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ABSTRACT 
Thermo-mechanical vibration of carbon nanotube (CNT) reinforced functionally graded nanorods are 
explored in this work under the external influence of magnetic field. The nanorod is modelled based on 
Love-Bishop rod theory and the small-scale effects are considered based on nonlocal elasticity theory. 
Axial gradation of CNT reinforcement is modelled in the formulation. The complete governing differential 
equation of motion of axially graded CNT reinforced composite nanorod is derived and solved for the 
clamped-clamped and clamped-free boundary conditions. Closed form expressions are derived for the 
nonlocal frequencies of nanorods. The effects of material properties, temperature, magnetic field, aspect 
ratio, external stiffness and inhomogeneity parameters on nonlocal frequencies of CNT reinforced 
nanorods were analyzed thoroughly. The results presented in this work are very useful for the design of 
futuristic nanodevices where the CNT reinforced nanorod is the primary element. 
 
Keywords: Love-Bishop theory; Magnetic field; CNT reinforced composite; Nonlocal elasticity and 
Inhomogeneity  
 
1. INTRODUCTION 
One-dimensional materials such as carbon nanotubes, boron nitride nanotubes, silicon carbide 
nanotubes, nanowires, and nanorods are largely responsible for the revolutionary uses of nanotechnology 
in contemporary technology. Due in large part to the contributions of nanotechnology, these materials 
have set the foundation for innovative technological developments. Miniaturization is the major trend in 
the world today, especially when it comes to materials and devices like micro/nano electro-mechanical 
systems (MEMS/NEMS). Understanding the characteristics of nano and microscale structures is becoming 
more and more important due to the development of imaging technologies that are specifically designed 
for very small sizes. Investigating the material properties of nanoscale structures is the current emphasis 
of nanotechnology. The main goal now is to incorporate these qualities into traditional disciplines.  
Going on to the study of Danilo et al.[1], they evaluated the impact of shear stiffness and lateral motion 
inertia on the longitudinal vibrations of a novel resonator model. Using a Love-Bishop theory technique, 
Civalek et al.[2] developed four different nanorod models with accuracy comparable to numerical 
methods across various nonlocal parameters. Lastly, by taking into account constrained boundary 
conditions at one end and attachment to the nonlinear spring at the other, Bahrami et al.[3] investigated 
the relationship between the stiffness of a nonlinear spring and the natural frequency of a functionally 
graded nanorod. This appears to be a varied collection of research that offers insightful information to the 
area. 
Long et al. [4] discovered that the distribution of carbon nanotubes (CNT) in face sheets has little effect on 
the thermal post-buckling reaction and buckling temperatures of sandwich plates. Touloukian [5] 
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illustrated the effect of temperature and longitudinal magnetic fields on the natural frequency and 
thermal buckling of composite plates, both porous and non-porous.  Vodenitcharova and Zhang [6] 
carefully examined the effects of length scale, magnetic field, and mode shape on the flexural vibration 
response of nanobeams, offering critical insights for the construction of magnetically precise nanomotors. 
Karličić et al. [7] found that nonlocal axial vibration in Bishop nanorod systems is critical for designing 
and analyzing nano resonator devices and nanoelectromechanical systems (NEMS). Li X-F et al. [8] used 
nonlocal elasticity theory, which accounts for small-scale effects, to provide a more accurate depiction of 
the dynamic behavior of nanorods than classical models. Behar et al. [9] and Atashafrooz et al. [10] used 
Galerkin-based closed-form methods to solve the equations of motion and forecast the vibration response 
of a spinning and surface effect on a smart nanotube under electrical loads. Recognize that external 
voltage affects critical speed, structural integrity, vibration, instability, and mechanical behavior of 
nanotubes that transport fluid. Barretta et al. [11] investigated the stress-driven nonlocal integral theory 
to describe nano-sensors and nano-actuators. Wan and Ma [12] investigated the thermodynamic behavior 
of functionally graded rotating piezoelectric rods in the presence of moving heat sources. Nonlocal 
nanorods are an important topic of research in nanotechnology due to their distinct mechanical 
properties and applications in nanoelectromechanical systems (NEMS). Hani et al. [13], Moustafa et al. 
[14], and Gennadi and Mikhasev [15] used nonlocal elasticity theory, specifically Eringen's nonlocal 
