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ABSTRACT 
Formal Concept Analysis (FCA) is an applied branch of Lattice theory, widely used in computer science, 
which derives implicit relationships between objects described through a set of attributes on one hand 
and these attributes on the other. Any finite lattice can be represented by a formal concept, which can be 
obtained from the formal context of ob- jects and attributes. Let T be a (0, 1) sublattice of a lattice L1.  In 
this paper, a concept lattice CST(L1) is constructed by the  substitution- sum in the formal context, where 

T is a formal context of a (0, 1) sublattice of the lattice L1. The structural properties of the concept lattice 
are studied and a characterization for the meet and join irreducible elements of CST(L1) is given. Further, 
some congruence relations are defined on the lattice CST(L1). 

T T 
X 𝐿 
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1. INTRODUCTION 
Formal concept Analysis (FCA) is a technique mainly adopted for data analysis. It derives latent 
connections between objects categorized through a set of attributes on one hand and these attributes on 
the other hand. It is an important mathematical application of computer science that is highly used in 
knowledge representation, knowledge acquisition, linguistics and data visualization [1], [2], [3]. It helps 
in processing a wide class of data types by providing a framework in which various techniques of data 
analysis can be formulated. Central to formal concept analysis is the notion of the formal context.  Every  
formal context  K is isomorphic to (J(L1), M(L1), I) and every formal context generates a unique Direct 
Product of Lattices concept lattice [4]. The substitution sum  and substitution  product were introduced 
by Luksch and Wille for the concept analytic evaluation of pair comparison tests [4] and further described 
in detail by Stephan [5], [6]. Wille and Ganter further, compiled all these various types of formal contexts 
and have characterized the corresponding concept lattices, one of them being the substitution sum in 
which a context of any lattice is placed in an empty cell of another context where there is no object 
attribute relation [4] 

L L 
L X 

The lattice CS(L1) of convex sublattices of a lattice L1, w a s first introduced and studied by Koh.L [7], [8]. 
Further, a new partial order was defined by S. Lavanya et. al [9] with respect to which CS(L1) forms a 
lattice. Using the concept of substitution sums 

L L 
L ∅ 

lattices CS(L ) and TS(L ) respectively have been constructed and a characterization for their irreducible 
elements is provided [10]. Accordingly, a concept lattice CST(L1) has been constructed using substitution 
sum 

T T 
X 𝐿 

And the structural properties of the lattice are studied. Furthermore, we have observed that the 
construction of the concept lattices TS(L1) and CST(L1) is similar to the interval doubling construction in 
lattices introduced by Alan Day in order to prove the Whitman’s structure theorem in a simpler way, 
further characterized the class of CN of all of all lattices obtained by doublings using convex sets [11]. 
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Another characterizations for the class CN was given by Geyer in terms of concept lattices [12]. Also a 
congruence relation on the convex sublattice of a lattice corresponding to the congruence relation on a 
lattice is defined and studied by S Parameshwara Bhatta and Ramananda HS [13]. Further, the notion of 
strong congruence relations has been defined by Ramananda HS on Atomistic lattices [14]. Accordingly, 
some congruence relations are studied on the concept lattice CST(L1) introduced in this paper. 
The paper proceeds as follows: The reader is introduced to the notations and the definitions used in this 
paper. Section 3 studies the structural properties of the lattice CST(L1) obtained by the substitution sum. 
In section 4, noting the fact that every formal context K is isomorphic to (J(L1), M(L1), I), where the join 
irreducible elements J(L1) represent the objects and the meet ir- reducible elements M(L1) represent the 
attributes, the join and the meet irreducible elements of the lattice CST(L1) are characterized and thereby 
the concept lattice CST(L1) is constructed by the substitution sum. Further, some congruence relations on 
CST(L1) are studied in section 5. 
 
