ant colony system) used pruning in two ways which
effectively map the solution into the routing graph. HUI’s are reclaimed without any candidate edge from
the initial stage of the process. HUIM-ACS outperforms other HUIM algorithms.
Dam, et al [21] developed utility mining with the approach called average utility measure that was the
utility of the item which was divided by the count of the occurring item. The average utility of an item had
no downward closure property and the maximal utility is assigned as an upper bound value. The process
of estimation was drawn into two phases. The estimation process was initiated with the summation of the
highest utility value and proceeded to the estimation of actual utility value with the upper bound value.
Average utility mining has used higher threshold values compared to other algorithms.
Li, et al [22] designed one pass algorithms namely Mining HUI’s based on BIT vector (MHUI-BIT) and
Mining HUI’s based on TIDlist (MHUI-TID). Data streams were a sequence of continuous data that arrived
at a quick rate. Only few of the researchers have developed algorithms for data streams and hence, an
efficient approach was needed for the retrieval of items from the streaming data. The lexicographical tree
was used for representing the generation of candidate items. The test result showed the algorithm MHUI-
BIT and MHUI-TID have obtained efficient results than other existing algorithms data streams.
The research gap identified in HUIM includes the following: the approach developed in HUIM does not
consider frequency and utility in a balanced way; that is, it only finds high utility values (Fournier-Viger,
P. et al. [11]); HUIM may have some computational issues (Liu, M. et al. [12]); HUIM has a problem in

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 510 V. Jeevika Tharini et al 507-517

dealing with incremental data (Ahmed Some of the other works focused on discovering closed itemsets or
dynamic databases but were still not scalable for large datasets or real-time settings as subsequently
optimized by VikramGoyal et al. [14] and Li et al. [22]. To address these gaps, the Canonical Particle
Swarm Optimization (C-PSO) approach is proposed, which integrates the concepts of evolutionary
computing with the latest heuristic methods to increase the speed, decrease the complexity, and increase
the accuracy of HUI identification across multiple datasets, thereby providing a more equitable and
inclusive solution for practical applications.

3. Proposed Methodology: HUIM-C-PSO Algorithm
In this approach, every particle is indicated by two kinds of vectors and it indicates position as well as
velocity.

3.1. Modelling HUIM using C-PSO
Particle Swarm Optimization (PSO) is a bio-inspired method that can simply optimize real-world, non-
linear, and complex optimization issue. Typically, every fish or bird is stated as “particle” and their flock
stated as “population of a particle”. Every particle transmits around the widespread area of search space
in accordance with objective function (OF). Movement of every particle is based on the neighbor and
personal experiences. The particles are initialized randomly based on the position of particle that is
relevant to constraint of issue. Entire particle position is stated as initial swarm or population. After
generating random velocities of every particle and relevant to objective function, objective value is
investigated. During the process of velocity update, constriction factor is introduced to control the
convergence of a particle. After introduction of constriction factor, the velocity is updated using equation
(1).
𝑣𝑙𝑖

𝑡+1 = 𝐶𝐹(𝑣𝑙𝑖
𝑡 + 𝑐1𝑅𝐴1

𝑡 𝑝𝑏𝑖
𝑡 − 𝑥𝑖

𝑡 + 𝑐2𝑅𝐴2
𝑡 (𝑔𝑏𝑖

𝑡 − 𝑥𝑖
𝑡))

𝐶𝐹 =
2𝑟

(|2 − 𝜑 − (𝜑2 − 4𝜑)|)

where the cognitive factor is indicated as c1, the social factor is indicated as c2, r,𝑅𝐴1
𝑡 and 𝑅𝐴2

𝑡 indicates the
random number ranges between 0 to 1, pb indicates personal best, gb indicates global best, the value of
can be greater than 4, and the constriction factor is indicated as CF. The value of c1and c2 are assigned
with 2.05, k is assigned with 1, and the CF is equivalent to 0.729.
The population size PS, 1-HTWUIs count is Nct, and all the 1-HTWUIs are sorted with the assistance of
lexicographic order across whole utility mining process. The velocity vector 𝑉𝑖(1 ≤ 𝑖 ≤ 𝑃𝑆) with elements

Nct and every element 𝑉𝑖
𝑗
 is considered as probability relevant to the velocity of the jth1-HTWUIs to be

utilized in the updating position, the position vector 𝑃𝑖(1 ≤ 𝑖 ≤ 𝑃𝑆) is considered as binary vector with

elements Nct, and every element 𝑃𝑖
𝑗
 is either 0 or 1 that represent presence or absence of jth1-HTWUIs in