theory, to examine these features, accounting for the small-scale effects that classical theories typically 
neglect. Busra et al. [16] tested this theory to a variety of issues, including longitudinal vibrations of 
nanorods, and shown that raising the nonlocal parameter lowers natural frequencies, particularly at 
higher modes.  Mohammad Ali et al. [17] obtained counterintuitive findings in differential models by 
ensuring well-posed and consistent elastic issues over confined regions. Furthermore, Ashraf M and 
Zenkour [18] and Babak et al. [19] demonstrated that the spectral properties and dynamic behavior of 
nanorods can be effectively analyzed using port-Hamiltonian formulations and nonlocal differential 
models, revealing the hyperbolic nature of these systems as well as their inherent control and 
stabilization challenges. Chinnawut et al. [20] and Yuan et al. [21] investigated the free vibration analysis 
of nanorods, including those with functionally graded materials, and discovered that material qualities 
and boundary conditions have a substantial influence on their vibrational characteristics. Furthermore, 
Hanif et al. [22] employed the nonlocal strain gradient theory to investigate torsional vibrations in 
nanorods with noncircular cross-sections, emphasizing the significance of cross-sectional geometry in 
their dynamic response. The buckling behavior of nanorods, taking into account of shear and normal 
deformations, is also important, with different end conditions influencing the critical buckling loads. 
Finally, advanced approaches such as the Wentzel Kramers Brillouin approximation method and the 
Galerkin method are used to solve complex boundary-value problems and account for nonlocal effects on 
nanorod eigen frequencies. Overall, including nonlocal theories into the study of nanorods provides a 
thorough understanding of their mechanical behavior, which is critical for their application in advanced 
nanotechnologies. The investigation of nonlocal effects in nanorods exposed to magnetic fields is a 
diverse topic of study that combines theoretical and experimental approaches. Keivan and Kamil [23] and 
Danilo et al. [24] used the nonlocal elasticity theory to study the free vibration of nanorods and 
discovered that nonlocal parameters, surface energy, and magnetic field strength all have a significant 
influence on the natural frequencies and vibrational modes, particularly in the presence of defects and 
different boundary conditions. Von et al. [25] and Vladimir et al. [26] found that the interaction of optical 
fields with nanostructures, which cannot be adequately described by the dipole approximation, 
necessitates the use of non-local response functions that include all multipoles, resulting in a more 
comprehensive understanding of optical processes at the nanoscale. Experimental studies on 
magnetoresistance in nanostructures, such as Pt strips on yttrium iron garnet and multi-terminal Ni 
nanostructures, have been conducted by Prasoon and Saurabh [27] and Rüffer et al. [28]. Their findings 
show that non-local magnetoresistance can differ significantly from local magnetoresistance, with the 
former being influenced by elements such as magnon spin accumulation and current spreading in non-
isotropic conductors. Analytical findings and three-dimensional particle-in-cell simulations corroborate 
Zsolt and Alexander's [29] identification of the effects of magnetic fields in nano-structured targets, such 
as nanorods arranged in forests, which demonstrates that self-generated quasi-static magnetic fields can 
reach amplitudes up to 1 MT, which is supported by both analytical results and three-dimensional 
particle-in-cell simulations. In order to precisely explain the behavior of nanorods in magnetic fields, 
Xiong et al. [30] discovered the significance of nonlocal effects and sophisticated modeling tools. This is 
important for the improvement of laser ion acceleration technologies as well as the development of novel 
spintronic devices. All things considered, the combination of sophisticated optical modeling, experimental 
magnetoresistance research, and nonlocal elasticity theory offers a thorough foundation for 
comprehending and adjusting the magnetic characteristics of nanorods. 
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The vibration analysis of functionally graded carbon nanotube-reinforced nanorods (FG-CNTR) is a 
complicated topic that has been studied using a variety of theoretical and numerical methods. These 
nanorods have improved mechanical properties due to the integration of carbon nanotubes (CNTs) 
within a polymeric matrix, which are frequently functionally graded (FG) across their thickness. Eddine et 
al. [31] and Wang et al. [32] utilized refined third-order shear deformation theory (TSDT), while higher-
order shear deformation theory (HSDT) is commonly used to capture shear deformation effects without 