2. Notations and Definitions 
We provide some insights into the notions of formal concept analysis. There a dermay refer to Formal 
Concept Analysis [4] for basic concepts. The formal context K0:=(G0,M0,I0) is the incidence relation I0 
between the object set G0 and the attribute set M0.g0I0m0 or (g0,m0) ∈ I0 denotes that the object g0 ∈ G0 
has an attribute m0 ∈ M0. 
A Formal Concept is a pair (C,D) with C ⊆G0 ,D⊆M0 with C′=D and D′=C where C′ denotes those 
attributes in M o  to the objects in Cand D′ denotes those objects in Gocommon to the attributes in D. 
Let K1:=(G1,M1,I1)and K2:=(G2,M2,I2) be the formal 
contexts such that (g1,m1)∈/I1 in K1. Suppose that G2/=∅=/   M2 and G1\g1∩G2=∅=(M1\m)∩M2. 
The Substitution Sum of K1with K2 on (g1,m1) is defined to be the Context K1(g1,m1)K2:=(G0,M0,I0) with 
G0=(G1\g1)∪G2), 
M0=(M1\m1)∪M2, and 

I0= h1, n1 ∈  I1 , h1 ≠ g1 , n1 ≠ m1 ∪ G2 × g1
 I1 

∪ m1
 I1 

× M2 ∪ I2  
(see [14]). 
LetTandL1betwolattices.ThenthedirectproductT ×L1 
in which the binary operation ∨ and ∧on L1 are such that for any (a1,b1) and (a2,b2)inL1,(a1,b1)∨(a2,b2) 
= (a1∨a2,b1∨b2)and (a1,b1) ∧(a2,b2) = (a1∧a2,b1∧b2). 
Throughout this paper, T is a (0,1) sublattice of L1, where L1 denotes a finite lattice, the maximum 
element of L1 is represented as1 and its minimum element is represented as 0. By(0,1) sub lattice T of L1, 
we mean that the minimum and maximum elements of T coincide with those of L1.For elements m, j of L1, 
m is covered by j   denoted by m≺j. An element x of a lattice L1 is said to be meet-irreducible if there 
exists a unique element x+∈L1 such that x≺x+. These to fall meet- irreducible elements of a latticeL1 is 
denoted by M(L1). An element is said to be join-irreducible in L1 if there exists a unique element y− ∈ L1 

such that y−≺y. These to fall join-irreducible elements is denoted by J(L1). For notations and more 
details, there a dermay refer[15]. 
Let α be a congruence relation on a lattice L1. Then L1/α represents the Quotient Lattice of L1 modulo α 
and for x∈L1, 
x/α represents the congruence class containing x[16]. 
 
3. Formal context for CST(L1) 
In this section, we shall introduce some results that provide the structural properties of the lattice 
CST(L1) obtained by the substitution sum  

T T 
X L 

Lemma 3.1. Let T be a(0,1) sublattice of L1.Then CST(L1)= 

{(a,b): a ∈ T, b ∈ L1 with a≤ b} is a cover preserving sublattice of T × L1. 
Proof. Let (a,b),(x,y)∈T×L1. Then (a,b)≤(x,y) if and only if a≤x and b≤y. Let (a,b), (x,y) ∈ CST(L1). Then 
(a,b)∧(x,y)= (a ∧x,b ∧y) = (a,b) ∈CST(L1). 

Also(a,b)∨(x,y)= (a∨x,b∨y)=(x,y)∈CST(L1). This establishes that the meet and  join operations preserve the 
cover structure within CST(L1). 

To prove CST(L1) is a cover preserving sublattice of T×L1;it suffices to prove that I f(a,b)≺ b≺y or a≺x 

and b=y in L1. 
(x,y), then a=x in T and Let (a,b)≺(x,y).Suppose that a=x in T and b<x<y for CST(L1) 

some c ∈ L1. This leads to the inequality (a,b)<(a,c)<(x,y)in CST(L1), a contradiction to the initial 
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assumption. 
Now, consider a/=x in T. Let a<c<x in T and b=y in L1, then (a,b)<(c,b)<(x,y) in CST(L1), a contradiction. 

Hence a≺x. If b/=y in L1, then b<y. But then,T (a,b)<(a,y)<(x,y)in CST(L1),again a contradiction. This 
affirms that CST(L1) is a cover-preserving sublattice of T × L1 .  
Theorem3.2. Let a,b ∈ T and x ∈ L1 such that  0≺a≺b≺x≺1 in L1, then the following relations hold in 
CST(L1). 

(i) (0,1)≺(a,1)≺(b,1)≺(1,1). 

(ii) (0,0)≺(0,a)≺(0,b)≺(0,x)≺(0,1). 

(iii) (0,a)≺(a,a)≺(a,b)≺(a,x)≺(a,1). 

(iv) (0,b)≺(a,b)≺(b,b)≺(b,x)≺(b,1). 

