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ABSTRACT

We define four new graphs through the join operation of subdivision graph S(G) and central graph C(H),
namely subdivision vertex-central vertex join S(G)&C(H), subdivision edge-central edge join S(G)TC(H),
subdivision edge-central vertex join S(G)OC(H), and subdivision vertex-central edge join S(G)IflC(H)
graphs. We determine the adjacency and Laplacian spectra of these four graphs and generate a set of A-
cospectral and L-cospectral non-regular graphs for these new graphs by choosing two pairs of regular
cospectral graphs. Additionally, we compute the Kirchhoff indices and the number of spanning trees in
these graphs.
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1. INTRODUCTION

Let G = (Vg ,Eg) be a simple and undirected graph with vertex set Vgand edge set Ec. Let A(G) be a n-th
order adjacency matrix of G such that A = [a;] = 1 if the vertices vi~v; and 0 otherwise. The Laplacian
matrix of G denoted by L(G) is defined as L(G) = D(G) - A(G), where D(G) is the diagonal matrix. The
complement of G, denoted by G, is the graph with the same vertex set as G such that two vertices are
adjacent in G, if and only if they are not adjacent in G. The adjacency matrix of the complement graph,
denoted by A(G) is defined as A(G) = Juxn—In—A(G), where Jnx is the n x n matrix with all entries 1’ and I,,
is the n x n unit matrix. The Laplacian matrix of the complement graph is defined as L(G) = nln— Jaxn— L(G).
For any matrix Mnx,, the polynomial associated with it is given by P(M;x) = det(xIn- M). Thus, Pg(A;x) and
Pg(L;x) be the characteristic polynomial of A(G) and L(G), respectively. The roots of A(G) and L(G)
matrices are adjacency eigenvalues and Laplacian eigenvalues of G, respectively. Denote the eigenvalues
of A(G) and L(G), respectively, by Aj(G)and y;(G), where j = 1,2,..,n. The collection of distinct eigenvalues of
A(G) and L(G) and their corresponding multiplicities form the A-spectrum and L-spectrum of G,
respectively. If two graphs have the same A and L spectrum, then they are said to be A-cospectral and L-
cospectral, respectively. The number of the spanning trees of G of n vertices can be determined by

t(GJ _ 1o (Gus (G, un(G) I{f((;) =n ‘Z“ 1

n and Kirchhoff index can be obtained by =2 p1;(G)

Spectra of different kinds of graphs operations have been computed by several types of research [3, 4, 7,
8,9, 10, 11, 13]. The subdivision graph S(G) of a graph G is obtained by inserting a new vertex into every
edge of G. The central graph C(G) of a graph G is obtained by subdividing each edge of G exactly once and
joining all the non-adjacent vertices in G. Jahfar and Chithra [7, 8] defined central vertex join, central edge
join, central vertex corona, central edge corona and central edge neighbourhood corona graphs and
determine their adjacency, Laplacian and signless Laplacian spectra. Also, the Kirchhoff index determines
the number of spanning trees and cospectral graphs’ families. A. Das and P. Panigrahi [4] defined four new
graphs join and determine their adjacency, Laplacian and normalized Laplacian spectra. As an
application, they obtain pairs of simultaneous cospectral graphs for adjacency, Laplacian and normalized
Laplacian matrices. In addition, the Kirchhoff index and the number of spanning trees are also
determined in the paper.

Motivated by these above work, we define four new graphs join.

Definition 1.1. Let G and H be two vertex disjoint graphs with number of vertices n; and n,, edges mi;and
m; respectively. Then

324 Manash Protim Borah et al 324-333



Journal of Computational Analysis and Applications VOL. 33, NO. 5, 2024

(i) The subdivision vertex-central vertex joinof G and H, represented by S(G)&C(H), is the graph derived
from S(G) and C(H) by joining each old vertex of G with every old vertex of H.

(ii) The subdivision edge- central edge join of G and H, represented by S(G) GC(H), is the graph derived
from S(G) and C(H) by joining each new vertex of G with every new vertex of H.

(iii) The subdivision edge-central vertex joinof G and H, represented by S(G)CC(H),is the graph derived
from S(G) andC(H) by joining each new vertex of G with every old vertex of H.

