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ABSTRACT 
To construct this distribution, the size-biased Poisson distribution has been mixed with size-biased 
Linear-exponential distribution (LED) of Sah (2022). It can also be obtained by size biasing Poisson-New 
Linear-exponential distribution (PNLED) of Sah and Sahani (2024). The required characteristics of this 
distribution such as probability mass function (pmf), statistical moments, estimation of parameters have 
been derived and discussed in systematic manner. Chi-square goodness-of -fit test has been applied to 
some over-dispersed secondary count data-seta which were early used by others. 
 
Keywords: New Linear-Exponential distribution, Poisson-New Linear-exponential distribution (PNLED), 
Size-biased, Distribution, Probability distribution, Size-Biased Poisson-New Linear-exponential 
distribution (SBPNLED). 
 
1. INTRODUCTION 
Poisson-New Linear- exponential distribution (PNLED) of Sah and Sahani, [13], has been obtained by 
compounding Poisson distribution (PD) with New Linear-exponential distribution (NLED) of Sah, [14], 
where probability mass function (pmf) and Probability density function of PNLED and NLED are 
respectively mentioned as follows. 
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Let ( ; )P Z  be the pmf of Size-biased Poisson-New Linear-exponential distribution (SBPNLED) which can 

be obtained by 

1( ; )
( ; )

z P Z
P Z

Meanof PNLED


          (3) 

It can also be obtained by mixing size-biased Poisson distribution (SBPD) with size-biased NLED 
(SBNLED), where SBPD is given by 
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SBNLED is given by 
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The expression (5) can be put into the following form 
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Proof 
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The parameter  of PD follows NLED and hence the expression (5) can be written in the form 
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SBPNLED can be obtained by using  
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Nature is mysterious whose glory is unparalleled. No matter how much research we do, the result of all 
research is nature itself which can’t be seen by everyone. It needs the eyes of the soul to see it. There exist 
many kinds of plants, trees, animals and many more characteristics in nature which differ in their shape 
and size. If we study a certain population of a distinct character contains different observations varying in 
their size, the probability of being selection of each item from population to sample may not be equal and 
their arises a case of size-biased distribution which is a special case of weighted probability distribution 
introduced by R.A. Fisher [6], later on, formulized by C.R. Rao [10].The following references show the 
pioneer contributors in the fields of size-biased Poisson-Continuous distribution and their applications 
[[1],[2],[8],[9],[11]]. 
Ghitany and Al Mutairi [4] obtained a size-biased Poisson-Lindley distribution (SBPLD) by size biasing the 
Poisson-Lindley distribution (PLD) of Sankaran [12]. Probability mass function of SBPLD as well as PLD 
are respectively given by  
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Ghitany and Al Mutairi [4] gave a very significant contribution towards developing the theory of size-
biased probability distribution.  
The main objective of this paper is to develop a distribution, that works under the same conditions in the 
sense of structure and number of parameters in the distribution, which gives a better conclusion than 
SBPLD when we use the Chi-square goodness of fit test on over-dispersed count data of different fields 
but of similar in nature which were used by others. To get a better format of this paper, it is presented 
under the following heading and sub-headings 
1.0 Introduction 
2.0 Materials and Methos 
3.0 Results 
3.1 Size-Biased Poisson-New Linear-exponential Distribution (SBPNLED) 
3.2 Moments of SBPNLED 
3.3 Estimation of Parameter of SBPNLED 
3.4 Applications and Chi-square goodness of fit test 
4.0 Conclusions. 

 
2. MATERIALS AND METHODS 
In this paper we have developed a new theory which has been developed in the concept of size-biased 
continuous probability distribution and whose validity has been measured by using Chi-square- 
goodness-of fit test for which secondary data have been used. 
 
3. RESULTS 
The most important work required for this paper have been presented in systematic manner under 
different adequate sub-headings as follows. 
 
3.1 Size-Biased Poisson-New Linear-exponential Distribution (SBPNLED) 
The pmf of SBPNLED can be obtained by (a) Definition of size-biased probability distribution (b) 
Compounding size-biased Poisson distribution with size-biased NLED. 
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(a) By using the definition of size-biased probability distribution: 
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Using the expression (11) we can obtained probability at 1,2,3,...z   for SBPNLED. 