(v) (a,a)II(0,b),(a,x)II(b,b),(a,1)II(b,x). 
These relations highlight the order structure within CST(L1) corresponding to the given conditions on 
a, b and x. 
Proof. By the definition of CST(L1), we have CST(L1) is a cover preserving sublattice of T×L1. Morover, the 

argument presented in Lemma 3.1, establish the validity of the relations (i),(ii),(iii),(iv ). 
By the definition of CST(L1), the relation (a,x)<(b,b) is not possible, since x≮b in L1.Similarly, (b,b) 
<(a,x) is not possible since b ≮a. Consequently, (a,x) II (b,b). Analogously, employing the same 
argument we have, (a,a)II (0,b)and(a,1)II(b,x),thus proving(v).  
 
4. Formal context for CST(L1) 
It is emphasized to note that any concept lattice can be constructed by its formal context having join 
irreducible elements as objects and meet irreducible elements as attributes. Hence, we characterize the 
irreducible elements of CST(L1) and explore the interrelations between them. These relations characterize 
the  formal context which help to construct the lattice CST(L1). 

Theorem 4.1. (i) Let a ∈ M(T), then (a,1) ∈ M(CST(L1)). 
(ii) Let a ∈ T where a=max {ai ∈ T:ai<x} and x ∈ M(L1) then (a,x) ∈ M(CST(L1)). 

(iii) Let a ∈ J(T). Then {a} ∈ J(CST(L1)). 

(iv) If x ∈ J(L1), then (0,x) ∈ J(CST(L1)). 

Conversely, let A ∈ M(CST(L1)). Then one of the following holds: 

(a) A=(a,1) for some a ∈ M(T). 
(b) A=(a,x) for some a=max {ai ∈ T:ai<x in L1} and x ∈ M(L1). 
(c) A=(0,x) for some x ∈ M(L1) and x ∈/ T. Furthermore, If A ∈ J(CST(L1)), then one of the following 

holds: 
(d) A=(a,a) for some a ∈ J(T). 
(e) A=(0,a) for some a ∈ J(L1). 
Proof. Let a ∈ M(T). Then a≺a+ uniquely .Correspondingly in T 
CST(L1),(a,1)≺(a+,1). The uniqueness of this covering is evident, as there is no element x ∈ L1 such 

that (a,1)≺(a,x) in CST(L1). Furthermore, if (a,1)≺(a++,1) in CST(L1), then a≺a++,  which is a 

contradiction. 
Let a ∈ T and a=max {ai ∈ T: ai<x}. In this case, there is no element a +∈ T such that a<a+. Moreover, 
when x ∈ M(L) implies a unique covering relationx≺x∗

. 
Consequently, (a,x) is covered uniquely by (a,x∗) in CST(L1). 

Let a ∈ J(T).Then a−≺a uniquely. Then (a−,a)≺ (a,a). 
T Suppose ,there exists (x,a)≺ CST(L1) 

CST(L1) (a,a). Then we have,(a−,a)IIx,a). This implies that a−II x and x≺a in T. This is a contradiction since 

a ∈ J(T). 
Let x ∈ J(L), which implies x−≺x. Then (0,x−)≺ L1 CST(L1) (0,x). 

This covering is unique since there is no a ∈ T such that (a,x)≺ CST(L1)(0,x). Therefore, (0,x) ∈ J(L1). 

Conversely, 
(a) Let A=(a,1) ∈ M(CST(L1)) implies there exists unique (b,1)∈ CST(L1) such that (a,1)≺ (b,1). From 
lemma 3.2, we have a ≺b in T. Suppose that a ≺c in T with c /=b.Then, correspondingly we have 
(a,1)≺(c,1) in CST(L1). We observe that (b,1)II (c,1) in CST(L1), for if (b,1)<(c,1), then we must have 
b<c, not possible since a≺b and a<b. Further, if (c,1)<(a,1), then this implies c< b, contradiction since 
a≺b and a≺b uniquely in T. Thus, a ∈ M(T). 
(b) Let A=(a,x) ∈ M(CST(L1)). 
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To prove that a=max {ai ∈ T:ai < x in L1}and x ∈ M(L1). 
Suppose not, we assume two cases. 
Case (1): Assuming a /= max {a i∈ T: a i< x in L1} and x ∈ M(L1). Then there exists b∈ T such that a < b 
< x < y ≤ 1 in L1 where y ∈ L1−T .By lemma 3.2, correspondingly in CST(L1), we have (a,a) < (a,b) < 