(iv) The subdivision vertex- central edge join of G and H, represented by S(G) IfIC(H), is the graph derived
from S(G) and C(H) by joining each old vertex of G with every new vertex of H.

Example 1.1. Let us consider G = Psand H= P3be two path graphs. Then Figure 1, Figure 2, Figure 3 and
Figure 4 represents P4£1P3, P4 OP3, P400P3 and P40 P53 respectively.

@ @ @
Figure 1. Subdivision-vertex-central vertex join of Psand P3. i.e. P4C1P;3

c/j\o
° 4 ® : ° & ° _
Figure 2. Subdivision edge-central edge join of Psand Ps. i.e. P4 OP3

Figure 3. subdivision edge-central vertex join of P4and Ps. i.e. P,CIP;

e

@ L @
Figure 4. Subdivision vertex-central edge join of Psand Ps. i.e. P,O P3

Four non-regular graphs are generated in this paper through the join operation of subdivision and central
graphs. Subsequently we obtain the A-spectra and L-spectra of these joins. Moreover, we derive several
cospectral graphs of A and L spectra. The number of spanning trees and Kirchhoff’s indices are also
determined.

To obtain our results, we need some basics useful results. Let B(G) = [bjj] be the incidence matrix of order
nxm such that by= 1 if viis incident with ej, where i,j= 1,2,..,n, otherwise 0. Let L(G) be the line graph,
choosing B(G) = B, then B"B = A(L(G)) + 2Imand BB"= A(G) + 2I,. The M-Coronal I'u(x) [12] is defined on
the n x n matrix of M such that U'ar (@) = J (xl,, — M)~! 41, where Jnbe the n x 1 matrix with all 1
entries. If ‘t'is the constant of each row sum of matrix M, then! (%) = =—i[12]. If L(G) is a Laplacian
matrix, then I 2 () = £ [12].
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T (M
Also, det(M + y]nxn) = det(M) +'7Jnxla'd](ﬂ'f)']nxl[9], where adj(M) is the adjoint of M and vy is a real
number. The following lemmas are also used to find our results.

Lemma 1.1.[9] If M is an real matrix of n x n, then

det(xIn— M -y]n) = (1 —=yI'm(x))det(xl,— M)

Lemma 1.2.[3] Let N1,Nz,NzandNsbe four matrices, where N;and Nsare non-singular square matrices,
then

det G:’; Qj) = det(Ny). det(N;, — N3N,y 7' Ny) = det(N,). det(N; — No Ny ~ING)

Lemma 1.3.[4] If for any real numbers c,d > 0, then

1 d
_fIn —_ iJn n - - —In 7Jn mn
(c dJnsn) - +c(c—nd.) xn

2. Adjacency and Laplacian spectra of the graphs
In this section, we find adjacency and Laplacian spectra of subdivision vertex-central vertex join S(G)&

C(H), subdivision edge-central edge join S(G) GC(H), subdivision edge-central vertex join S(G)EC(H) and
subdivision vertex-central edgejoin S(G)OC(H) graphs.
First, we determine adjacency spectra of these graphs.

2.1. A-spectra of S(G)@ C(H)
Theorem 2.1.LetG be a ri- regular and H be a ra regular graph, then
na
R‘:‘[(:‘jtf?[H‘;{A s ) = gt 1_[(.::J +(1+X(H))x— Aj(H) —r9)
=2
[;I:-L —(na—1- ]“'g).:.':{ —(2r1 +2r2 + -nmg_];ﬂ'2 + (2ring — 2r1 — 2rire)x + 4riro]
g

[[(=*—ri = 2(6)

sty

=2

Proof:A-spectra of S(G)& C(H) can be expressed as

1 XNy B ) Jnl xna 01!1 XKma

B(G)T 07?1-1><7TL1 Omlin;g Omlxmz
anxnl Ongxml A(H) B(H)
O'H2 xny 0m1 xXmsa B(H)T Ovrlz

A(S(G)EC(H)) =

The characteristic polynomial is Py ¢y (AiX)
= detil{xl, nytmy+m, — AS(G)E C(H))
/ xlnl _B(G) _]nlxnz Onlxmz\