Pi.
A velocity vector alters with regard to the prior positions for these two vectors, and a position vector
changes in response to the velocity vector that indicates a new prospective itemset. If the position vector
of a jth vector is composes a one item in the jth place that is according to whole order and indicates
potential HUI. Otherwise, this item is not used and couldn't be in a potential HUI. The jth bit of a position
vector Pi is initialized by zero or one by utilizing a roulette wheel selection with probabilities is given in
equation (2)

𝑝 𝑝𝑖
𝑗
 =

𝑇𝑊𝑈 (𝑖𝑡𝑒𝑚𝑖)

 𝑇𝑊𝑈 (𝑖𝑡𝑒𝑚𝑘)
𝑁𝑐𝑡
𝑘=1

where Nct is the count of 1-HTWUIs.
The fitness function is computed for each iteration of C-PSO to characterize the optimization problem.
Let's say the itemset(IS) is indicated by a position vector, and the utility of IS is directly utilized as the
fitness value in equation (3)
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖 = 𝑢(𝐼𝑆)
It is also necessary to redefine the estimation of every position where the two position vectors are Pm and
Pn with the element count Nct. This is determined in equation (4)
𝑑𝑃 = 𝑃𝑚 − 𝑃𝑛 = {𝑑𝑃𝑖 |1 ≤ 𝑖 ≤ 𝑁𝑐𝑡 }
where

𝑑𝑃𝑖 =
1, 𝑖𝑓 𝑝𝑚

𝑖 = 1 𝑎𝑛𝑑 𝑝𝑛
𝑖 = 0

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2. Illustrative Example

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 511 V. Jeevika Tharini et al 507-517

In a quantitative data store, 𝐼 = 𝑚1 , m2 , m3 , …… , mn represents a set of n individual items, while
𝑇 = 𝑡1, 𝑡2, 𝑡3 …………𝑡𝑛 denotes the transactions. Each transaction Tr is a subset of Iand has a unique
identifier called TID. External utility values, shown in Table 2, represent the profit of each item, and
internal utility values, shown in Table 1, indicate the quantity of purchased products. A minimal utility
value is set based on user preferences. This study presents a running example with seven transactions
and five items, D to H, as illustrated in Table 1.

Table 1. Quantitative data store
Tid Transaction

Item
Occurrence

A1 {D,E,G} 1,4,1
A2 {D,H} 5,2
A3 {D,F,G} 3,4,6
A4 {E,F,G,H} 1,2,1,5
A5 {F.H} 5,1
A6 {D,E,F,H} 1,2,5,1
A7 {D,E,F,G,H} 1,2,5,3,1

Table 2. Profit values

Item D E F G H
Profit 4 3 1 5 1

Definition 1: The utility of an item mjin the transaction Tris signified as u(mj, Tr) and denoted as

𝒖 𝒎𝒋, 𝑻𝒓 = 𝐫 𝒎𝒋, 𝑻𝒓 × 𝐩𝐫(𝒎𝒋)

Example: Item D’s utility in A1transaction is calculated as follows,
u(D, A1)=r(D,A1) ×pr(D)
u(1,A1)=r(1×4)=4
Definition 2: The utility of an item mj in the data store DB is signified as u(mj) and denoted as

𝒖 𝒎𝒋 = 𝒖 𝒎𝒋, 𝑨𝒑 + ⋯ + 𝒖(𝒎𝒏, 𝑨𝒏)

Example: Item D’s utility in entiretransaction is calculated as follows,
u(D) = u(D, A1)+ u(D, A2)+ u(D, A3)+ u(D, A6)+ u(D, A7) = 4+20+12+4+4 =44
Definition 3: The utility of an itemset L in the transaction Tris signified as u(L, Tr), and denoted as

𝐮(𝐋, 𝐓𝐫) = 𝐮(𝐦𝐣, 𝐓𝐫)

𝐦𝐣𝐋𝛎𝐋⊆𝐓𝐫

Example: Itemset DE’s utility in A1transaction is calculated as follows,
u(DE, A1) = u(D,A1)+u(E,A1) = 4+12 =16
Definition 4: The utility of an itemset L in the data storeDB is signified as u(L), and denoted as

𝒖 𝑳 = 𝐮(𝐋, 𝑻𝒓)

