
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 5, 2024 
     VOL. 33, NO. 2, 20 

                                                                                 507                                                        V. Jeevika Tharini et al 507-517 

A Canonical Particle Swarm Optimization(C-PSO) Approach 
to Identify High Utility Itemset 

 

V. Jeevika Tharini1, B.L.Shivakumar2 

 

1Research Scholar, Sri Ramakrishna College of Arts & Science, Coimbatore,Email: jeevi153gv@gmail.com 
2Principal, Sri Ramakrishna College of Arts & Science, Coimbatore 

 

         Received: 17.04.2024             Revised : 13.05.2024                       Accepted: 08.05.2024 

 
 
ABSTRACT 
High Utility Itemset Mining (HUIM) is the advanced process of identifying highly profitable items by 
assessing the unit profit of each item within extensive transaction databases. Over recent years, HUIM has 
emerged as a crucial subject with broad applications. It facilitates the identification of profitable items 
based on factors such as profit and quantity, setting it apart from conventional algorithms. Numerous 
algorithms have been developed to mine High Utility Itemsets (HUIs), addressing the challenge of 
searching for these sets in databases containing many distinct items. HUIM incorporates optimization 
techniques to reduce complexities and discover optimal solutions. This research uses Canonical Particle 
Swarm Optimization (C-PSO) to identify high-profit items, effectively managing convergence 
properties.Canonical Particle Swarm Optimization (C-PSO) is motivated by the imperative to enhance the 
efficiency of HUIM. C-PSO aims to swiftly and accurately identify high-profit items within transaction 
databases by optimizing the search space. Its advantages lie in superior convergence properties, 
addressing challenges in navigating extensive item spaces, and its adaptability to diverse utility mining 
scenarios, making it a robust and superior choice compared to existing techniques. The experimental 
results, conducted on three benchmark datasets, illustrate that C-PSO outperforms existing state-of-the-
art techniques in the context of HUIM. 
 
Keywords: High Utility Item, fitness function, transaction weighted utility model, threshold value. 
 