N _B(G)T xlml omlxnz 0m1Xm2
= deti -
_]lean O‘ﬂzxml xIle _A(H) _B(H)
Omzxnl Omlxmz _B(H)T xlmz
= x"2deti§
Where
-I:ITH 7B(G) 7’]“,1 X9 0111 Xma 1 -
S = _B(G)T -T»'Iml Omlxnz_ - Omlxmg ; (U-rngxnl Omz xXmy _B(H)])
—Jnaxny  Ongxmy Tl —A(H) -B(H)/ "
.ZUITH . 7B(G) *Jrn Xng
= _B(G)T J"Iml Omlx'ﬂ‘z

—Jngxny Ongxm,  @dny — A(F) - %B(H)B(H)T

Hence,
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det S=det (x,,,- A(F]) - --B(H)B(H)") det(W)

- detiiEéxlnz — Ty + L, + AGH) — %B(H)B(H)T)detﬁ@l/l/)

Where

W= (g D) = (G ety - AGD - BB

-T:Iml My Xne

(Jngxnl On-z)(:"nl)
_ (l‘fm _FA(H)+%B(H}B(H)T(w)']m><n1 _B(GJ)

'%-3

*B(G)T :fIml
Then,
d W — 41 d i i 1 T B(G)B(G)T
et =X etifi x ny - A(ﬁ)-}-%B(H)B(H)T (x)]n1Xn1 - T
= x™Midetili x1 B(G)B(G)T 1-r I
=X etifix ny T - A(ﬁ)iB(H)f(H)T(X) B(G)B((,’)T(x)
= xM™idetirf xI B(G)B(G)T 1 r
=x etifixl,, — Y - A B(H)B(H)T(x) B(G)B(G)T (%)
So,
o n
det W =g™ ™ x° —r — NG 1— i
H( 1 ( ))[ (7?2_1_7,2_'_27‘2)1:_2%]

—gMi—m ]:[(:E2 —7r — )\?;(G))[:L'4 —(ng—1— T'Q)IS — (2ry + 2r + ?’11?12)1‘2

+ (2ring — 21y — 2ryro)x + 4ryrg]

Therefore,
na

P(.?((;]EC'(H))(A : j‘} — I,m]--mz—m—ng H(IE 1 (1 4 )\j(H))J: _ /\J(H} _ .,\2}

§="2

[2% — (ng — 1 — ro)2® — (2r) + 2ry + nyng)2? + (2ring — 2r) — 2ryro)x + 4r 1
T

[[@*-r -Gy

i=2
2.2. A-spectra of S(G) ZC(H)
Theorem 2.2.Let G be a ri- regular and H be a rzregular graph, then A-spectra of S(G) OC(H) can be
expressed as

tea

P:S‘((,j CUH) (;1 J] ml'I-fm ny—is H[J:E o [?12 1 AJ(H}}J . }IJ(H} B ?.2}
j=2
n1

H(r —r1 = M(G)[x* = (ng +1=r)2® — (4r) — mony)z? + (2ring — 2ri+

iy

1=a

. 9 .
2?‘f + My Ny — Many + Manq )2 +4r] + 2rymany — 'nl'i':‘.g'i"j]

Proof: A(S(G) GC(H)) can be written as

Onlxnl B(G) Unl X1 Unlxmg
B(G)T Om1 X1y qui'n.z Jm] Xma
On-z X1my Ong Xmq A(H) B(H)
Umz X1 sz X1mq B(H)I Umg
The characteristic polynomial is

A(S(G)OC(H)) =
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x1n1 _B(G) 0n1Xn2 On1Xm2
_B(G)T xl‘ml Omlxnz ]m1><m2
Ps@Bean(h) = At Oy Xlay — AGT) —B(H)
Osznl _]m2Xm1 _B(H)T x[mz

