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ABSTRACT 
Blockchain technology's efficiency are highly influenced by the applied consensus system. Especially in 
large-scale networks, conventional consensus algorithms may struggle with issues including too high 
energy consumption and latency. Combining Reinforcement Learning (RL) with innovative optimisation 
techniques seems to have major advantages recently shown. Present blockchain consensus approaches 
define by inefficiencies in resource utilisation and low transaction processing rates. These limitations 
reduce the real-time speed and scalability of blockchain networks. Maximising these techniques to raise 
their efficiency while maintaining security presents a huge challenge. This article proposes Reinforcement 
Learning-Based Deep FEFM (Feature Extraction and Fusion Mechanism), a fresh approach to optimise 
blockchain consensus processes. The method combines RL with a feature extraction and fusion technique 
based on deep learning. The deep FEFM enhances the consensus parameter dynamically optimisation 
learning of blockchain network states. Methods of non-linear analysis are used to assess and enhance the 
process of optimisation. Experiments on a simulated blockchain network motivated variations in 
transaction loads and node configurations. The proposed solution reduced latency by 25% and 
transaction throughput by 35% compared to traditional consensus methods.  
 
Keywords: Block chain, Consensus Mechanism, Reinforcement Learning, Deep Learning, Non-Linear 
Analysis 
 
1. INTRODUCTION 
Blockchain technology has revolutionised many different areas by providing distributed, safe, open ways 
for transaction recordkeeping [1]. Fundamental to blockchain systems, the consensus mechanism 
provides agreement among distributed nodes on the state of the ledger [2]. Both widely accepted 
traditional consensus methods Proof-of- Work (PoW) and Proof-of- Stake (PoS) have special security and 
efficiency-oriented advantages [3]. But as blockchain networks develop more complex and bigger, these 
systems usually suffer with scalability, energy consumption, and transaction throughput, which becomes 
ever more crucial [4]. 
Consensus methods on blockchain technology present essentially three difficulties: 
 As blockchain systems develop, maintaining performance and efficiency is challenging [5]. Growing 

numbers of nodes cause conventional systems to show appreciable performance degradation [6]. 
 Especially PoW is well-known for its high energy consumption, which causes environmental 

problems and running expenses [7]. 
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 High transaction confirmation times may impair general blockchain performance and user 
experience. 

 Maintaining network integrity and trustworthiness requires good performance in the presence of 
either hostile or faulty nodes [8]. 

The main focus of this work is the optimisation of blockchain consensus mechanisms to overcome 
conventional method limitations [9]. Although great fault tolerance and scalability [10] the goal is to raise 
performance metrics including throughput, latency, and energy economy. Current methods find it difficult 
to balance these components well, which produces less than perfect performance in useful applications 
[11]. 
The primary objectives of this research are: 
 Reinforcement Learning-Based Deep Feature Extraction and Fusion Mechanism (FEFM), maximise 

blockchain consensus parameters. 
 To acquire faster transaction confirmation times, cut latency, reduce energy use, and increase 

throughput. 
 To design the mechanism to maintain dependability and resilience in the presence of either faulty or 

hostile nodes. 
The novelty of this research lies in Deep Learning techniques with Reinforcement Learning (RL) to 
provide a fresh approach to optimise blockchain consensus processes. Although RL is used in many 
different disciplines, its contribution in improving blockchain consensus parameters is somewhat 
unknown. By means of Deep Feature Extraction and Fusion Mechanisms, the proposed method provides a 
full feature representation of the blockchain network which is subsequently used by the RL agent to guide 
judgements on consensus parameters. This approach solves the constraints of existing methods by 
providing a data-driven, adaptive solution to consensus optimisation. 
The contributions of this research are: 
 This paper presents a new paradigm in consensus optimisation by aggregating deep learning with 

RL to maximise blockchain consensus mechanisms. 
 Establishing new performance criteria, the proposed method greatly improves transaction 

confirmation time, latency, energy consumption, and throughput. 
 Using large-scale blockchains, the method ensures considerable resilience against faulty nodes and 

preserves performance as the network develops, therefore addressing significant problems in 
applications. 