1. INTRODUCTION 
Conventional mining algorithms like Association Rule Mining (ARM) and Frequent Item Mining (FIM) are 
mainly designed to compute the occurrence of individual items in the transactional databases,taking into 
account their confidence or minimum support values [1]. While these algorithms work well in identifying 
the most frequent itemsets, they are not very effective in finding dense itemsets, which yield high profits, 
although they may be rare. For instance, in a supermarket setting, the supermarket may sell sugar in large 
quantities daily, meaning frequent transactions, but the profit per unit is usually low. On the other hand, 
products such as cashew nuts may be sold with low frequency compared to biscuits, but their profit may 
be much higher [2]. This scenario shows how FIM and ARM have shortcomings in their little attention to 
the less frequently sold but highly profitable items. High Utility Itemset Mining (HUIM) techniques have 
been proposed to address these issues [3]. 
HUIM concentrates on mining itemsets with higher utility from the transaction databases. Utility mining 
considers the number of items and the profit per unit of each item to derive the utility of the itemset. In 
utility mining, the number of items appearing in a transaction is termed internal utility, and the profit of 
individual items is called external utility [4]. High Utility Itemsets (HUIs) are the itemsets which have 
utility greater than a specified minimum utility. This approach makes it possible to detect those items 
that, while occurring less frequently, produce a large proportion of the total profits. Utility mining can be 
applied to quantitative databases in which the transaction data contain the quantity of the items sold [5]. 
As a result of the development of HUIM, several algorithms and mechanisms have been developed to 
identify high-utility item sets. These algorithms are expected to overcome the shortcomings of this 
conventional mining process by targeting profitability rather than frequency. However, identifying 
profitable items has some drawbacks, like high time consumption and memory usage, the appearance of 
non-efficient candidate items, and the absence of required items at the stage of item creation. For such 
complexities, advanced optimization methods are needed [5]. 
Evolutionary computing, as a technique based on the principles of natural selection, is excellent for 
finding efficient optimal solutions [6]. Particle Swarm Optimization (PSO) is a bio-inspired optimization 
algorithm that belongs to the population-based optimization technique in which the solutions are 
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updated based on pbest and gbest values. In PSO, particles are potential solutions that move through the 
solution space and update their positions according to their own experience as well as the experience of 
the other neighbouring particles [7]. This method blends the exploration and exploitation strategies to 
find the best solutions. However, PSO has been able to solve continuously optimizing problems but has 
struggled in discrete-valued search spaces. 
Due to the limitations of the conventional algorithms in mining high-utility itemsets, researchers have 
developed several enhanced techniques. Such approaches frequently include components of evolutionary 
computing like PSO to improve the efficiency and effectiveness of the mining process [8]. For example, 
some studies integrate PSO with other optimization methods to deal with the discrete characteristics of 
utility mining issues. These techniques combine the best features of several methods to increase the 
efficiency and accuracy of the results [9]. 
The most prominent issue in the recent studies of HUIM is how to mine high utility itemsets since the 
utility values depend on users’ preferences and are dynamic. The utility rate of a given product depends 
on the user, meaning these factors must be incorporated into the mining process. Many algorithms have 
been developed to solve the identification problems of the most profitable items. Still, they all have 
different issues: they take more time and memory, generate repeated and unnecessary items, and may 
lose essential items. To overcome these limitations, new optimization techniques are needed. 
Optimization problems are significant in many application areas, such as data mining, to overcome the 
deficiencies of existing methods [10]. Therefore, by applying sophisticated optimization methods, 
researchers can enhance the performance and effectiveness of HUIM to find highly useful itemsets for 
profitability and importance. All these advancements not only increase the effectiveness of utility mining 
but also offer insights into the preferences and trends of the users, thus improving decision-making and 
strategic planning in different fields. 
Conventional mining algorithms such as ARM and FIM cannot discover the most profitable items, hence 
the need to develop HUIM approaches. Utility mining considers the number of items and their profit, 
which helps generate PSO. An example of an evolutionary computing technique provides optimal 
solutions to enhance the mining process; however, they have issues in discrete search spaces. In this 
regard, developing sophisticated optimization methods and combined algorithms is critical, opening up 
new opportunities for high-utility itemset mining with higher efficiency. 
The paper is organized as follows: Section 2 provides a review of the existing literature on utility mining. 
Section 3 outlines the architecture of the HUIM-based C-PSO and includes a running example. Section 4 
presents the results and compares the performance of various algorithms. Finally, Section 5 offers 
conclusions and future recommendations. 
 