= x"1deti§
Where,

-7:]777,1 OleTLQ_ _Jml Xma _B(G)T 1
S=| Opysxm; ®Iny,—AH) —-B(H) | — | Onyxma - (=B(G) Ouiwe ooy
_ngxml _B(H)T .Z‘Im2 0m2><’n1

xIWI - %B(G)TB(G) 07”])(113 _Jmlxmg
Ongxnu xIng - A(H) —B(H)
_ngxm] _B(H)T :cImQ

Hence,

1
detiis = detizz€<x1ml - ;B(G)B(G)T) detily

= detiff(xlml - (AlLe) + 21m1)> detily

ny
rn 4G
= x™M11 (x _1_ Q) detiidly
i=1 x X

Where

I, —A(H) —B(H Ornyxmy -
_ (%I, —AH)  —B( ))_( )

1
- ( —“BH)  «l 0 <x1’”1 _EB(H)B(H)T)
(Om1Xn2 _]mlxmz)
(xlnz — A(H) —B(H) )

_B(H)T Xy, — FB((;)B((;)T(x)]mzxmz

mopXmq

Then,

detily = deti??(xlmz - FB(G)B(G)T(x)]TanTnz>

1
deti??{xlnz — A(H) — B(H) <x1m2 — Ly ep@yT (x)]szm) B(H)"

X

m, - — 1
= x™2 <1 = Iz 6yp6yr (%) 7) detus{xlnz —A(H) — B(H) {; L, +

: 1
B(G)B(G)" (%) ]mZszlB(H)”

X <x =MoLy gypyr (%)
my X mz v 7 1 T
=x 1= Ieysr () ~ detidixI,, — A(H) — ;B(H)B(H) -

I T
CIGICS

nyXxXny
x <x — Maly )T

rf

X

So,
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Ty

Pyeyicun (A z) = a™Fmem=m [[ (@2 — (ng — 1= Aj(H))z — \;(H) —r2)
j=2

mny

H(rz—-rl—)r( [.r n-;+l—?1] — (4r —mgnl] + (2rins—

i=2
. 9 .
2r1 + 2r7 + maning — many + manir1)z + 4r7 + 2rimeny — ninar;)

and the result follows.

2.3. A-spectra of S(G) o C(H)

Theorem 2.3. Let G be a ri- regular and H be a roregular graph, then A-spectra of S(G)EC(H) can be

expressed as
nz

Pycoyscon(@ix) = xmimemin [ ] (o = (my = 1= 4,(H))x = 4 () = 12)
=2
ni
1_[ (2 =1 = 24,G)[x* — (ny, — 1 —1)x3 — 2ry + 21, + myny)x? + 2ryn, —
i=2

21 — 2nrp)x + 4nn]

Proof: A(S(G) | C(H)) can be written as
O?’J,1 xni B(G) Onlxng 0111 xma
= B (G)T Om xm Jm X O-m. X
A(S(G)TC(H)) = peom T S s
( ( ) ( )) O'H.ern.] Jn,gxm,] A(H) B(H)
Omg Xy Umz X1mq B( H)T Omg

The rest of the proof of the Theorem is same as Theorem (2.2)
2.4.A-Spectra of S(G)GC(H)

Theorem 3.1.LetG be a ri- regular and H be a rpregular graph, then A-spectra of S(G)o™ C(H) can be
expressed as

s
P:H((:jl:t (H‘;{‘Fl r) = pHma—ng—ng H("T‘-H — (e —1— AJ(H}“ _ AJ[H] — 73)
i=2
ny
H{r — 7 — A(G))[z* — (ne — 1 —ra)x? — (2r) + 27y + ny)2® + (2ryng+
i=2

2ry + 2rirs +mqns + 1y e ) + 4Aryrs + 2nyre — 0 lngf.r'ﬁ]

Proof: A(S(G) m C(H)) can be written as
0?11><TL1 B(G) 0711 xXng Jnlxmz

: T
A(S(G)EC(H)) p— B(G) 0?711Xm1 Oml Xng Oml X mo

0'?12 >xma O'n,z X1 A(H) ) B(H)
sz xXni Omg xmq B (H) ! Um.z

The remaining part of the proof of the Theorem is same as above.