𝐋⊆𝑻𝒓𝛎𝑻𝒓⊆𝐃𝐁

Example: Item DE’s utility in entiretransaction is calculated as follows,
U(DE) = u(DE,A1)+ u(DE,A6)+ u(DE,A7) = 16+10+10 = 36
Definition 5: The transaction utility of a transaction Tris signified as tu and denoted as

𝒕𝒖 𝑻𝒓 = 𝐮(𝐋, 𝑻𝒓)

𝐋⊆𝑻𝒓

Example: The utility of whole transaction A1 is calculated as,
tu(A1) = tu(D,A1)+tu(E,A1)+tu(G,A1) = 4+12+5 = 21
Definition 6: The total transaction utility of a transaction Tris signified as tu and denoted as

𝑻𝒖 = 𝐓𝐮(𝑻𝒓)

𝑻𝒓𝛜𝐃𝐁

Example: The utility of whole transaction from A1 to A7 is calculated as,
Tu = 44+27+21+55+10 = 157
To retrieve the HUIs and their relative utility from the temporal transaction database. The chief feature of
HUIM-C-PSO from DB is to identify the set of HUI’s.
In the designed HUIM-C-PSO algorithm, a traditional transaction weighted utility model is applied to
figure out the HTWU. Based on the TWDC property of HTWUIs, the unsuitable items in the data store are

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 512 V. Jeevika Tharini et al 507-517

proficiently removed. Thus, identification of HUI’s estimation time is highly minimized. In the
initialization, HTWUI’s are identified. From the observed value, the minimum threshold value is assigned.

Table 3. Transaction Utility (TU) and Total Transaction Utility (TLTU)
Transaction I-D I-E I-F I-G I-H TU
A1 4 12 0 5 0 21
A2 20 0 0 0 2 22
A3 12 0 4 30 0 46
A4 0 3 2 5 5 15
A5 0 0 5 0 1 6
A6 4 6 5 0 1 16
A7 4 6 5 0 1 31
TLTU 44 27 21 55 10 157

Example: In the initialization phase TWU is calculated to evaluate the HTWUI’s. Each item has its own
utility rate, which is summed together in each transaction to yield tu. With the help of tu, an item's upper
limit value is calculated. The predicted minimum utility value is 157×0.5 = 78.5. Table 4 shows the value
of the identified HTWUI. In the solution space of Li, DB, an initial population of particles is formed using
this estimation of utility.
HTWUI(D) = D(A1)+D(A2)+D(A3)+D(A6)+D(A7)
 = 21+22+46+16+31
HTWUI(D) = 136
The populations of the particle are spread in the data store of DB focused on the identified of HTWUI's in
accordance with the minimal threshold population. The tltu is used to compute the least threshold level,
and 0.6 is assigned as a user-defined number.
Minimum threshold value (β) = 157 × 0.6

 = 94
β = 94

Table 4. HTWUI’s
Item TWU HTWUI’s

D 136 YES
E 83 NO

F 114 YES
G 97 YES

H 90 YES

Table 4 lists High Transaction Weighted Utility Items (HTWUIs), showing items with their Transaction
Weighted Utility (TWU) values and indicating whether they meet the HTWUI criteria based on a
predefined threshold. For example, item D with a TWU of 136 is marked as HTWUI.

Table 5. Particles Position
Particle position D F G H
P1 1 0 1 0

P2 1 0 0 1

P3 1 1 1 0

P4 0 1 1 1

P5 0 1 0 1

P6 1 1 0 0

P7 1 1 0 1

Table 5 displays particle positions in the Particle Swarm Optimization (PSO) algorithm, representing
potential solutions with specific item combinations.

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 513 V. Jeevika Tharini et al 507-517

Table 6. List of HUIs
Particle
position

Item Fitness value

P1 DG 51

P2 DH 32

P3 DFG 46

P4 FG 41

P6 DF 34

Table 6 presents the final list of HUIs, showing the particle positions, the corresponding itemsets, and
their fitness values. For example, the itemset DG has a fitness value of 51, indicating its high utility. Items
having HUI are DG, DH, DFG, FG, and DF

4. RESULT AND DISCUSSION
This section illustrates the outcomes of the existing and proposed approach. The existing approaches
namely HUIM-BPSO, HUIM-PSO, HUIM-GA are compared with

4.1. Execution Setup and Dataset Description
All the algorithms are instigated in Java and executed on a machine with a 3.20 GHz CPU. Comparison is
performed for the proposed algorithm HUIM-C-PSO with the existing algorithms namely HUIM-BPSO,
HUIM-BPSO-TREE, and HUIF-PSO for HUI mining.All the time, memory and high utility item
measurements are carried with the Java API. Illustration of the algorithm is carried with three benchmark
datasets having diverse characteristics. Candidates Count, Memory Usage and Execution Time for existing
and proposed algorithm are observed against various threshold values. Table 7 shows the description of
the dataset.