 
RELATED WORKS 
Recent advances in blockchain technologies have motivated research on hybrid consensus models 
including machine learning (ML) techniques. In dynamic network conditions and cyber-attack 
vulnerability, conventions for consensus such Proof-of- Work (PoW) and Proof-of- Stake (PoS) suffer 
much. In response, [12] proposes hybrid consensus models to fix these shortcomings integrating ML 
techniques. The paper proposes many hybrid approaches including Delegated Proof of Stake paper 
(DPoSW) and Proof of CASBFT (PoCASBFT) to improve security, trust, and resilience in consensus 
protocols. These systems show improved security and efficiency by applying ML for cyber-attack 
prediction, anomaly detection, and feature extraction. Emphasising their energy economy and 
responsiveness to dynamic conditions, the research also shows the useful implementation of these hybrid 
models on the ProximaX blockchain platform Still, issues including scalability, latency, and resource 
constraints highlight the need of more improvement and sensible application of ML-based consensus 
models. 
Blockchain consensus mechanisms—especially PoW and PoS—are investigated in [13] by means of state-
space modelling and nonlinear analysis Using nonlinear analysis approaches like bifurcation theory and 
Lyapunov functions, the paper provides a state-space model of consensus dynamics using which one may 
investigate system resilience, performance, and stability. By means of simulations, fundamental flaws 
such as a vulnerability threshold in PoS systems with high stake concentration and a transition point in 
PoW systems where stability declines significantly can be discovered in the research. These findings help 
to build more robust consensus systems since they improve knowledge of the dynamics and likely failure 
spots in blockchain networks. Theoretically, the state-space method offers a way to maximise consensus 
processes, hence improving security and efficiency. 
Energy trading in microgrids—especially for electric vehicles (EVs)—offers challenging issues due of 
changing renewable energy sources and competitive market dynamics. The work in [14] offers a 
Blockchain and Quantum Reinforcement Learning-based Optimised Energy Trading (BQL-ET) model to 
help overcome these challenges. The technology controls energy supply, demand, and cost and a double-
auction process finds optimal market-trading pricing using a consortium blockchain. By transforming the 
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utility maximising issue into a Markov Decision Process (MDP) and applying Quantum Reinforcement 
Learning (QRL) for policy formation, faster convergence and maximum utility with lowered transaction 
confirmation times compared to conventional models are realised. This approach shows how effectively 
blockchain combined with innovative reinforcement learning techniques could maximise system 
efficiency and energy trading. 
Taken as a whole, IoT services provide serious security and privacy concerns including node 
manipulation and hostile assaults in many different fields. [15] suggests, enhanced by blockchain 
technology, an integrated autonomous IoT network inside a cloud architecture to solve these problems. 
The approach generates a heterogeneous autonomous network (HAN), in which case blockchain security 
over a cloud-based architecture manages data. While the Blockchain Adaptive Windowing Meta 
Optimisation Protocol (BAW_MOP) enhances network security, Reinforced Neural Network (RNN) known 
as ClouD_RNN classifies data collected by sensors. Regarding throughput, accuracy, end-to- end delay, 
data delivery ratio, network security, and energy economy, the experimental results show that this 
approach far surpasses current methods. This paper highlights how effectively IoT networks are 
protected by blockchain coupled with advanced machine learning techniques. 
Cognitive Internet of Vehicles (CIoVs) with distributed multi-agent systems suffer with computational 
load imbalance and traffic congestion. [16] proposes a distributed multi-agent reinforcement learning 
(DMARL) algorithm as cooperative path planning and scheduling tool. This system uses mobile edge 
computing (MEC) technology to process jobs near to vehicles, hence lowering latency. Against 
conventional approaches, the simulation results show better load balancing, transit time, and compute 
delay. The work provides proactive load balancing and optimisation of road infrastructues and MEC 
nodes by modelling the communication, traffic situation, and task processing as Markov Decision 
Processes (MDPs) and using Q-learning-based DMARL. This work highlights how blockchain combined 
with reinforcement learning may enable scalable vehicle path planning in cooperative settings to be 
achieved. 
 