the need for shear correction factors, ensuring accurate modeling of vibration behavior. Ezzraimi et al. 
[33] and Yu X L et al. [34] assessed the mechanical properties of CNTs using the rule of mixing or modified 
rule of mixture, which takes into consideration the nonlinear distribution of CNTs across the thickness, 
resulting in increased stiffness and higher natural frequencies. Huan et al. [35], Manish and Sarangi [36], 
and Vishal et al. [37] used analytical and numerical methods such as the Differential Quadrature Finite 
Element Method (DQFEM) and the Rayleigh-Ritz method to solve the governing equations derived from 
Lagrange's and Hamilton's principles, ensuring high convergence speed and numerical stability. Surya 
and Sahoo [38], Ravindra and Ashok [39], and Tham et al. [40] investigated how CNT volume percentage, 
distribution type, and boundary conditions effect dynamic performance, including natural frequencies 
and loss factors. Furthermore, the combination of piezoelectric materials and FG-CNTR nanorods has 
showed promise in active vibration control, allowing feedback algorithms to efficiently govern dynamic 
reactions. Studies have also investigated the impacts of fluid-structure interaction, in which the nanorods 
are submerged in a fluid media, complicating the vibration analysis due to mass effects. Overall, the 
analysis of FG-CNTR nanorod vibration behavior takes a multifaceted approach, combining advanced 
theoretical models, numerical methodologies, and parametric investigations to maximize their dynamic 
performance for actual engineering applications. 
Inhomogeneity factors have a major impact on the mechanical and vibrational properties of functionally 
graded nanorods. These factors, which are frequently represented by a power-law index, control the 
fluctuation of material properties over the length or thickness of the nanorod. Reza and Hassan [41] 
investigated axially functionally graded nanorods. Surface energy factors such as surface stress, surface 
density, and surface Lame constants are important because they affect the non-homogeneous governing 
equations of motion and the resulting nanorod frequencies. Similarly, Shishesaz and Hosseini [42] 
investigated the mechanical behavior of functionally graded nano-cylinders under radial pressure and 
found that the material inhomogeneity index has a substantial impact on radial and circumferential 
stress. Shishesaz et al. [43] investigated functionally graded nanodisks, finding that the material 
inhomogeneity parameter effects the magnitudes and peak values of high-order stresses, particularly 
under heat loads. Changjian et al. [44] found that the vibration behavior of functionally graded Euler 
nanobeams decreases with an increase in the gradient index, demonstrating the susceptibility of 
vibrational features to material gradation. Ebrahimi and Barati [45] Furthermore, the gradient index 
influences the buckling and free vibration of functionally graded nanobeams sitting on elastic 
foundations, changing the nanobeam's shear deformation and overall stability. Arefi [46] discovered that 
the wave propagation characteristics in functionally graded piezoelectric nanorods are similarly 
influenced by material property gradation, affecting the electromechanical response. Dang-Van et al. [47] 
discovered that the nonlinear vibration responses of functionally graded nanobeams are also reliant on 
the power-law index, which influences the nonlinear frequency and overall dynamic behavior. 
Furthermore, Aydogdu et al. [48] observed that axial grading in nanorods and beams, modeled using 
stress gradient elasticity theory, exhibits significant changes in frequency when compared to constant 
nonlocal parameter situations. Pham [49] discovered that variations in nonlocal characteristics, which 
depend on the material constituents across the thickness, have a considerable impact on the free 
vibration response of functionally graded nanoplates. Finally, inhomogeneity factors play an important 
role in determining the mechanical and vibrational properties of functionally graded nanorods, which 
influence their performance in a variety of applications. 
As previously stated, many researchers have conducted thermo-mechanical vibration analyses of 
functionally graded carbon nanotube reinforced composite rods in the literature. However, none of the 
researchers have studied the combined impacts of inhomogeneity parameters, stiffness, and magnetic 
forces on the micro/nano rod. For the first time, an analytical equation for a carbon nanotube reinforced 
nanorod with distinct physical properties under various boundary circumstances is examined. These 
findings help to develop engineering applications in magneto-mechanical systems. 
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Nomenclature 