3.1. L-Spectra of (S(G) & C(H))
Theorem 3.2. Let G be a ri- regular and H be a ra regular graph, then
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ny
L(S(G)tiC(H)) = (x — 2)m1tmz—ni—n; (x% — (1, + ny + 2)x + 2ny + 1;(G) [x* —
i=2
(r+ny +ny, +15 +Dx3+ (nry + pny + nyry + 4ny + 4n, +
21 + 21, + 4)x? = 2(ryn, + 2ny + 2n, + nyry + nyny)x|

ny

1_[ x% — (rz +n +2+ uj(H))x+ 2ny — p; (H)

j=2

Proof: L-spectra of subdivision-vertex central vertex join can be expressed as

(rn +nx)l,, —B(G) —Jnyxny 07y xm,
L(S(6) 5 C(H)) = —B(G)T 21m1xm1 0Omy; X n, ~ 0ml><m2
mper O o+ 1)y + LCA) —B(H)

Oy xns Oy xmy —B(H)T 2L,

The characteristic polynomial isPs ) & ¢y (L :X)

= detixl,, 4my+my+m, — L(S(G) B C(H))
= detiitx — 2)I,,,,detis

Where,
(.’i’? - T — ?172‘)1-;11 *B(G) *Jnlxng Onlxmg
S = _B(G)I (x = 2) L, Oy xng e Omy xmo
7=I'n.2><n1 Un.g)('mq (»L — T2 — n‘l)I?'r,g - L(?{) _B(H)
1
T —2 (Omgxm Om-ng] _B(H)T)
('7: - - n‘Z)Im *B(G) —Jnyxng
— —B(G)T (.L - 2)[,”] Um] Xna
- T
*JnZan Ongxrn,l (JJ -T2 711)17?-2 - L(H) - %
. B(H)B(H)T
=det{(x —ro —n1)Ilp, — L(H) — M} det W

r—2

Where,

(=71 —n2)I,, —B(G) s B
W = ( -B(&)T (=T, )\ Oy e ((# —ry —n1)In, — L(H)

B(H)B(H)T
i %)_1 (-]T!sz!l Oﬂ-2xm1)
_ (w0 —r1 —na)lp, — P.T,(ﬂ)—kﬁB(H)B(H)T(I — 19 — 1) dny xny —B(G)
-B(G)" (T = 2) Ly
Then, .
‘ B(G)B(G
etV =(z — 2™ det((z — 1y — ), ~ DI
‘/L' —
- FL(%HE—;B(H)B(H)T(J: —Tr2— nl)I‘B(G)J?gG)T (z —r1 —no)]

Putting the coronal values and simplifying above gives the desired result.

3.2. L-Spectra of S(G) EC(H)
Theorem 3.3. Let G be a ri- regular and H be a ra regular graph, then
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L(S(G)TC(H)) = (x — 2 —my)™ M (x — 2 — my)m2 ™2 1_[ x2—(r +my + 2)x

i=2
nz

+rym; + #i(G)l—[ (x% = (rp + my + 2 — p;(H)x + myr, — myu; (H) — Hj(H))
j=2

[x*—(rp + g +my +my + Dx3 + (1 + 2my + 2my + 21y + 21, + 1ymy
+rymy + 1im, + rymy + 4)x? — 2rym, + 2r,my + ripmy + rrmy)x]

Proof: L(S(G) OC(H) )matrix can be written as

rily, —B(G) =01, xn, 0ry xm,

L(S(G) BCCHY) = | —B(G)" (2 + M)l xm, Oy xmy oy |
Onyxny Onyxmy rn, + L(H) ~ —B(H)

0m2><n1 _]mZXml —B(H)T (2 + ml)ImZ/

The remaining part of the proof of the Theorem is same as Theorem 2.2.

3.3. L-Spectra of S(G) IC(H)
Theorem 3.4.LetG be a ri- regular and H be a ra regular graph, then
ni

LS@ B CH) = (x=2=nm M —2yme 2 | [ 62 = G+ my + 200 + 1 (G) + momy
i=2
ny
1_[ (x? = (rp +my — 2 =y ()x + 2my — (D [x* — (p + my + 15 + 0y + D2 + (4 + 4my
j=2
+21; + 215 + Ny, + nymy + 20, + 1y + 1ymy + 1y, — myny)x? — (dmy + 4dmyn, + 2myny
_ +T1T2n2 + nn,m; + 27"17'12 + mlrlnz)x].
Proof: L(S(G)OC(H)) can be written as

TlIT'l ) _B(G) _Umxng 071|Xm2

= _ *B(G)I (2 + 77«2)Im| X1 7']?7?1 P ) []rm Xmo
L(S(G)DC(H)) - Unzxm _anx'ml (7.2 _+_‘m41)1'n2 _i_L(ﬁ) —B(H)
Umzxnl Um;xm, _B(H)i (2)17?12

The remaining part of the proof of the above theorem is as same as above.