Table 1. Summary of Works 
Method Algorithm Methodology Outcomes 
[12] Hybrid 

Consensus 
Algorithms 

Combination of ML techniques with 
various hybrid consensus algorithms 
(DPoSW,PoCASBFT,DBPoS). 

Enhanced security, improved trust, 
robustness; energy efficiency; 
challenges in scalability and latency. 

[13] State-Space 
Modelling 
&Nonlinear 
Analysis 

State-space representation and 
nonlinear analysis (Lyapunov 
functions ,bifurcation theory) of 
consensus dynamics. 

Identified vulnerabilities in PoW 
and PoS; insights for robust 
consensussy stem development. 

[14] Quantum 
Reinforcemen
t Learning 

BQL-ET model using double-auction 
mechanism and consortium 
blockchain; MDP transformed for QRL 
optimization. 

Faster convergence, optimized 
market-trading price, lower 
transaction confirmation time. 

[15] Blockchain & 
ClouD_RNN 

Integrated IoT network with 
blockchain and Reinforced Neural 
Network (ClouD_RNN); BAW_MOP for 
security enhancement. 

Improved throughput, accuracy, 
end-to-end delay ,and network 
security;  enhanced energy 
efficiency. 

[16] Distributed 
Multi-
AgentRL 

DMARL algorithm for path planning 
and scheduling; use of MEC 
technology and MDPs for 
optimization. 

Superior load balance, reduced 
travel time, and lower computation 
latency; effective path planning. 

 
Although blockchain consensus systems have developed, present studies occasionally overlook the 
integration of strong machine learning techniques with non-linear analysis for complete optimisation as 
in table 1. Most solutions for security and efficiency solve them individually rather than in line with a 
unified framework. Combining reinforcement learning, feature extraction, and non-linear optimisation 
can help to increase scalability, fault tolerance, and flexibility of consensus algorithms over many and 
dynamic network conditions. Next research should mostly focus on combining these elements to provide 
more solid, efficient, and versatile blockchain systems. 
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Proposed Reinforcement Learning-Based Deep FEFM 
Combining Reinforcement Learning (RL) with a Deep Feature Extraction and Fusion Mechanism (FEFM) 
allows Reinforcement Learning-Based Deep FEFM to maximise blockchain consensus processes. The 
process comprises in several crucial phases as in figure 1: 

 
Figure 1. Proposed system 

 
Pseudocode: 
#Initialize block chain network simulation 
network =initialize_network() 
#Define feature extraction model 
feature_extractor =initialize_feature_extractor() 
#Define RL agent 
agent =initialize_rl_agent() 
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#Training loop 
for episode in range(num_episodes): 
state=network. get_state() 
features=feature_extractor.extract_features(state) 
fused_features=feature_fusion(features) 
#Choose action based on RL agent's policy 
action=agent.select_action(fused_features) 
#Apply action to network 
network.apply_action(action) 
#Get new state and reward 
new_state=network.get_state() 
reward=calculate_reward(new_state) 
#Update RL agent with new experience 
agent.update_policy(fused_features,action,reward,new_state) 
#Evaluate and refine the RL agent's policy 
evaluate_and_refine(agent, network) 
 
Feature Extraction 
The feature extraction procedure in the Reinforcement Learning-Based Deep FEFM method is absolutely 
essential for understanding the fundamental dynamics and patterns of the blockchain network. The aim is 
to present a whole picture of the network condition together including transaction load, node 
performance, network latency, and other relevant metrics. The RL agent then chooses how best to 
maximise the consensus mechanism using this representation. 
First in feature extraction is raw data gathering from the blockchain network. Let X be the collection of all 

acquired knowledge, where 
1 2{ , , , }n X x x x . Every ix  of them relates to a certain type of data: 

network latency, block size, node processing capacity, transaction throughput. 
 