L    length of the nanorod  
d   diameter of the nanorod  

  mass fraction of CNT 
  density of CNT 

  mass density 
k, p    inhomogeneity parameters  
η1,  η3  efficiencies of CNT reinforced composite rod 
VCNT, Vp  volume fractions of CNT and matrix  
E11

CNT  Young’s modulus of CNT in X-direction  
G12

CNT  shear modulus of CNT in X-direction 
EP   youngs modulus of polymer matrix 
GP   shear modulus of polymer matrix 
ρ          mass density of the nanocomposite rod 
ν12  equivalent Poisson’s ratio of the nanocomposite rod 
α11  coefficient of linear thermal expansion of the nanocomposite rod 
     T0  ambient temperature  
ΔT    temperature difference 
P0, P-1, P1, P2 and P3 temperature coefficients  
u   component of motion equation along X axes 
v   component of motion equation along Y axes 
w   component of motion equation along Z axes 
ν   poison’s ratio  
t   time constant 

    nonlocal stress 
  fourth order elasticity tensor  

   nonlocal scale parameter 
Km   stiffness of the external elastic medium 
F   applied external force per unit length  
A   cross-sectional area of the nanocomposite rod 
Sxx, Syy, Szz   classical axial stresses 
Sxy, Syz, Sxz classical shear stresses 

   polar moment of inertia 
Fm  external magnetic force acting on the CNT reinforced composite nanorod 
FE  external elastic force acting on the CNT reinforced composite nanorod 

      mode number 
Hx, Hy  magnetic flux along X and Y direction 

  natural frequency of the system 
C-C  clamped-clamped 
C-F  clamped-free 

 
2. Mathematical Formulation 
2.1. Configuration of CNT reinforced composite nanorod 
A schematic of CNT reinforced composite nanorod considered in the present problem is shown in Fig 1. 
The longitudinal and lateral directions of the composite rod are represented by the X- Y- and Z-axes, 
respectively. The length of nanorod is L and its diameter is d. 

The total volume fraction of CNTs ( ) is calculated using the following empirical equation [4] 

      (1) 
where ,  and  are the mass fraction, density, and mass density, respectively, of the polymer 
matrix. 
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Fig 1. A schematic of CNT-reinforced composite nanorod under the effects of external elastic matrix and 

magnetic field 
 
2.2 Axial Functional Gradation 
The composite nanorod is composed of single-walled carbon nanotubes, whose distribution is smoothly 
graded in the X-direction from the right surface with 100% CNTs to the left surface with 100% epoxy. 
Using the power law function with two inhomogeneity parameters k and p, the range is from 0 to 1 
(0≤p≤1 and 0≤k≤1). Where k secures the CNT’s intensity along the length direction, while the 
inhomogeneity parameter p ensures the parabolic distribution as shown in Fig. 2. 
The volume fraction of axially functionally graded CNTRC can be expressed as 

                             (2)  

 

 
Fig. 2(a) 

 

 
Fig. 2(b) 

 
Fig. 2 Variation of CNTs volume fraction in composite nanorod for inhomogeneity parameters (a) k and 

(b) p 
 
By using Rule of mixture to homogenize the characteristics of materials involved in composite rod as a 
single material [4] 
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                                                                                                                                             (3) 
where η1 and η3 are the efficiencies of CNT reinforced composite rod, VCNT, Vp are the volume fractions of 
CNT and matrix, respectively, E11