(a,x) < (a,y) and (a,b) <(b,b) <(b,x) <(b,y).We realize that 
(a,x) < (b,x) and (a,x) <(a,y) and therefore (b,x) II (a,y) which is a contradiction to our assumption 
that (a,x) ∈ M(CST(L1)). 
Case(2):We now assume that a = max {ai ∈ T : ai< x in L1}and x∈ /M(L1).Then there exists x+ and 
x++ in L1 such that x ≺x+ and x ≺x++ in L1.By lemma 3.2, correspondingly for the first case (a,x) < 
(a,x+) and in the second 
case(a,x) <(a,x++) in CST(L1).This is not possible as (a, x) ∈ M(CST(L1)). 

(c) Let(0,x)∈M(CST(L1)).Then (0,x) has a unique upper bound in (0,x+) in CST(L1). Correspondingly, 

x ≺x+ uniquely in L1. Suppose x ∈ T and x ∈ M(L1), then (0,x)≺ (0,x+) in CST(L1). Further, (0,x) ≺(x,x) 

and hence (0,x+) II(x,x).This is a contradiction since (0,x) ∈ M(CST(L1)). Therefore, x ∈/ T. 
(d) Let (a,a)∈J(CST(L)). Then there exists (a−,a)≺(a,a)− 
uniquely in CST(L) and therefore ,a≺ainT. 
Suppose a ∈/ J(T). There exists c ∈ T with c/=a−such that c≺a in T. This gives rise to (c,a) ≺ (a,a) in 
CST(L1); a contradiction to our assumption that (a, a) ∈ M(CST(L1)). 

(e) Let (0,a) ∈ J(CST(L)). Then, there exists a unique(0,a−)∈ CST(L) such that (0,a-)≺ (0,a). Then 
clearly a- ≺a ,this covering must be unique in L1. 
Remark 4.2. (a,a) ∈ M(CST(L1)) If and only if a ∈ M(T)∩M(L1). 

Remark 4.3. If x ∈ J(L1) and x ∈/J(T). Then for any a ∈T,(a,x) will not remain as a join irreducible in 
CST(L1), unless x = 0. 
The  theorem 4.5 characterizes the formal context of the lattice CST(L1). 

Proposition 4.4([4]). For any finite lattice L1 there is, up to iso-morphism, a unique reduced 

context K(L1) with L1
∼=B(K(L1)), that is K(L1) := (J((L1),M(L1),≤) 

Theorem 4.5. Let L1 be a lattice. Define: 
(i) G1={A ∈ CST(L1):A=(a,a) for some a ∈ J(T)}. 

(ii) G2= {A ∈ CST(L1): A=(0,a) for some a ∈ J(L1)}. 

(iii) M1= {A ∈ CST(L1): A=(m,1) for some m ∈ M(T)}. 

(iv) M2={N1 ∪ N2 ∪ N3}  where 
N1 ={A∈CST(L1):A=(a,x) for some a=(a,x) for some a=max{ai∈T:ai<x;x∈M(L1)}}. 
N2 = {A=(a,a) for some a ∈ M(L1)} 
N3 = {A=(0,x) for some x ∈ M(L1)}} 
Define a context K (CST(L1)) = (G1∪G2,M1∪M2,I1∪I2∪I3∪I4∪I5∪I6) as follows: for (g,g) ∈ G1, (0,g) ∈ G2, (m,1) 
∈ M1, (m,m) ∈ M2,(m,v) ∈M2,(0,m) ∈M2, 
(1) (g,g) I1(m,1)if g≤minT. 
(2) (g,g) I2(m,m)if g ≤minL1. 
(3) (g,g) I3(m,v)if g≤vinL1andv∈M(L1). 
(4) (0,g) I4(m,1)for all g and m ∈ L1. 
(5) (0,g) I5(m,m)if a≤g in L1. 
(6) (0,g) I6(c,v)if g≤v in L1. 
Then, K (CST(L1 )is the formal context of CST(L1). 