Step2:Initial Transformation 
Usually high-dimensional, the raw data Xcan include useless or redundant information. Usually, we first 

convert this using a layer in a neural network. Let 
1

W and b1 respectively represent the weight matrix 

and bias vector of the first layer. One can describe the metamorphosis as: 
1 1

1 ( ) h W X b  

 
Step3:Deep Feature Extraction 
More complex patterns and interactions inside the blockchain network are captured by other layers 
building on the fundamental change. Every layer that follows in the deep neural network manages the 
output of one another: 

1( )l l

l l  h W h b  

As the data flows over various layers, the network learns hierarchical aspects from low-level patterns—
e.g., individual node performance—to high-level abstractions—e.g., general network health. 
 
Step4: Feature Fusion 
The last layer L of the deep network's outputs taken together produce the final feature vector f: 

Fusion( )Lf h  

The fusion step can include concatenation, averaging, or a more sophisticated fusion technique like 
attention mechanisms—which stress some features over others depending on their relevance to the 
optimisation goal—as well as others depending on their relevance to the optimisation process. The 
resulting vector f offers a simplified but practical depiction of the blockchain network state. 
 
Step5: Combination with Reinforcement Learning 
After then, the RL agent uses the acquired feature vector fas basis for decisions. The agent's policy π 
hence depends on f: 

( | ) ( | ; )a P a f f  

where, 
a- action (e.g., adjusting consensus parameter),and 
θ – parameters of the policy network. 
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Figure 2. Process flow of FE 

 
Pseudocode for Feature Extraction 
#Step1: Initialize the blockchain network and feature extraction model 
network=initialize_network() 
feature_extractor=initialize_feature_extractor() 
#Step2:Collect raw data from the blockchain network 
def collect_data(network): 
raw_data=network.get_state_data() 
return raw_data 
#Step3: Initial Transformation using the first layer of the neural network 
definitial_transformation(raw_data,weights1,bias1,activation_function): 
h1=activation_function(weights1@raw_data+bias1) 
returnh1 
#Step4: Deep Feature Extraction through subsequent layers 
def deep_feature_extraction(h1,layers,activation_function): 
h_l=h1 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 5, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 124                                                                    R.Suganya et al 118-130 

for layer in layers: 
h_l=activation_function(layer.weights@h_l+layer.bias) 
return h_l 
#Step5: Feature Fusion to create the final feature vector 
def feature_fusion(h_l): 
fused_features=fusion_function (h_l)#Fusion function could be concatenation, averaging,etc. 
return fused_features 
#Main feature extraction function 
defextract_features(network, feature_extractor): 
#Collectrawdatafromthenetwork 
raw_data=collect_data(network) 
#Performinitialtransformation 
h1=initial_transformation(raw_data,feature_extractor.weights1,feature_extractor.bias1,feature_extractor.
activation_function) 
#Perform deep feature extraction 
h_l=deep_feature_extraction(h1,feature_extractor.layers,feature_extractor.activation_function) 
#Perform feature fusion 
final_features=feature_fusion(h_l) 
return final_features 
#Example of usage in a training loop 
for episode in range(num_episodes): 
#Get the current state of the network 
current_state=network.get_state() 
#Extract features from the current state 
features=extract_features(current_state,feature_extractor) 
#Use extracted features in RL agent for decision making 
action=rl_agent.select_action(features) 
network.apply_action(action) 
#Continue with the rest of the RL process... 
 
Feature Fusion 
Designed to combine numerous feature representations into a full vector reflecting the basic 
characteristics of the blockchain network state, the proposed Reinforcement Learning-Based Deep FEFM 
technique hinges fundamentally on feature fusion. This phase is essential for providing the Reinforcement 
Learning (RL) agent with a larger and more instructional set of inputs so enhancing its performance. 
 