(b) Compounding size-biased Poisson distribution with size-biased NLED: 
It can be obtained as  
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Graphical representation of the pmf of SBPNLED 
 

 
Figure.1 

 

 
Figure.2 
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Figure.3 

 
3.2 Moments of SBPNLED 
All the four moments of SBPNLED about origin as well as the mean have been derived under this sub-
heading. To obtain the first moments about origin as well as the mean, at first, we have to derive the 
general expression for Factorial moments of order r of SBPNLED as follows. 
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The expression (14) is the generalised factorial moment of order r of SBPNLED. The first four factorial 
moments are given respectively in the expression (15), (16), (17) and (18). 
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Conversion of factorial moments into moments about origin: 
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It is the mean of SBPNLED. 
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The expression (19), (20), (21) and (22) are respectively the first four moments about origin. Graphical 
representation of the mean of SBPNLED is given as 
 

 
Figure.4 

 
Conversion of 

r into 
r : 

The second, third and fourth moments about the mean of SBPNLED are given by the expression (23), (24) 
and (25) respectively. 
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Properties of SBPNLED 
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- The expression (26) is decreasing function of z. 
- ( ; )P z  is log-concave. 

-SBPNLED is unimodal and has increasing failure rate [IFR]. 
-It has increasing failure rate average [IFRA]. 
-It is new better than used [UNB] and new better than used in expectation (NBUE). 
-For details account [ see, Barlow and Pros Chan (1981), Ghitany and Al-Mutairi (2008). 
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Figure.6 
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Property (4) SBPNLED is leptokurtic because 
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Figure.7 

 
Property (5) The variance of SBPNLED increases as the mean increases. 
Property (6) The co-efficient of skewness and co-efficient of kurtosis of SBPNLED decrease as the mean 
increases. 
 
3.3 Estimation of Parameter of SBPNLED 
This model has a single parameter  .To estimate value of  , we use (a) Method of Moments (MoM), and 

(b) Method of Maximum Likelihood (MML). 
(a) Method of Moments (MoM): Replacing the population mean by the sample mean and solving the 
equation (19), we get a quadratic equation in terms of sample mean as 

2( 1) (2 2 2 ) 6 0z z                (29) 

in terms of  .Solving the equation (29), we get an estimator ̂ of  given by 

 2 2(1 ) 2(2 1) ( 4 1)
ˆ ; 1

2 ( 1)

z z z
z

z

   




       
 


     (30) 

(b) Method of Maximum Likelihood (MML): 
Let us choose a random sample 

1 2 3( , , ,..., )nz z z z of size n from population which follows SBPNLED with 

pmf (11), the maximum likelihood estimate (MLE) ̂ of  is the solution of  

1

3 ( 2) 1
0

(2 ) (1 ) (1 )

n

i i

z

n z

 

    


   

    
       (31) 

Proof: 
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1
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z i
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
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 
  

     
   

  

  
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3

2

1 1
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Finally, we get 

Or, 
1

3 ( 2) 1
0

2 1 (1 )

n

i i

z

n z

 

    

      
         

           
  

Solving this equation, we, get an estimator  ̂ of  of SBPNLED. 

Remarks: 

(1) The MoM estimator ̂ of  of SBPNLED is positively biased. 

(2) The MoM estimator ̂ of  of SBPNLED is consistent and asymptotically normal. 

 
3.4 Applications and Chi-square goodness of fit test: 
Size-biased distributions arise in several context in forestry, ecology, thunderstorm modelling, etc. 
Following are the examples used by previous researchers in which we have applied Chi square goodness 
of fit test. The first example is due to Cullen at al [3]. The second example is due to Keith and Meslow [7]. 
The third, fourth and fifth examples are due to Falls at al [5] related to number of thunderstorm activities 
in the months of September, August and for the season fall respectively. 
Data (1) 
z 1 2 3 4 5 
Observed 
frequency 

122 50 18 4 4 

Data (2) 
z 1 2 3 4 5 
Observed 
frequency 

184 55 14 4 4 

Data (3)  
z 1 2 3 4 5 
Observed 
frequency 

122 35 5 4 2 

Data (4)  
z 1 2 3 4 5 
Observed 
frequency 

201 60 10 3 2 

Data (5)  
z 1 2 3 4 5 
Observed 
frequency 

170 47 7 4 2 

 
Table 1. Chi-square goodness of fit test to the data (1) 

zi Observed 
Frequency 

Theoretical frequency due to 
SBPD SBPLD SBPNLED 

1 
2 
3 
4 
5 

122 
50 
18 
4 
4 
 

111.3 
64.1 
18.5 
3.5 
0.6 

119.0 
53.8 
18.0 
5.3 
1.9 

119.3 
53.5 
17.9 
5.3 
2.0 

 198 198.0 198.0 198.0 
Mean 

̂  

. .d f  
2

( . .)d f  

P value  

1.576 
 
 
 