CNT is the Young’s modulus of CNT in X-direction, G12
CNT is the shear 

modulus of CNT in X-direction. EP and GP are the Youngs modulus and shear modulus of polymer matrix. 
Further, mass density, equivalent Poisson’s ratio and coefficient of linear thermal expansion of the 
nanocomposite rod are written as 

                                         (4) 

                                                                          (5)

                            (6) 
The relationship between volume fractions of CNT and polymer matrix is written as 

                                                         (7) 
Let us assume that the temperature distribution is uniform over the surface of the CNT reinforced 
nanocomposite nanorod. It is also possible to analyze the mechanical properties of SWCNT as a function 
of the temperature. The temperature dependent material properties of CNT by Touloukian principle [5] is 
given by the following expression 
                         (8) 
where T=T0+ ΔT here T0=300 K at ambient temperature and ΔT is the temperature difference. The 
temperature coefficients P0, P-1, P1, P2 and P3 are as shown in the table 1 
 

Table 1. Temperature coefficients 
Parameter P0 P-1 P1 P2 P3 

E11
CNT (TPa) 6.3998 0 -6.77898x10-4 1.16097x10-6 -6.96636x10-10 

α11 (10-6/0C) -1.12515 0 -2.63678x10-2 2.56588x10-5 -1.00986x10-8 

 11
CNT 0.175 0 0 0 0 

 
2.3 Governing Equation of Motion 
The stress-strain relations are fundamental for obtaining the governing equation of motion of the Love-
Bishop nanorod. In a simple rod analysis, the complexity will be decreased by ignoring the lateral effects; 
however, in the Love-Bishop problem, it will be necessary to obtain an exact analysis. The components of 
displacement equations are taken from Civalek et al. [6] 

            (9) 

where u, v and w are the components of motion equations along X, Y and Z axes respectively. ν is the 
poison’s ratio and t is time constant. The constitutive equation of nonlocal elasticity model is given as  

         - ( / ) =              (10) 
where  is nonlocal stress,  is the fourth order elasticity tensor and  is nonlocal scale 
parameter. The dynamic equilibrium equation of the nanocomposite rod is given as [21] 

              (11) 
where Km is the stiffness of the external elastic medium, F is the applied external force per unit length and 
A is the cross-sectional area of the nanocomposite rod. Using Eq. (9), the classical stresses can be written 
as 

  ,   ,   

Syy = Szz = Syz =o             (12) 
Where Sxx, Syy, Szz  and Sxy, Syz, Sxz are classical axial and shear stresses respectively. 

The nonlocal stresses can be written as [6] 

  

 

                    (13) 

The equation of motion can be obtained by substituting Eq. (13) in Eq. (12) as 
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   where  is the polar moment of inertia.         
(14)  
The external magnetic and elastic forces acting on the CNT reinforced composite nanorod are given as 

          

                                         (15) 
The total external force acting on the composite nanorod is F = Fm + FE Substituting these forces in Eq. 
(14) leads to the Love-Bishop governing equation of the present CNT reinforce composite nanorod as 

              
(16) 
By equating the nonlocal parameter (e0a) to zero, the above equation leads to a classical Love-Bishop 
model. 
 
3. Analytical Solutions  
By taking into consideration of the harmonic type of wave solution for the displacement field in 
dimensionless form to analyze the dispersion properties of the CNT reinforced composite love-bishop 
nanorod. 
                                                        (17) 
Substituting the above equation into the governing equation of motion and solving for natural frequency 
for nontrivial solution of (u ̂) as 

                           (18) 

By using the boundary conditions for Clamped-Clamped (C-C) and Clamped-Free (C-F) nanorod from [5], 

For C-C:  , whereas C-F:  

Finally, for free vibration in clamped-clamped boundary condition the natural frequency of the system 
will be 

                                          (19) 

Similarly, for clamped-free boundary condition 

                         (20) 

At the end, the various numerical experimental data already available in the literature are used to study 
the effect of the external magnetic field, stiffness, mode number, slenderness ratio, temperature variation, 
volume fraction and inhomogeneity parameters on the natural frequency of the system. 
 