Table 7. Description of DATASET

Dataset Name Instances Attributes
Chess 28,056 6
Mushroom 8,124 22
Retail 88,162 10

4.2. Performance Evaluation
In this research work, HUI item count, memory usage and execution time are considered as performance
factors. The execution time is measured in milliseconds (ms), memory usage in megabytes (MB) and
candidate count in numbers (nos).

Comparison of Time Consumption
This section explains the time consumed in generating the candidate itemset and searching for profitable
itemsets from the generated candidate itemset. The test compares three datasets’ runtime with three
chosen existing algorithms. The above results show that the proposed HUIM-C-PSO algorithm has yielded
better outcomes than HUIM-BPSO, HUIM-BPSO-TREE [19] and HUIF-PSO algorithm [17]. The HUIM-C-
PSO algorithm effectively reduces the combinational issue in the evolution procedure since it generates
effective combinations of items from the dataset. The time taken to perform the existing and proposed
approach is shown in Table 8 and Figure 1.

Table 8. Comparison of runtime

Dataset Algorithm T-35 T-30 T-25 T-20 T-15

Chess HUI-BPSO 417823 408284 392331 388123 371231

HUIM-BPSO-TREE 326404 345899 349708 350080 351938

HUIF-PSO 160484 169115 198401 201208 218491

HUIM-C-PSO 184611 193574 198472 201785 207891

Mushroom HUI-BPSO 457896 459567 534897 598715 764582

HUIM-BPSO-TREE 39389 82942 86657 89704 103105

HUIF-PSO 43481 34202 35987 36987 37876

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 514 V. Jeevika Tharini et al 507-517

 HUIM-C-PSO 37001 37142 39547 41027 43120

Retail HUI-BPSO 456142 497861 519677 567841 597271

HUIM-BPSO-TREE 40928 41872 42983 43217 48264

HUIF-PSO 35762 39827 40621 41982 42981

 HUIM-C-PSO 357162 372871 393876 403872 411098

Figure 1. Comparison of runtime

Figure 1 shows that the proposed HUIM-C-PSO has minimal runtime than the HUIM-BPSO, HUIM-BPSO-
TREE, and HUIF-PSO algorithms.

Comparison of Memory Usage
This section compares the memory space used to store the generated candidate itemset and the other
processed information. The experimental evaluation of the HUIM-C-PSO, HUIM-BPSO, HUIM-BPSO-TREE,
and HUIF-PSO algorithms with three benchmark datasets with several threshold values are indicated in
Table 9 and Figure 2.

Table 9. Comparison of memory usage

Dataset Algorithm T-35 T-30 T-25 T-20 T-15

Chess HUI-BPSO 76.08 72.69 69.56 65.34 61.34

HUIM-BPSO-TREE 77.39 74.96 62.9 62.11 51.93

HUIF-PSO 35 36.77 39.82 50.67 52.49

 HUIM-C-PSO 34 34.15 33.01 32.54 32.14

Mushroom HUI-BPSO 38.65 42.89 45.88 48.69 52.36

HUIM-BPSO-TREE 10.56 10.63 11.61 11.71 12.26

HUIF-PSO 13.06 20.04 21.99 18.57 20.41

HUIM-C-PSO 12.06 12.94 14.23 15.06 15.98

Retail HUI-BPSO 41.82 45.76 47.65 49.76 51.76

HUIM-BPSO-TREE 30.32 31.78 36.19 38.95 42

HUIF-PSO 31.43 32.76 33.45 34.87 36.56

 HUIM-C-PSO 30.56 31.12 33.04 34.01 36.01

-100000
0

100000
200000
300000
400000
500000
600000
700000
800000
900000

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-
T

R
E

E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-
T

R
E

E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-
T

R
E

E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

C H E S S M U S H R O O M R E T A I L

T
IM

E
 C

O
S

U
M

P
T

IO
N

 I
N

 (
M

S
)

ALGORITHM AND DATASET

COMPARISON OF TIME CONSUMPTION

T-35 T-30 T-25 T-20 T-15

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 515 V. Jeevika Tharini et al 507-517

Figure 2. Comparison of memory usage

From the observation of Figure 2, it is found that the HUIM-C-PSO approach has given better results in
terms of memory consumption that is minimal memory usage than the HUIM-BPSO, HUIM-BPSO-TREE,
and HUIF-PSO algorithms.