2. RELATED WORKS 
Fournier-Viger, P., et al [11] studied the restrictions of HUIM by explaining the issues of identifying 
Local HUI’s (LHUI) and Peak HUI’s (PHUI), which typically creates time periods of itemset and higher 
utility. PHUI-Miner and LHUI-Miner were developed to retrieve profitable patterns. LHUI used the data 
structure titled as LU-list, and further implements the general search procedure of HUI-miner. PHUI is 
appropriate in market basket analysis and efficiently discovered the time periods with HUI’s in a 
prominent way. Non-redundant Peak HUI’s (NPHUIs) is employed to identify the reduced set of patterns. 
All the above mentioned proposed algorithms were used in discovering the beneficial patterns where it 
identifies greater utility pattern rather than the high utility pattern. 
Liu, M., et al [12] addressed the drawbacks of existing algorithms and designed an algorithm that incurs 
the features of list structure to store itemsets utility information and search space’s heuristic information 
that is related to pruning. List structure has reduced the computation of utility values and several 
recursive generations of an itemset. The utility list is generated from the retrieved data that had 
prominently mined the HUI’s. The main intent of HUI-Miner is to discover the HUI’s without losing any of 
the important patterns in the database. HUI-miner showed the best result by acquiring lesser utilization 
of memory and reduced run time. 
Ahmed, C. F., et al [13] proposed high utility pattern (HUP) mining, which computed the dissimilar profit 
values for every single item and the non-binary existence of items. Interactive as well as incremental data 
mining incorporates the previous structures of data and also lessens the redundant calculation whenever 
the threshold is changed or updated. HUP incorporated tree structures and achieved HUP mining. Each 
incidence of an item in the transaction is arranged in an item’s lexicographic order that is called as 
Incremental HUP Lexicographic Tree (IHUPL-Tree) and it doesn’t use any restructuring procedure to 
mine the incremental data. Based on the incidence of the items in a transaction, the items are arranged 
that are in decreasing order which is called an IHUP Transaction Frequency Tree (IHUPTF-Tree). 
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IHUPTWU-Tree is developed by incorporating the TWU model and the items were effectively mined with 
reduced time. 
VikramGoyal et al [14] designed an algorithm called UP-Rare Growth and it implemented the UP-Tree 
data structure that fetched the rare HUI’s from an operational database. UP-Rare Growth works on both 
the utility and incidence of itemsets together. The author has also suggested two more effective schemes 
to avoid the examination of inappropriate branches of the tree. Extensive experiments indicated that the 
developed algorithm outperforms the available algorithm in terms of generated candidate item count. 
Peng, A. Y., et al [15] proposed a mHUIMiner algorithm for the proficient identification of HUI’s. The 
main intent of HUIM is to forecast the items whose utilities are higher than or equivalent to a definite 
threshold value. The mHUIMiner integrated the structure of a tree to make the development process of 
itemset to neglect the unavailable itemset in the database. In mHUIMiner, complicated pruning schemes 
are not necessary that need costly computation overhead. In the sparse dataset, running time is 
comparatively reduced. 
Kannimuthu, S., et al [16] had shown a contribution in reclaiming the HUIs which faces major issues 
namely threshold assignment and search space. When the items count and generation of items is huge 
then the search space eventually increased. The analyst had stated the threshold values without having 
any idea about the dataset. Based on the dataset’s nature thresholds were generated automatically to 
avoid manual threshold assignment that is achieved using the GA. The auto-generation method showed 
better performance.To obtain HUI's effectively, HUIF-PSO (High Utility Itemset Framework based Particle 
Swarm Optimization) is improved utilizing the Frequent Pattern tree structure. Performance variables 
include the HUI's count, memory, and time utilization. The revised HUIF-PSO Tree method outperforms 
previous algorithms, according on the results of the experiments [17]. 
Song, W., et al [18] had shown recent advancements in bio-inspired computing and it had attracted 
attention that leads to the establishment of HUI mining algorithms. The HUI identification without any 
loss of HUI from the database is. It has maintained the optimal values of the population. Thus, the 
replication within populations was enhanced. It was developed using the GA, PSO and BAT algorithm. An 
extensive test report shows that the Bio-HUI framework outperforms the existing algorithm by 
comparing the performance factors efficiency, convergence speed, and result’s quality. 
Lin, J. C. W., et al [19] had conversed significant issues of HUIM. A heuristic HUPEumu-GRAM algorithm 
is proposed to reclaim HUIs based on GA. In PSO requirement of the parameter is less when compared to 
the GA-based approach. The discrete particles are encoded as the binary variables in the PSO. On the basis 
of the PSO algorithm, a new approach is formulated and it is called HUIM-BPSOsigwhich efficiently acquire 
the HUIs. The combinational problem is reduced by the size of a particle assigned based on the TWU 
model in the evolution process. The sigmoid function is employed for updating the particles in the HUIM-
BPSOsig algorithm.  
Wu, et al [10] depicted the foremost issue in data mining which is HUI mining and it is a contrast factor 
of FIM. Factors like capacity and the profit were utilized for the HUI retrieval process. In HUIM, the 
process of handling the HUI identification space is tedious for varied size and the item of various type. 
The author had designed an algorithm using the optimization strategy called ACO based method which 
was mined effectively with the items holding greater profit values. PSO and GA are also used for acquiring 
utility items and these algorithm results in huge computational time. To attain the results with limited 
computational time ACO is introduced. HUIM-ACS (Ant colony system) used pruning in two ways which 
effectively map the solution into the routing graph. HUI’s are reclaimed without any candidate edge from 
the initial stage of the process. HUIM-ACS outperforms other HUIM algorithms. 
Dam, et al [21] developed utility mining with the approach called average utility measure that was the 
utility of the item which was divided by the count of the occurring item. The average utility of an item had 
no downward closure property and the maximal utility is assigned as an upper bound value. The process 
of estimation was drawn into two phases. The estimation process was initiated with the summation of the 
highest utility value and proceeded to the estimation of actual utility value with the upper bound value. 
Average utility mining has used higher threshold values compared to other algorithms. 
Li, et al [22] designed one pass algorithms namely Mining HUI’s based on BIT vector (MHUI-BIT) and 
Mining HUI’s based on TIDlist (MHUI-TID). Data streams were a sequence of continuous data that arrived 
at a quick rate. Only few of the researchers have developed algorithms for data streams and hence, an 
efficient approach was needed for the retrieval of items from the streaming data. The lexicographical tree 
was used for representing the generation of candidate items. The test result showed the algorithm MHUI-
BIT and MHUI-TID have obtained efficient results than other existing algorithms data streams. 
The research gap identified in HUIM includes the following: the approach developed in HUIM does not 
consider frequency and utility in a balanced way; that is, it only finds high utility values (Fournier-Viger, 
P. et al. [11]); HUIM may have some computational issues (Liu, M. et al. [12]); HUIM has a problem in 
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dealing with incremental data (Ahmed Some of the other works focused on discovering closed itemsets or 
dynamic databases but were still not scalable for large datasets or real-time settings as subsequently 
optimized by VikramGoyal et al. [14] and Li et al. [22]. To address these gaps, the Canonical Particle 
Swarm Optimization (C-PSO) approach is proposed, which integrates the concepts of evolutionary 
computing with the latest heuristic methods to increase the speed, decrease the complexity, and increase 
the accuracy of HUI identification across multiple datasets, thereby providing a more equitable and 
inclusive solution for practical applications. 
 