4. RESULT AND DISCUSSION 
Numerical experiments were carried out by varying the volume fraction of CNT by 0.11, 0.14, and 0.28, 
with efficiencies of CNTRC rods of 0.149, 0.150, and 0.149, respectively. The solid lines in the figure 
represent the local parameter, whereas the dashed line represents the nonlocal parameter effect. The 
effects of varying the parameters on the axial vibration of the nanocomposite rod are discussed below.  
For the present analysis, a (10,10) SWCNT is considered as the reinforcement with the Vodenitcharova-
Zhang Criterion [6] with an effective thickness h = 0.067 nm, radius R = 0.68 nm and length L = 9.26 nm. 
The Thermo-mechanical properties of (10,10) SWCNT are given by [4] as shown in Table 2. 
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Table 2. Mechanical properties of polymer matrix PmPV based on temperature variation 
T(K) E11

CNT (TPa) ν11
CNT α11

CNT (10-6)/K) 

300 5.6466 0.175 3.4584 

400 5.5679 0.175 4.1496 

500 5.5308 0.175 4.5361 

700 5.4744 0.175 4.6677 

1000 5.0330 0.175 4.2841 

 
The Polymer matrix PmPV properties are given by: Young’s modulus EP=(3.51-0.0047T) GPa, linear 
thermal expansion coefficientαP=45 (1+0.0005 ΔT)×10-6/℃, Poisson’s ratio νP=0.34 and mass density of 
the matrix ρP=1150 kg/m3. 
 

 
Fig 3. Variation of natural frequency as a function of inhomogeneity parameters k & p in local and 

nonlocal environment 
 

 
Fig 4. Variation of natural frequency as a function of mode number with inhomogeneity parameter ‘k’ in 

local and nonlocal environment 
 
The natural frequency of a nanorod is affected by several factors, including its material characteristics, 
geometrical dimensions, and environmental circumstances. While studying, the natural frequency of a 
nanorod fluctuates with inhomogeneity parameters in local and nonlocal settings such as material 
composition, geometrical variations, boundary conditions, scale effects, and surface effects. Local and 
nonlocal inhomogeneities can coexist, and the combined influence must be considered accurately forecast 
the natural frequency. Advanced modelling techniques are used to account for both material and 
geometrical changes, as well as experimental validation. Fig.3 shows the effect of the inhomogeneity and 
nonlocal parameters on the axial vibration. Keeping n=1, V*CNT=0.28 and T=300 k by increasing the p and 
k parameters, the local natural frequency increases gradually when compared to the nonlocal natural 
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frequency. Similarly, the natural frequency of a nanorod as a function of mode number in relation to an 
inhomogeneity parameter k in both local and nonlocal environment affects vibrational characteristics 
throughout the nanorod in various modes. The natural frequency of a nanorod is calculated as a function 
of mode number and inhomogeneity parameter 'k' by considering both local and nonlocal effects. Fig.4 
shows the effect of axial frequency for different mode numbers with data1 as n=1, p=0.5, e0a=o and data2 
as n=1, p=0.5, e0a =1 and data3 as n=2, p=0.5, e0a =0 and data4 as n=2,p=0.5 and e0a =1. The Natural axial 
frequency was gradually increased by increasing the number of modes. 
 

 
Fig 5. Effect of L/d ratio on natural frequency with inhomogeneity parameter ‘k’ in local and nonlocal 

environment 
 

 
Fig 6. Influences of volume fraction of reinforcement  V*CNT on natural frequency in local and nonlocal 