Number of HUIs
The count of HUIs generated from the algorithms HUIM-C-PSO, HUIM-BPSO, HUIM-BPSO-TREE, and
HUIF-PSO algorithms are discussed in this section. The TWU model is incorporated in the HUIM-C-PSO to
determine the actual HUIs from the data store.

Table 10. Comparison of Count of HUIs

Dataset Algorithm T-35 T-30 T-25 T-20 T-15

Chess HUI-BPSO 38821 31919 39798 40293 40928

HUIM-BPSO-TREE 35998 35982 35270 33839 34862

HUIF-PSO 33357 33419 33404 33753 33932

HUIM-C-PSO 33876 32991 32198 32981 33914

Mushroom HUI-BPSO 26548 26881 26938 27588 27823

HUIM-BPSO-TREE 26088 39681 40146 48862 58941

HUIF-PSO 25316 35986 36863 37388 49623

HUIM-C-PSO 26316 35286 37863 38388 50623

Retail HUI-BPSO 45098 45762 46761 47987 48768

HUIM-BPSO-TREE 37675 38726 39871 41089 41872

HUIF-PSO 38765 39796 40728 40981 41098

HUIM-C-PSO 32876 35671 37987 39876 42892

0
10
20
30
40
50
60
70
80
90

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-
B

P
S

O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

C H E S S M U S H R O O M R E T A I L

M
E

M
O

R
Y

 U
S

A
G

E
 I

N
 (

M
B

)

ALGORITHM AND DATASET

COMPARISON OF MEMORY USAGE

T-35 T-30 T-25 T-20 T-15

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 516 V. Jeevika Tharini et al 507-517

Figure 3. Comparison of Count of HUIs

Figure 3 shows that the HUIM-C-PSO algorithm produces almost similar count of the HUIs in the existing
algorithms with minimal time consumption and memory usage.

5. CONCLUSION
HUIM has become a significant research area that can reveal very lucrative products. As many algorithms
are available to extract the HUIs from the quantitative data repository efficiently, many researchers have
used statistical analysis to identify critical information. The search process in HUI may require huge
computational tasks. In recent years, bio-inspired algorithms have been widely applied in various fields,
allowing the comparison of a new algorithm with it and demonstratingexcellent results.C-PSO is proposed
for the HUIM algorithm which is a new approach for finding the HUIs. C-PSO is a population-based
approach. The C-PSO-based mechanism is used for HUIM to retrieve the HUIs from the transactional
database. A C-PSO-based algorithm is considered for mining the HUIs. The test is conducted on
benchmark datasets to estimate the performance of the HUIM-C-PSO and HUIF-PSO-tree. The developed
approach reduces the exploration space, time consumption and more number of HUI’s are retrieved
efficiently. Results depict that the proposed approach efficiently identifies the complete HUIs from the
very condensing database and outperforms the existing algorithms. In the mere future, a novel algorithm
for PPDM is also needed to achieve the intent of hiding the confidential HUI’s so that the competitors not
able to spot the items from the adjusted data store.

REFERENCE
[1] Agrawal, R., &Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc.

20th int. conf. very large databases, VLDB (Vol. 1215, pp. 487-499).
[2] Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. IEEE

Transactions on Knowledge and data Engineering, 8(6), 866-883.
[3] Tharini, V. J., & Shivakumar, B. L. High-Utility Itemset Mining: Fundamentals, Properties, Techniques

and Research Scope. In Computational Intelligence and Data Sciences (pp. 195-210). CRC Press.
[4] Tharini, V. J. (2024). Cross-Entropy Assisted Optimization Technique for High Utility Itemset Mining

from the Transactional Database. Communications on Applied Nonlinear Analysis, 31(3s), 90-104.
[5] Jeevika Tharini, V., & Vijayarani, S. (2020). Bio-inspired High-Utility Item Framework based Particle

Swarm Optimization Tree Algorithms for Mining High Utility Itemset. In Advances in Computational
Intelligence and Informatics: Proceedings of ICACII 2019 (pp. 265-276). Springer Singapore.