 
0.576 
 
1 
4.642 
0.031 

 
4.051 
 
2 
0.433 
0.805 

 
3.7256 
 
2 
0.358 
0.836 
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Table 2. Chi-square goodness of fit test to the data (2) 
zi Observed 

Frequency 
Theoretical frequency due to 
SBPD SBPLD SBPNLED 

1 
2 
3 
4 
5 

184 
55 
14 
4 
4 
 

170.6 
72.5 
15.4 
2.2 
0.3 

177.3 
62.5 
16.4 
3.8 
1.0 

177.4 
62.3 
16.4 
3.8 
1.1 

 261 261.0 261.0 261.0 
Mean 

̂  

. .d f  
2

( . .)d f  

P value  

1.425 
 
 
 

 
0.425 
 
1 
6.216 
0.031 

 
5.351 
 
1 
1.183 
0.277 

 
4.9697 
 
1 
1.124 
0.289 

 
Table 3. Chi-square goodness of fit test to the data (3) 

zi Observed 
Frequency 

Theoretical frequency due to 
SBPD SBPLD SBPNLED 

1 
2 
3 
4 
5 

122 
35 
5 
4 
2 
 

114.0 
44.0 
8.5 
1.1 
0.3 

117.9 
38.4 
9.3 
2.0 
0.4 

117.9 
38.3 
9.3 
2.0 
0.5 

 168 168.0 168.0 168.0 
Mean 

̂  

. .d f  
2

( . .)d f  

P value  

1.386905 
 
 
 

 
0.386905 
 
1 
2.561 
0.1095 

 
5.839181 
 
1 
0.485 
0.486 

 
5.440006 
 
1 
0.481 
0.488 

 
Table 4. Chi-square goodness of fit test to the data (4) 

zi Observed 
Frequency 

Theoretical frequency due to 
SBPD SBPLD SBPNLED 

1 
2 
3 
4 
5 

201 
60 
10 
3 
2 
 

194.2 
68.5 
12.0 
1.4 
0.1 

199.5 
59.9 
13.3 
2.6 
0.7 

199.7 
59.7 
13.4 
2.7 
0.5 

 276 276.0 276.0 276.0 
Mean 

̂  

. .d f  
2

( . .)d f  

P value  

1.351449 
 
 
 

 
0.351449 
 
1 
1.414 
0.2344 

 
6.374771 
 
2 
0.165 
0.6846 

 
5.965111 
 
2 
0.164 
0.6855 
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Table 5. Chi-square goodness of fit test to the data (5) 
zi Observed 

Frequency 
Theoretical frequency due to 
SBPD SBPLD SBPNLED 

1 
2 
3 
4 
5 

170 
47 
7 
4 
2 
 

161.7 
56.9 
10.0 
1.2 
0.2 

166.2 
49.9 
11.1 
2.2 
0.6 

166.3 
49.8 
11.2 
2.2 
0.5 

 230 230.0 230.0 230.0 

Mean 

̂  

. .d f  
2

( . .)d f  

P value  

1.352174 
 
 
 

 
0.352174 
 
1 
2.372 
0.124 

 
6.365473 
 
1 
0.313 
0.576 

 
5.953321 
 
1 
0.298 
0.585 

 
In all the tables, along with the theoretical frequency obtained using the SBPNLE model, the theoretical 
frequencies obtained using SBP and SBPL models have been kept which makes comparison easy and 
simple. If we apply definition of size-biased distribution on the references [[15],[16],[17]] it is expected to 
get better fit to the similar kind of data than SBPLD. 
 
CONCLUSION 
 P- value obtained by using SBPNLE model is greater than those obtained by SBP and SBPL 

modelsHence, it is recommended to apply the proposed model instead of SBP and SBPL models to 
the similar nature of over-dispersed count data. 

 SBPNLE model will be over-dispersed, equal-dispersed and under-dispersed as 1.57866  ,  and

1.57866  and 1.57866   respectively. It is positively skewed and Leptokurtic by shape and size 

respectively. 

 The estimator ̂ of  is positively biased and it is consistent. 
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