Step1:Feature Extraction and Representation 
After the first transformation and deep feature extraction procedures, the neural network creates 

numerous feature vectors 1 2, , , Lh h h reflecting different degrees of abstraction and hierarchical 

information about the network state lh . Originating from many layers of the network, these vectors have 

numerous aspects related to blockchain data. 
 
Step2: Combining Features 
Feature Fusion aims to combine many feature vectors into one, logical form. Concatenation is a common 

technique in which case characteristics are only joined to produce a long vector. Two feature vectors 1h

and 2h  concatenated mathematically is depicted as: 

1 2[ ; ]concat h h h  

 
Step3: Dimensionality Reduction 
One can regulate the dimensionality of the fused feature vector using either a dimensionality reduction 
technique such Principal Component Analysis (PCA) or a fully linked layer with a non-linear activation 
function. Projecting the high-dimensional concatenated vector onto a lower-dimensional space one often 
utilises a linear transformation followed by a non-linear activation function: 

( )reduced fusion concat fusion h W h b  
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This stage ensures proper size and that the end feature vector reducedh still preserves the most relevant 

information. 
 
Step4: Fusion with Attention Mechanisms 
More techniques let one weight different feature vectors depending on their significance using attention 

procedures. Regarding every feature vector lh , for example, one may obtain the attention score by: 

softmax( )l attention l attention  W h b  

Thus calculated is the last fused feature vector as: 

fused l l

l

h h  

This weighted sum enables the model focus on the most crucial elements and limit the effect of less 
critical ones. 
 
Reinforcement Learning Agent 
Learning from interactions with the network environment helps the proposed Reinforcement Learning-
Based Deep FEFM Agent to optimise the blockchain consensus process. The agent decisions improve 
performance indicators like throughput, latency, and energy economy based on the feature 
representations given by the Feature Extraction and Fusion Mechanism. 
 
Step1:Input Representation 
Blockchain network state is captured by a feature vector f, input for the RL agent. Generation by the 
Feature Extraction and Fusion process, this feature vector contains significant parts of the network state 
including transaction load, node performance, and network latency. 
 
Step2:Action Selection 
Drawing on a policy π, the RL agent bases actions on the input feature vector. One can see the policy as 
deterministic or random. Following a stochastic approach, the action an is chosen within a probability 
range: 

argmax ( | ; )aa a 
 f  

where 

( | ; )a  f  - probability of taking action a′ 

f- feature vector and 
θ - policy parameters. 
In a policy network—say a neural network—the action probabilities are determined as, for example: 

( | ; ) softmax( )policy policya   f W f b  

where Wpolicy and bpolicy –weight matrix and bias vector of the policy network. 
 
Step3:Interaction with Environment 
Once it decides upon one, the RL agent stamps an action a on the blockchain network. The surroundings, 
or network, replies by adjusting to a new condition f′ and presents a reward r. The reward function 

( , )R af  evaluates the success of the chosen action depending on performance criteria including energy 

savings, delay reduction, or increase of throughput: 

( , )r R a f  

The updated network conditions shown in the new state f′ follow from the application of the action. 
 
Step4: Policy Update 
Reacting to seen transition and received reward, the RL agent modifies its approach. This version 
employs algorithms including Q-Learning or Policy Gradient methods. Policy gradient approaches modify 
the policy parameters θ to maximise the expected reward. We derive the expected reward J(θ) gradient in 
respect to the policy parameters as follows: 

 ,( ) log ( | ; ) ( )aJ a r b     f fE  

where 
b – baseline to reduce variance in there ward estimation. 
The RL agent investigates various activities throughout several training sessions and learns from the 
resulting rewards and state changes. The agent's policy converges over time to an optimal or near-
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optimal strategy maximising long-term benefits and enhancing the blockchain consensus mechanism 
performance. 
 