[6] Jeevika Tharini, V., Ravi Kumar, B., Sahaya Suganya Princes, P., Sreekanth, K., Kumar, B. R., &Sengan,
S. (2024, January). Business Decision-Making Using Hybrid LSTM for Enhanced Operational

0

10000

20000

30000

40000

50000

60000

70000

H
U

I
-

B
P

S
O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-

B
P

S
O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

H
U

I
-

B
P

S
O

H
U

I
M

-
B

P
S

O
-

T
R

E
E

H
U

I
F

-
P

S
O

H
U

I
M

-
C

-
P

S
O

C H E S S M U S H R O O M R E T A I L

H
U

I
C

O
U

N
T

 I
N

 N
O

S

ALGORITHM AND DATASET

COMPARISON OF HUI COUNT

T-35 T-30 T-25 T-20 T-15

Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024 VOL. 33, NO. 2, 2024

 517 V. Jeevika Tharini et al 507-517

Efficiency. In International Conference on Multi-Strategy Learning Environment (pp. 155-166).
Singapore: Springer Nature Singapore.

[7] J. Han, J. Pei, Y. Yin, ―Mining frequent patterns without candidate generation‖, in Proceedings of the
ACM-SIGMOD Int'l Conf. on Management of Data, pp. 1-12.

[8] Lan, G. C., Hong, T. P., & Tseng, V. S. (2014). An efficient projection-based indexing approach for
mining high utility itemsets. Knowledge and information systems, 38(1), 85-107.

[9] Sivamathi, C., Vijayarani, S., & Jeevika Tharini, V. (2019). High on-shelf utility mining using an
improved HOUI-mine algorithm. In International Conference on Intelligent Data Communication
Technologies and Internet of Things (ICICI) 2018 (pp. 579-586). Springer International Publishing.

[10] Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95.
Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 39-
43). Ieee.

[11] Fournier-Viger, P., Zhang, Y., Lin, J. C. W., Fujita, H., &Koh, Y. S. (2019). Mining local and peak high
utility itemsets. Information Sciences, 481, 344-367.

[12] Liu, M., &Qu, J. (2012, October). Mining high utility itemsets without candidate generation.
In Proceedings of the 21st ACM international conference on Information and knowledge
management (pp. 55-64). ACM.

[13] Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., & Lee, Y. K. (2009). Efficient tree structures for high utility
pattern mining in incremental databases. IEEE Transactions on Knowledge and Data
Engineering, 21(12), 1708-1721.

[14] VikramGoyalSiddharthDawar Ashish Sureka, ―High Utility Rare Itemset Mining over Transaction
Databases‖, Databases in Networked Information Systems. DNIS 2015. Lecture Notes in Computer
Science, vol 8999. Springer.

[15] Peng, A. Y., Koh, Y. S., & Riddle, P. (2017, May). mHUIMiner: A fast high utility itemset mining
algorithm for sparse datasets. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (pp. 196-207). Springer, Cham.

[16] Kannimuthu, S., & Premalatha, K. (2014). Discovery of high utility itemsets using genetic algorithm
with ranked mutation. Applied Artificial Intelligence, 28(4), 337-359.

[17] Jeevika Tharini, V., & Vijayarani, S. (2019, December). Bio-inspired High-Utility Item Framework
based Particle Swarm Optimization Tree Algorithms for Mining High Utility Itemset. In International
Conference on Advances in Computational Intelligence and Informatics (pp. 265-276). Springer,
Singapore.

[18] Wu, J. M. T., Zhan, J., & Lin, J. C. W. (2017). An ACO-based approach to mine high-utility
itemsets. Knowledge-Based Systems, 116, 102-113.

[19] Lin, J. C. W., Yang, L., Fournier-Viger, P., Wu, J. M. T., Hong, T. P., Wang, L. S. L., & Zhan, J. (2016).
Mining high-utility itemsets based on particle swarm optimization. Engineering Applications of
Artificial Intelligence, 55, 320-330.

[20] Wu, J. M. T., Zhan, J., & Lin, J. C. W. (2017). An ACO-based approach to mine high-utility itemsets.
Knowledge-Based Systems, 116, 102-113.

[21] Dam, T. L., Li, K., Fournier-Viger, P., & Duong, Q. H. (2019). CLS-Miner: efficient and effective closed
high-utility itemset mining. Frontiers of Computer Science, 13(2), 357-381.

[22] Li, H. F., Huang, H. Y., Chen, Y. C., Liu, Y. J., & Lee, S. Y. (2008, December). Fast and memory efficient
mining of high utility itemsets in data streams. In 2008 eighth IEEE international conference on data
mining (pp. 881-886). IEEE.