3. Proposed Methodology: HUIM-C-PSO Algorithm 
In this approach, every particle is indicated by two kinds of vectors and it indicates position as well as 
velocity. 
 
3.1. Modelling HUIM using C-PSO 
Particle Swarm Optimization (PSO) is a bio-inspired method that can simply optimize real-world, non-
linear, and complex optimization issue. Typically, every fish or bird is stated as “particle” and their flock 
stated as “population of a particle”. Every particle transmits around the widespread area of search space 
in accordance with objective function (OF). Movement of every particle is based on the neighbor and 
personal experiences. The particles are initialized randomly based on the position of particle that is 
relevant to constraint of issue. Entire particle position is stated as initial swarm or population. After 
generating random velocities of every particle and relevant to objective function, objective value is 
investigated. During the process of velocity update, constriction factor is introduced to control the 
convergence of a particle. After introduction of constriction factor, the velocity is updated using equation 
(1). 
𝑣𝑙𝑖

𝑡+1 = 𝐶𝐹(𝑣𝑙𝑖
𝑡 + 𝑐1𝑅𝐴1

𝑡  𝑝𝑏𝑖
𝑡 − 𝑥𝑖

𝑡 + 𝑐2𝑅𝐴2
𝑡 (𝑔𝑏𝑖

𝑡 − 𝑥𝑖
𝑡)) 

𝐶𝐹 =
2𝑟

(|2 − 𝜑 −  (𝜑2 − 4𝜑)|)
 

where the cognitive factor is indicated as c1, the social factor is indicated as c2, r,𝑅𝐴1
𝑡  and 𝑅𝐴2

𝑡  indicates the 
random number ranges between 0 to 1, pb indicates personal best, gb indicates global best, the value of 
can be greater than 4, and the constriction factor is indicated as CF. The value of c1and c2 are assigned 
with 2.05, k is assigned with 1, and the CF is equivalent to 0.729. 
The population size PS, 1-HTWUIs count is Nct, and all the 1-HTWUIs are sorted with the assistance of 
lexicographic order across whole utility mining process. The velocity vector 𝑉𝑖(1 ≤ 𝑖 ≤ 𝑃𝑆) with elements 

Nct and every element 𝑉𝑖
𝑗
 is considered as probability relevant to the velocity of the jth1-HTWUIs to be 

utilized in the updating position, the position vector 𝑃𝑖(1 ≤ 𝑖 ≤ 𝑃𝑆) is considered as binary vector with 

elements Nct, and every element 𝑃𝑖
𝑗
 is either 0 or 1 that represent presence or absence of jth1-HTWUIs in 