environment 
 
The length-to-diameter (L/d) ratio and the inhomogeneity parameter 'k' figure out natural frequency in 
various contexts. At large L/d ratios, the nanorod acts more like a beam, in such circumstances bending 
modes dominate, and natural frequencies tend to fall, as the L/d ratio increases due to the structure's 
increased flexibility. Local inhomogeneities can result in large changes in natural frequencies. The 
frequencies may differ from those predicted by classical beam theory due to changes in local stiffness. The 
variation in axial frequency in terms of local and nonlocal parameters is elaborated, keeping its mode 
number=1, V*CNT =0.28,T=300k by varying the l/d ratio. From fig 5: It is clear that, the axial natural 
frequency is more in the local parameter when compared to a nonlocal parameter that is also 
proportional to the l/d ratio; however, if the k value is up to 0.2, there is a chance of huge variation in the 
natural frequency beyond that, the variation of frequency is negligible. Similarly, the percentage of the 
nanorod's volume occupied by inclusions or reinforcing elements is known as the volume fraction of 
reinforcement. The reinforcement has the potential to enhance mechanical attributes, like strength and 
rigidity, which could impact the nanorod's inherent frequency. To fully capture the intricate relationships 
between material properties and structural dynamics, the impact of reinforcement volume percent on 
natural frequencies necessitates a comprehensive method that combines theoretical models, numerical 
simulations, and experimental validation. The local frequency is higher than the nonlocal frequency when 
the parameters n=1, l/d=20, p=0, T=300k with the variation of k and volume fraction of CNTCR are shown 
in fig.6. If the k value is up to 0.5, there is a variation in the frequency beyond that value, and the 
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frequency is marginally dependent on the V*CNT.  

 
Fig 7. Effect of temperature variation on natural frequency with inhomogeneity parameter ‘k’ in local and 

nonlocal environment 
 

Young's modulus, density, and internal damping are among the material qualities that are influenced by 
temperature changes. Young's modulus typically decreases as temperature rises, although dimensional 
changes are brought about by thermal expansion. The effects of temperature and inhomogeneity may not 
be as noticeable for shorter and thicker nanorods, but temperature still influences the dimensions and 
material properties, which can alter the natural frequency. Fig.7 shows that there is a small variation in 
frequency with the increase in temperature. Here, frequency variation is inversely proportional to 
temperature. By changing the local stiffness distribution along the nanorod, the parabolic distribution of 
reinforcement in the local environment modifies the natural frequencies. Higher local stiffness resulting 
from higher reinforcement fractions in particular places might raise the natural frequencies, particularly 
for larger values of p. The effective nonlocal parameter in a nonlocal environment is influenced by the 
reinforcement distribution, which in turn affects the overall vibrational response. Natural frequencies are 
altered by variations in both nonlocal interactions and local stiffness. These modifications result in 
different natural frequencies. Fig 8 shows the effect of the inhomogeneity parameter p and polymer 
matrix on the frequency of the CNTRC Love-Bishop nanorod. In this case, the PmPV polymer matrix gives 
the frequency which is a little bit higher when compared to the PMMA polymer matrix.  
 

 
Fig 8. Effect of parabolic distribution of reinforcement ‘p’ on natural frequency along with inhomogeneity 

parameter ‘k’ in local and nonlocal environment 
 
We must consider the combined effects of spatially varying reinforcement, magnetic effects, and nonlocal 
elasticity to analyze the influences of a parabolic distribution of carbon nanotubes (CNTs) and magnetic 
flex on the natural frequency of a nanorod, along with the inhomogeneity parameter ‘k’ in a nonlocal 
environment. The term ‘magnetic flex’ describes how an external magnetic field affects a nanorod and can 
change its mechanical characteristics. The distribution and alignment of CNTs can be influenced by the 
magnetic field, which in turn affects the mechanical response of the nanorod. Fig 9 shows that magnetic 
flex plays a crucial role on the natural frequency of the CNTRC nanorod. Frequency is proportional to 
magnetic flex and the inhomogeneity parameter p.    
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Fig 9. Influences of parabolic distribution of CNT’s and magnetic flex on natural frequency along with 

inhomogeneity parameter ‘k’ in nonlocal environment 

 
Fig 10. Effect of p and magnetic permeability on frequency 

 
While magnetic permeability influences these qualities and can vary the natural frequencies, the 
inhomogeneity parameter 'p' in the local environment affects natural frequencies by changing the local 
material properties. Greater changes in stiffness are caused by higher 'p' values and higher natural 
frequencies are usually associated with enhanced magnetic permeability. However, in a nonlocal setting, 
the natural frequency spectrum is altered because of the effects of both magnetic permeability and p on 
the effective nonlocal parameter ‘k’. In general, higher magnetic permeability and inhomogeneity result in 
higher natural frequencies. Fig 10 shows that magnetic permeability and inhomogeneity parameters are 
proportional to the natural frequency of the CNTRC nanorod, keeping its remaining parameters as 
constants. The variation in frequency is not uniform for given ranges of magnetic permeability 
 