3.4. L-Spectra of S(G)0C(H)
Theorem 3.5. Let G be a ri- regular and H be a rp regular graph, then
n

L(S(G) | CH) =(x—-2)"""(x —2—ny)m2"2 1_[ (x% = (rp + my + 2)x + p;(G) + 2my)

i=2
ny

1_[ (x2 — (rz +1n+ 2y (H)x) +nyr, = (H) — (H)[x* -y +1r,+my +nydx® +
j=2
(4 +2r +2r, +4my + 2y + iy +1omy 1y + ryny)x? — (4my + 2r,my + 21yny + rrpng)x]
Proof: S(G)OC(H) can be expressed as

TIIM *B(G) *Onlxnz Jnl><7712

= 7B(G}T 25, xm Oy sen Oy xcm:

L(GO _ 1 1 1Xny 1 2

(g %) 01;‘,2‘)(??] Ongxnn 'IIQInZ + L(H) *B(H)
ngxm Umgxnu _B(H)I (2 + 'nL)I?'ng

The remaining part of the proof of the theorem is as same as above.

4. Spanning trees and Kirchhoff Index
Kirchhoff’s indices and spanning trees of subdivision vertex-central vertex join S(G) & C(H), subdivision

edge-central edge join S(G) OC(H), subdivision edge-central vertex join S(G)OC(H) and subdivision
vertex-central edge join S(G)OC(H) are determined by using Laplacian spectra..
The Kirchhoff’s indices of these graphs are
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1.
ni
KF(S(GY & C(H (s + 1y + +1) ml—n1+m2—n2+ 241 +n;
O =(m+n +my+n T
f(S@) 8CEH)) = (my +ny +my +my . 2, o+ 1 @)
4+2r +2r, +4n, +4n, + i, + iy + 1m0y
2(2nq + 2ny + nyny + 1y + nyty)
na
+Z 2+n;+1r+u(H)
= 2ny — ;i (H)
2.
ni
KF(S(G) BC(H)) = (my + 1y + ) my —ny mz—n2+ 24+1+m,
O =(m +n+my+n —_—
1 1 2 2 2+m2 2+m1 = mn +“l(G)
=
+T'17"2 + Zml + Zmz + 27’1 + 27'2 + rnmy + nm, + rnm, + nmy + 4
2rimy + 2romy + r,my + rm,
n
= myr, —mypy (H) — p; (H)
3.
nq 2
- mz_nz ml_nl +T'1+Tl2
Kf(S(G)ocCH)=(m +n +my+n
FEOBCE) = mtmtmetm)| 5400 ) O
i=
4+4mq + 2r + 21y + iy, +nymy + 20, + iy, + 1My + 1N, —MyN,
dmy +4dmn, + 211 + Ny + mmyn, + 2nn, + mynn,
ny
+z 2+my +1,—w(H)
= 2my — ;i (H)
4.
ni
my—ng Mmp;—n, 2+1n+m,

Kf(S(@ BCH)) = (my +my +mz + 1) | — 2tm | La2my +mG)
i=2 !

4421 + 21 +4my +2ny + iy + oMy + Ny + 10y

4m, + 2r,m, + 2ryng + 1nyn,
n
+zz: 2+n,+1r,—u(H)

= nr; — il (H) - K (H)

The number of the spanning trees of these graphs are

1.
1
t(S(G)acCH)) = 2mi-ni+mz=nzp 2 2
(S(G)ac)) n+m 40, +m, (rznz +2n; + 2n; + nyry + nyny)
ni nz
[T @n+u@)] 20 -wam
i=2 j=2
2.
1 i
t(S(G) GC(H)) = 2+ MmN (2 + “‘2‘“21_[ + (G
(5(G) (H)) N, +my +m2+m2( m,) ( m;) | (rlmz Hl( ))
np =
(2rym; + 2rm; + ryrymy + ryrym;) l—[ mqry — my (H) = (H)
j=2
3.
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_ 1 ni nyp
¢(S(6) B C(H)) = ey | | e +a@)] | emy
i=2 j=2

n; +my +n; +

—uj(H)) (4m; + 4myn, + 2myr; + ryryn, + ryny,my + 2ryn, + myryn,)