Pi. 
A velocity vector alters with regard to the prior positions for these two vectors, and a position vector 
changes in response to the velocity vector that indicates a new prospective itemset. If the position vector 
of a jth vector is composes a one item in the jth place that is according to whole order and indicates 
potential HUI. Otherwise, this item is not used and couldn't be in a potential HUI. The jth bit of a position 
vector Pi is initialized by zero or one by utilizing a roulette wheel selection with probabilities is given in 
equation (2) 

𝑝 𝑝𝑖
𝑗
 =

𝑇𝑊𝑈 (𝑖𝑡𝑒𝑚𝑖)

 𝑇𝑊𝑈 (𝑖𝑡𝑒𝑚𝑘)
𝑁𝑐𝑡
𝑘=1

 

where Nct is the count of 1-HTWUIs. 
The fitness function is computed for each iteration of C-PSO to characterize the optimization problem. 
Let's say the itemset(IS) is indicated by a position vector, and the utility of IS is directly utilized as the 
fitness value in equation (3) 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑃𝑖 = 𝑢(𝐼𝑆) 
It is also necessary to redefine the estimation of every position where the two position vectors are Pm and 
Pn with the element count Nct. This is determined in equation (4) 
𝑑𝑃 = 𝑃𝑚 − 𝑃𝑛 = {𝑑𝑃𝑖 |1 ≤ 𝑖 ≤ 𝑁𝑐𝑡 } 
where 

𝑑𝑃𝑖 =  
1,   𝑖𝑓 𝑝𝑚

𝑖 = 1 𝑎𝑛𝑑 𝑝𝑛
𝑖 = 0

0,                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 
3.2. Illustrative Example 
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In a quantitative data store, 𝐼 =  𝑚1 , m2 , m3 , …… , mn  represents a set of n individual items, while 
𝑇 =   𝑡1, 𝑡2, 𝑡3 …………𝑡𝑛  denotes the transactions. Each transaction Tr is a subset of Iand has a unique 
identifier called TID. External utility values, shown in Table 2, represent the profit of each item, and 
internal utility values, shown in Table 1, indicate the quantity of purchased products. A minimal utility 
value is set based on user preferences. This study presents a running example with seven transactions 
and five items, D to H, as illustrated in Table 1. 
 

Table 1. Quantitative data store 
Tid Transaction 

Item 
Occurrence 

A1 {D,E,G} 1,4,1 
A2 {D,H} 5,2 
A3 {D,F,G} 3,4,6 
A4 {E,F,G,H} 1,2,1,5 
A5 {F.H} 5,1 
A6 {D,E,F,H} 1,2,5,1 
A7 {D,E,F,G,H} 1,2,5,3,1 

 
Table 2. Profit values 

Item D E F G H 
Profit 4 3 1 5 1 

 
Definition 1: The utility of an item mjin the transaction Tris signified as u(mj, Tr) and denoted as  

𝒖 𝒎𝒋, 𝑻𝒓 = 𝐫 𝒎𝒋, 𝑻𝒓 × 𝐩𝐫(𝒎𝒋) 

Example: Item D’s utility in A1transaction is calculated as follows, 
u(D, A1)=r(D,A1) ×pr(D) 
u(1,A1)=r(1×4)=4 
Definition 2: The utility of an item mj in the data store DB is signified as u(mj) and denoted as  

𝒖 𝒎𝒋 = 𝒖 𝒎𝒋, 𝑨𝒑 + ⋯ + 𝒖(𝒎𝒏, 𝑨𝒏) 

Example: Item D’s utility in entiretransaction is calculated as follows, 
u(D) = u(D, A1)+ u(D, A2)+ u(D, A3)+ u(D, A6)+ u(D, A7) = 4+20+12+4+4 =44 
Definition 3: The utility of an itemset L in the transaction Tris signified as u(L, Tr), and denoted as 

𝐮(𝐋, 𝐓𝐫)  =   𝐮(𝐦𝐣, 𝐓𝐫)