 
(a) 
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(b) 

Fig :11(a) & 11(b) Effect of natural frequency on variation of thermal conductivity and inhomogeneity 
parameter ‘k’ without and with parabolic distribution of reinforcement ‘p’. 

 
In the absence of Parabolic distribution, the natural frequency is mostly determined by thermal 
conductivity, and it influences the density and effective modulus of the nanorod. Through thermal 
stresses and variations in material qualities, changes in thermal conductivity can indirectly change the 
natural frequency. Heat conductivity has a more complicated effect when there is a parabolic distribution 
because it interacts with the parabolic reinforcement distribution. Because of the combined effects of 
thermal stresses and material characteristics, this can result in naturally occurring frequencies that vary 
spatially. Figs. 11(a) and 11(b) demonstrated that stiffness and inhomogeneity parameters have much 
greater effects on the frequency of the system keeping δ=1, Hy=2e9 A/m. On increasing the values of k, p 
and Km the natural frequency of the CNTRC also increases in C-C boundary condition. 
 

 
Fig 12. Effect of parabolic distribution of reinforcement ‘p’ and boundary conditions on natural frequency 

along with inhomogeneity parameter ‘k’ 
 

 
Fig 13. Effect of inhomogeneity parameter ‘k’ on natural frequency along with parabolic distribution of 

CNT’s. 
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The natural frequency of a structure is influenced by complicated interactions between the boundary 
conditions (clamped-free and clamped-clamped), the inhomogeneity parameter and the parabolic 
distribution of reinforcement. The vibrational performance of engineering structures can be significantly 
improved by considering and optimizing these parameters. The variation of natural frequency in 
response to an increase in inhomogeneity parameters while keeping remaining parameters constant is 
demonstrated in fig.12 for C-C and C-F boundary conditions. The inhomogeneity parameter k effect is 
considerable when p=0. If the p value is increased to 1, then the natural frequency is more variation for 
small values of k and it is linear by increasing the k value. Under the influence of inhomogeneity 
parameters C-F is having more frequency when compared to C-C boundary conditions. Several complex 
interactions must be examined to determine how the inhomogeneity parameter ‘k’ affects the natural 
frequency of structures that use a parabolic distribution of CNTs as reinforcement. Stiffness variation 
along the structure is assumed to be more significant with a greater inhomogeneity parameter. Natural 
frequency will naturally rise in parts with higher stiffness and fall in regions with lower stiffness. sFig.13 
reveals that the natural frequency is increased by increasing the inhomogeneity parameter k. Also, for 
small values of the inhomogeneity parameter p, the effect is more on the natural frequency of the CNTRC 
nanorod. 
 
5. CONCLUSIONS 
Based on Eringen’s nonlocal elasticity theory, the natural frequency of the nanorod with an external 
magnetic field was analyzed   by adopting the Love-Bishop theory. After completion of the analysis, it was 
concluded that 
1. Nonlocal analysis of the nanorod gives less frequency than the local model. 
2. Out of two different matrix, PmPV matrix gives more frequency than the PMMA. 
3. The high volume fraction of reinforcement, inhomogeneity parameters (k, p), magnetic flex, magnetic 
permeability and stiffness are proportional to the natural frequency. 
4. The natural frequency of nanorod is inversely proportional to size effect and temperature. 
5. The Stiffness effect is more when compared to remaining parameters. 
6. Clamped-Free have a higher frequency than the Clamped-Clamped boundary condition. 
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