. 1 -
HS(6) B ) = @™ +n)mee | | (@mg +1(0)
i=2

n1+m1+n2+m2

nz

1_[ (nlrz = (H) — iy (H)) (4m; + 2rym; + 2ryng + ry13ny)
j=2

5. Non-regular simultaneous cospectral graphs

We obtained adjacency and Laplacian spectra of these graph joins S(G) & C(H), S(G) GC(H), S(G)E!C(H)
and S(G)IflC(H). All of these graphs are non-regular. We find cospectral graphs of these non-regular
graphs. The subsequent lemmas are used to determine the cospectral graphs.

Lemma 5.1.1. If G is an r-regular graph then L(G) = rl,— A(G)

2. If G and H are A-cospectral regular graphs, then they are also cospectral with respect to the Laplacian
matrix.

Using the above lemmas we obtain the following Theorem

Theorem 5.1. Let G; and H; be r; regular graphs, i= 1,2, where G; may not be distinct to Hi. If any graphs
Gi1 and H; are A-cospectral, and G; and H, are A- cospectral then S(G1) & C(G2) (respectively, S(G1)
BC(G2), S(G1)EIC(G2) and S(H1) £ C(Hz)) (respectively, S(H1) C(Hz), S(H1)EC(Hz)and S(H:)EC(Hy)) are
simultaneously A-cospectral and L- cospectral.

REFERENCES

[1] S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices,
Linear and Multilinear Algebra, 58(3)(2010), pp. 387-90.

[2] D.M. Cardoso, D. Freitas, M. A. AMartins and F. A. Robbino, Spectra of graphs obtained by a
generalization of the join graph operation, Discrete Mathematics, 313(5) (2013), pp. 733-741.

[3] D.M. Cvetkovic, P. Rowlinson and S. Simic, An introduction to the theory of graph spectra, Cambridge
University Press, (2010).

[4] A.Das and P. Panigrahi, Construction of simultaneous cospectral graphs for Adjacency, Laplacian and
normalized Laplacian Matrices, Kragujevac Journal of Mathematics, 47(6) (2023), pp. 947-964.

[5] C.Godsil and G. F. Royale, Algebraic graph theory, Springer Science & Business Media, (2001).

[6] R.A.Horn, R. A. Horn and C.R. Johnson, Topics in matrix analysis, Cambridge university press, (1994)

[7] T. K. Jahfar and A. V. Chithra, Central vertex join and central edge join of two graphs, AIMS
Mathematics, 5 (6)(2020), pp-7214-7234.

[8] T.K.Jahfar and A. V. Chithra, Spectra of new graph operations based on central graph, arXiv preprint
arXiv:2107.00854 (2021).

[9] X.Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear
algebra and its applications. 438(8) (2013), pp. 3547-59.

[10] X. Liu, Z. Zhang, Spectra of subdivision-vertex join and subdivision-edge join of two graphs, Bulletin
of the Malaysian Mathematical Sciences Society. 42(2019), pp. 15-31.

[11] Z Ly, X. Ma and M Zhang, Spectra of graph operations based on splitting graph, Journal of Applied
Analysis and Computation 13(1)(2023) pp. 133-155

[12] C. McLeman C and E. McNicholas, Spectra of coronae, Linear algebra and its applications,
435(5)(2011), pp. 998-1007.

[13] L. Xiaogang and L. Pengli, Spectra of subdivision-vertex and subdivision-edge neighbourhood
coronae Linear Algebra and its Applications, 438(8) (2013), pp. 3547-3559

[14] ]. V. Vivin, M. M. Akbar and K. Thilagavathi, On harmonious colouring of central graphs, Advances and
applications in Discrete Mathematics, 2(1), pp 17-33

333 Manash Protim Borah et al 324-333