𝐦𝐣𝐋𝛎𝐋⊆𝐓𝐫

 

Example: Itemset DE’s utility in A1transaction is calculated as follows, 
u(DE, A1) = u(D,A1)+u(E,A1) = 4+12 =16 
Definition 4: The utility of an itemset L in the data storeDB is signified as u(L), and denoted as  

𝒖 𝑳 =   𝐮(𝐋, 𝑻𝒓)

𝐋⊆𝑻𝒓𝛎𝑻𝒓⊆𝐃𝐁

 

Example: Item DE’s utility in entiretransaction is calculated as follows, 
U(DE) = u(DE,A1)+ u(DE,A6)+ u(DE,A7) = 16+10+10 = 36 
Definition 5: The transaction utility of a transaction Tris signified as tu and denoted as  

𝒕𝒖 𝑻𝒓 =   𝐮(𝐋, 𝑻𝒓)

𝐋⊆𝑻𝒓

 

Example: The utility of whole transaction A1 is calculated as, 
tu(A1) = tu(D,A1)+tu(E,A1)+tu(G,A1) = 4+12+5 = 21 
Definition 6: The total transaction utility of a transaction Tris signified as tu and denoted as  

𝑻𝒖 =   𝐓𝐮(𝑻𝒓)

𝑻𝒓𝛜𝐃𝐁

 

Example: The utility of whole transaction from A1 to A7 is calculated as, 
Tu = 44+27+21+55+10 = 157 
To retrieve the HUIs and their relative utility from the temporal transaction database. The chief feature of 
HUIM-C-PSO from DB is to identify the set of HUI’s. 
In the designed HUIM-C-PSO algorithm, a traditional transaction weighted utility model is applied to 
figure out the HTWU. Based on the TWDC property of HTWUIs, the unsuitable items in the data store are 
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proficiently removed. Thus, identification of HUI’s estimation time is highly minimized. In the 
initialization, HTWUI’s are identified. From the observed value, the minimum threshold value is assigned.   
 

Table 3. Transaction Utility (TU) and Total Transaction Utility (TLTU) 
Transaction I-D I-E I-F I-G I-H TU 
A1 4 12 0 5 0 21 
A2 20 0 0 0 2 22 
A3 12 0 4 30 0 46 
A4 0 3 2 5 5 15 
A5 0 0 5 0 1 6 
A6 4 6 5 0 1 16 
A7 4 6 5 0 1 31 
TLTU 44 27 21 55 10 157 

 
Example: In the initialization phase TWU is calculated to evaluate the HTWUI’s. Each item has its own 
utility rate, which is summed together in each transaction to yield tu. With the help of tu, an item's upper 
limit value is calculated. The predicted minimum utility value is 157×0.5 = 78.5. Table 4 shows the value 
of the identified HTWUI. In the solution space of Li, DB, an initial population of particles is formed using 
this estimation of utility. 
HTWUI(D) = D(A1)+D(A2)+D(A3)+D(A6)+D(A7) 
       = 21+22+46+16+31 
HTWUI(D) = 136 
The populations of the particle are spread in the data store of DB focused on the identified of HTWUI's in 
accordance with the minimal threshold population. The tltu is used to compute the least threshold level, 
and 0.6 is assigned as a user-defined number. 
Minimum threshold value (β) = 157 × 0.6 

   = 94 
β = 94 
 

Table 4. HTWUI’s 
Item TWU HTWUI’s 

D 136 YES 
E 83 NO 

F 114 YES 
G 97 YES 

H 90 YES 

 
Table 4 lists High Transaction Weighted Utility Items (HTWUIs), showing items with their Transaction 
Weighted Utility (TWU) values and indicating whether they meet the HTWUI criteria based on a 
predefined threshold. For example, item D with a TWU of 136 is marked as HTWUI. 
 