Proof. From the theorem 4.1, it is clear that J(CST(L1))=G1∪G2 and M(CST(L1))=M1∪M2. We note 
that (i), (ii), (iii), (iv)defines the object-attribute relations in the formal context of CST(L1) are 

defined by the (1), (2), (3), (4), (5), (6) respectively using the lemma 
3.2. From Proposition 4.4 K(CST(L1)) is the formal context of CST(L1).  

Hence, given any two lattices T and L1, such that T is a (0,1) 
 
 
 
sublattice of L1, the substitution sum K (CST(L1))=CST(L1). 

 
 
 

T T 

X L1 
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Table 1.Formal Context of T 
  1  2  3 

 a   X  X 

 b  X  X  

 c  X   

 
Table 2.Formal Context of L1 

 1 2 3 

a  X X 

b X  X 

c X X  

 
 

 
Figure 1. Lattice T Figure 2. Lattice L1 

 
Table 3. Context of CST(L1)        

  1  2  3  1⊥  2⊥  3⊥ 

 a   X  X   X  X 
 b  X  X   X  X  
 c  X    X   

 a⊥  X  X  X   X  X 

 b⊥  X  X  X  X  X  

 c⊥  X  X  X  X   X 

 

 
Figure 3.  Lattice CST(L1) 
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5. Congruence relations on CST(L1) 
In this section we study some congruence relations on CST(L1). 
 
Theorem 5.1 
Let α be a congruence relation on CST(L1) defined by (0, 0) ≡ (0, 1)α and β be another congruence relation 
on CST(L1) defined by (0, 1) ≡ (1, 1)β. 
Then CST(L1)/α =∼  T and CST(L1)/β  ∼=  L1. 
Proof. Let f : CST(L1)/α −→ T be defined by [(a, 1)]α → a where 
a ∈T. 
Let g : CST(L1)/β −→ L1 be defined by [(0, x)]β → x where x ∈ L1. Under the congruence relation (0, 0) ≡ (0, 
1)α, (a, b) ∈ [(a, 1)]α and (a, b) ∈ CST(L1) ∀ a ∈ T. Therefore f is well defined. 
Similarly under the congruence relation, (0, 1) ≡ (1, 1)β, only (a, b) ∈ [(0, x)]β, ∀x ∈ L1. Therefore, g is 
well defined. Let f ([(a, 1)]α) = g([(b, 1)]β). Then, a = b in T. Note that we have (0, 1) < (a, 1) in CST(L1) ∀ a 
∈ T. Under the congruence relation, (0, 0) ≡ (0, 1)α, we have for all (a, 1) ∈ CST(L1), (0, 0) ∨(a, 1) ≡ 
(0, 1) ∨(a, 1)α, 
⇒(a, 1) ≡ (a, 1)α ⇒ (a, 1) ∈ [(a, 1)]α, a ∈ T. 
Similarly (b, 1) ∈ [(b, 1)]α, b ∈ T. Since a = b in T, we have (a, 1) = (b, 1) in CST(L1). We have [(a, 1]α = [(b, 
1)]α. 
Therefore, f is injective. Similarly g is injective. 
Let a ∈ T. we have (a, 1) ∈ CST(L1) and (a, 1) ∈ [(a, 1)]α. Clearly, 
f([(a, 1)]α) = a. Therefore, f is surjective. 
Let [(a, 1)]α ≤ [(b, 1)]α. Then, (a, 1) ≤ (b, 1) in CST(L1). Therefore, a ≤ b in T, thus, proving f is order 
preserving. Similarly, g is order preserving. 
Let a ≤ b in T. Then, (a, 1) ≤ (b, 1) in CST(L1). Under the congruence relation (0, 0) ≡ (0, 1)α, (a, 1) ∈ [(a, 
1)]α and (b, 1) ∈ 
[(b, 1)]α. Therefore,[(a, 1)]α ≤ [(b, 1)]α, thus proving f −1 is order preserving. Similarly, g−1 is order 
preserving. 
 