Table 5. Particles Position 
Particle position D F G H 
P1 1 0 1 0 

P2 1 0 0 1 

P3 1 1 1 0 

P4 0 1 1 1 

P5 0 1 0 1 

P6  1 1 0 0 

P7 1 1 0 1 

 
Table 5 displays particle positions in the Particle Swarm Optimization (PSO) algorithm, representing 
potential solutions with specific item combinations. 
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Table 6. List of HUIs 
Particle 
position 

Item Fitness value 

P1 DG 51 

P2 DH 32 

P3 DFG 46 

P4 FG 41 

P6 DF 34 

 
Table 6 presents the final list of HUIs, showing the particle positions, the corresponding itemsets, and 
their fitness values. For example, the itemset DG has a fitness value of 51, indicating its high utility. Items 
having HUI are DG, DH, DFG, FG, and DF 
 
4. RESULT AND DISCUSSION 
This section illustrates the outcomes of the existing and proposed approach. The existing approaches 
namely HUIM-BPSO, HUIM-PSO, HUIM-GA are compared with  
 
4.1. Execution Setup and Dataset Description 
All the algorithms are instigated in Java and executed on a machine with a 3.20 GHz CPU. Comparison is 
performed for the proposed algorithm HUIM-C-PSO with the existing algorithms namely HUIM-BPSO, 
HUIM-BPSO-TREE, and HUIF-PSO for HUI mining.All the time, memory and high utility item 
measurements are carried with the Java API. Illustration of the algorithm is carried with three benchmark 
datasets having diverse characteristics. Candidates Count, Memory Usage and Execution Time for existing 
and proposed algorithm are observed against various threshold values. Table 7 shows the description of 
the dataset. 

 
Table 7. Description of DATASET 

Dataset Name Instances Attributes 
Chess  28,056 6 
Mushroom 8,124 22 
Retail 88,162 10 

 
4.2. Performance Evaluation 
In this research work, HUI item count, memory usage and execution time are considered as performance 
factors. The execution time is measured in milliseconds (ms), memory usage in megabytes (MB) and 
candidate count in numbers (nos). 
 
Comparison of Time Consumption 
This section explains the time consumed in generating the candidate itemset and searching for profitable 
itemsets from the generated candidate itemset. The test compares three datasets’ runtime with three 
chosen existing algorithms. The above results show that the proposed HUIM-C-PSO algorithm has yielded 
better outcomes than HUIM-BPSO, HUIM-BPSO-TREE [19] and HUIF-PSO algorithm [17]. The HUIM-C-
PSO algorithm effectively reduces the combinational issue in the evolution procedure since it generates 
effective combinations of items from the dataset. The time taken to perform the existing and proposed 
approach is shown in Table 8 and Figure 1. 
 

Table 8. Comparison of runtime 

Dataset Algorithm T-35 T-30 T-25 T-20 T-15 

Chess  HUI-BPSO 417823 408284 392331 388123 371231 

 
HUIM-BPSO-TREE 326404 345899 349708 350080 351938 

 
HUIF-PSO 160484 169115 198401 201208 218491 

 
HUIM-C-PSO 184611 193574 198472 201785 207891 

Mushroom HUI-BPSO 457896 459567 534897 598715 764582 

 
HUIM-BPSO-TREE 39389 82942 86657 89704 103105 

 
HUIF-PSO 43481 34202 35987 36987 37876 
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 HUIM-C-PSO 37001 37142 39547 41027 43120 

Retail HUI-BPSO 456142 497861 519677 567841 597271 

 
HUIM-BPSO-TREE 40928 41872 42983 43217 48264 

 
HUIF-PSO 35762 39827 40621 41982 42981 

 HUIM-C-PSO 357162 372871 393876 403872 411098 

 

 
Figure 1. Comparison of runtime 

 
Figure 1 shows that the proposed HUIM-C-PSO has minimal runtime than the HUIM-BPSO, HUIM-BPSO-
TREE, and HUIF-PSO algorithms. 
 
Comparison of Memory Usage 
This section compares the memory space used to store the generated candidate itemset and the other 
processed information. The experimental evaluation of the HUIM-C-PSO, HUIM-BPSO, HUIM-BPSO-TREE, 
and HUIF-PSO algorithms with three benchmark datasets with several threshold values are indicated in 
Table 9 and Figure 2. 
 