Theorem 5.2 
Let Θ be the congruence relation on T.  Define a congruence relation ψΘ on CST(L1) as follows: (a, a) ≡ (b, 
b)(ψΘ) 
if  and  only  if  a ≡ b(Θ).  Then  CST/Θ(L1/Θ) =∼  CST(L1)/ψΘ. 
Proof. Define a function f : CST/Θ(L1/Θ) −→ CST(L1)/ψΘ given by f([a]Θ, [b]Θ) = (a, b)ψΘ. f is well defined. 
Let [(a1, b1)]ψΘ = [(a2, b2)]ψΘ in CST(L1)/ψΘ. 
We have (a2, a2) ≤ (a2, b2) ≤(b2, b2) in CST(L1). 
a1 ≡ b1(Θ) and a2 ≡ b2(Θ) in L1 
implies [a1]Θ = [b1]Θ and [a2]Θ = [b2]Θ. Further, [(a1, b1)]ψΘ = [(a2, b2)]ψΘ implies (a1, b1) ≡ (a2, b2)ψΘ 
⇒ a1 ≡ a2(Θ) and b1 ≡ b2(Θ) 
⇒ [a1]Θ = [a2]Θ and [b1]Θ = [b2]Θ. 
([a1]Θ, [b1]Θ) = (([a2]Θ, [b2]Θ) in CST(L1)/Θ). 
Therefore f is injective. 
Let [(a, b)]ψ(Θ). We prove that ([x]Θ, [y]Θ) ∈ CST/Θ(L1/Θ) 
such that f(([x]Θ, [y]Θ)) ∈ [(a, b)]Θ. 
Let (x, y) ∈ CST(L1) such that (x, y) ≡ (a, b)ψ(Θ). 
Then [(x, y)]ψΘ = [(a, b)ψΘ. 
Also, x ≡ a(Θ) and y ≡ b(Θ). ⇒ [x]Θ = [a]Θ and [y]Θ = [b]Θ. 
f {([x]Θ), [y]Θ)} = [(a, b)]ψΘ. Therefore f is surjective. 
Let ([a1]Θ, [b1]Θ) ≤ ([a2]Θ, [b2]Θ) in CST/Θ(L1/Θ). 
We have [a1]Θ ≤[a2]Θ and [b1]Θ ≤[b2]Θ. 
Let (a1, x) ∈ CST(L1)/ψΘ such that f {([a1]Θ, [b1]Θ)} = [(a1, x)]ψΘ 
where x ∈ [b1]Θ and f{([a2]Θ, [b2]Θ)} = [(a2, y)]ψΘ where y ∈[b2]Θ. 
Since [a1]Θ ≤[a2]Θ and [b1]Θ ≤[b2]Θ, we have for every a1 ∈[a1]Θ, 
∃ s ∈ [a2]Θ such that a1 ≤ s and for every x ∈ [b1]Θ, ∃ t ∈ [b2]Θ such that x ≤ t. Therefore, (a1, x)ψΘ ≤ (s, 
t)ψΘ. 
Similarly, (a2, y)ψΘ ≤ (a2, t)ψΘ. 
Note that [(a1, x)]ψΘ = [(a1, b1)]ψΘ and [(s, t)]ψΘ = [(a2, b2)]ψΘ). Therefore, [(a1, b1)]ψΘ ≤ [(a2, b2)]ψΘ. 
Hence f is order preserving. 
Let [(a1, b1)]ψΘ ≤[(a2, b2)]ψΘ in CST(L1)/ψΘ. 
Now, (a1, b1) ≤ (a2, b2) in CST(L1). Also, (a1, b1) ≡ (a, b)ψΘ and (a2, b2) ≡ (a, b)ψΘ. 
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Then a1 ≡ a(Θ) in T and b1 ≡ b(Θ) in L1. Also a2 ≡ a(Θ) in T and 
b2 ≡ b(Θ) in L1. This implies [a1]Θ = [a]Θ = [a2]Θ and 
[b1]Θ = [b]Θ = [b2]Θ implies ([a1]Θ, [b1]Θ) = ([a]Θ, [b]Θ) = ([a2]Θ, [b2]Θ). 
Therefore, ([a1]Θ, [b1]Θ) ≤ ([a2]Θ, [b2]Θ) in CST/Θ(L1/Θ), thus proving that, f −1 is order preserving. 
□ 
 
Theorem 5.3.  
Let Θ be a congruence relation on L1, such that 
Θ is trivial on T. Define a  congruence relation  ψΘ  on  CST(L1) as follows: a ≡ b Θ if and only if (0, a) ≡ (0, 
b) ψΘ.  Then CST(L1)/Θ)  ∼=  CST(L1)/ψΘ. 
The proof of this theorem runs similarly as theorem 5.2. 
 
CONCLUSION 
This paper paves the idea for the study of more concept lattices obtained from Substitution sum. 
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