Table 9. Comparison of memory usage 

Dataset Algorithm T-35 T-30 T-25 T-20 T-15 

Chess  HUI-BPSO 76.08 72.69 69.56 65.34 61.34 

 
HUIM-BPSO-TREE 77.39 74.96 62.9 62.11 51.93 

 
HUIF-PSO 35 36.77 39.82 50.67 52.49 

 HUIM-C-PSO 34 34.15 33.01 32.54 32.14 

Mushroom HUI-BPSO 38.65 42.89 45.88 48.69 52.36 

 
HUIM-BPSO-TREE 10.56 10.63 11.61 11.71 12.26 

 
HUIF-PSO 13.06 20.04 21.99 18.57 20.41 

 
HUIM-C-PSO 12.06 12.94 14.23 15.06 15.98 

Retail HUI-BPSO 41.82 45.76 47.65 49.76 51.76 

 
HUIM-BPSO-TREE 30.32 31.78 36.19 38.95 42 

 
HUIF-PSO 31.43 32.76 33.45 34.87 36.56 

 HUIM-C-PSO 30.56 31.12 33.04 34.01 36.01 
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Figure 2. Comparison of memory usage 

 
From the observation of Figure 2, it is found that the HUIM-C-PSO approach has given better results in 
terms of memory consumption that is minimal memory usage than the HUIM-BPSO, HUIM-BPSO-TREE, 
and HUIF-PSO algorithms. 
 
Number of HUIs 
The count of HUIs generated from the algorithms HUIM-C-PSO, HUIM-BPSO, HUIM-BPSO-TREE, and 
HUIF-PSO algorithms are discussed in this section. The TWU model is incorporated in the HUIM-C-PSO to 
determine the actual HUIs from the data store.   
 

Table 10. Comparison of Count of HUIs 

Dataset Algorithm T-35 T-30 T-25 T-20 T-15 

Chess HUI-BPSO 38821 31919 39798 40293 40928 

 
HUIM-BPSO-TREE 35998 35982 35270 33839 34862 

 
HUIF-PSO 33357 33419 33404 33753 33932 

 
HUIM-C-PSO 33876 32991 32198 32981 33914 

Mushroom HUI-BPSO 26548 26881 26938 27588 27823 

 
HUIM-BPSO-TREE 26088 39681 40146 48862 58941 

 
HUIF-PSO 25316 35986 36863 37388 49623 

 
HUIM-C-PSO 26316 35286 37863 38388 50623 

Retail HUI-BPSO 45098 45762 46761 47987 48768 

 
HUIM-BPSO-TREE 37675 38726 39871 41089 41872 

 
HUIF-PSO 38765 39796 40728 40981 41098 

 
HUIM-C-PSO 32876 35671 37987 39876 42892 
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Figure 3. Comparison of Count of HUIs 

 
Figure 3 shows that the HUIM-C-PSO algorithm produces almost similar count of the HUIs in the existing 
algorithms with minimal time consumption and memory usage. 
 
5. CONCLUSION 
HUIM has become a significant research area that can reveal very lucrative products. As many algorithms 
are available to extract the HUIs from the quantitative data repository efficiently, many researchers have 
used statistical analysis to identify critical information. The search process in HUI may require huge 
computational tasks. In recent years, bio-inspired algorithms have been widely applied in various fields, 
allowing the comparison of a new algorithm with it and demonstratingexcellent results.C-PSO is proposed 
for the HUIM algorithm which is a new approach for finding the HUIs. C-PSO is a population-based 
approach. The C-PSO-based mechanism is used for HUIM to retrieve the HUIs from the transactional 
database. A C-PSO-based algorithm is considered for mining the HUIs. The test is conducted on 
benchmark datasets to estimate the performance of the HUIM-C-PSO and HUIF-PSO-tree. The developed 
approach reduces the exploration space, time consumption and more number of HUI’s are retrieved 
efficiently. Results depict that the proposed approach efficiently identifies the complete HUIs from the 
very condensing database and outperforms the existing algorithms. In the mere future, a novel algorithm 
for PPDM is also needed to achieve the intent of hiding the confidential HUI’s so that the competitors not 
able to spot the items from the adjusted data store. 
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