 
Figure 3. Process Flow of Reinforcement Learning Agent 
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Pseudocode for Reinforcement Learning Agent 
#Initialize the blockchain network, feature extractor, and RL agent 
network=initialize_network() 
feature_extractor=initialize_feature_extractor() 
rl_agent=initialize_rl_agent() 
#Define there ward function 
defer ward_function(state, action): 
#Compute there ward based on the state and action 
return compute_reward(state,action) 
#Define the policy update function (e.g.,Policy Gradient) 
def update_policy(rl_agent,features,action,reward,next_features): 
#Compute the advantage function or return 
advantage=reward-baseline 
#Compute the policy gradient 
gradient=compute_policy_gradient (features, action, advantage) 
#Update the policy parameters 
rl_agent.update_parameters(gradient) 
#Training loop 
for episode in range(num_episodes): 
#Collect initial state from the network 
initial_state=network.get_state() 
#Extract features from the initial state 
features=extract_features (initial_state,feature_extractor) 
#Select action based on the policy 
action=rl_agent.select_action(features) 
#Apply action to the network 
network.apply_action(action) 
#Get new state and reward from the network 
new_state=network.get_state() 
reward=reward_function(initial_state,action) 
#Extract features from the new state 
next_features=extract_features(new_state,feature_extractor) 
#Update the policy based on the experience 
update_policy(rl_agent, features, action, reward, next_features) 
#Continue with the rest of the RL process (e.g.,logging, evaluation) 
#Final evaluation of the learned policy 
evaluate_policy(rl_agent, network) 
 
Non-Linear Optimization in the Proposed Method 
Reinforcement Learning-Based Deep FEFM for Blockchain Consensus Mechanism Optimisation depends 
on non-linear optimisation to aid to refine the consensus parameters so obtaining higher network 
performance. Non-linear optimisation techniques are applied to manage challenging optimisation 
situations whereby the objective function or constraints are non-linear in blockchain networks with 
numerous interacting elements. To solve the non-linear optimisation problem, sequential quadratic 
programming (SQP) among other approaches is used. It modulates the x values iteratively to find the 
optimal choice. For example, in a gradient-based approach the algorithm updates the parameters by 
combining the gradients of the restrictions ∆gi(x) and ∆hj(x) together with the gradient of the objective 
function ∆f(x). One may present the iterative update rule as follows: 

1 ( )k k k kf   x x x  

where 
αk – step size atiterationk. 
The approach continues until convergence criteria, such a small change in the goal function or parameter 
values, are satisfied. One checks a solution x∗ to see if it meets performance criteria and restrictions. If 
necessary, more polishing could help to solve any issues or improve the response. This can demand 
executing the algorithm under multiple scenarios or adjusting the optimisation settings. 
 
Performance Evaluation 
The Reinforcement Learning-Based Deep FEFM approach was evaluated using an experimental 
environment including computer resources and simulation tools. The simulation was run using a Python 
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application, a sophisticated simulator able to reproduce different consensus systems and their 
performance. The tests were carried out on high-performance computer systems supplied with Intel Xeon 
CPUs and NVIDIA RTX 3090 GPUs in order to satisfy the computational demands of deep learning and 
optimisation duties. The proposed approach was assessed using six primary benchmarks: throughput, 
latency, energy utilisation, transaction confirmation time, fault tolerance, and scalability. These 
benchmarks matched several contemporary consensus systems including PoCASBFT, PoW, PoS, and 
ClouD_RNN. 
 

Table 2: Experimental Setup/Parameters 
Parameter Value 
Number of Nodes 50 
Network Topology Random Graph 
Block Size 1MB 
Block Time 10seconds 
Transaction Fee 0.01ETH 
Transaction Load 1000transactions/sec 
Simulation Duration 24hours 
Training Epochs 1000epochs 
Learning Rate 0.001 
Batch Size 32 
Feature Vector Dimensionality 128 
Hidden Layers in Feature Extractor 4 
Policy Network Type DeepQ-Network 
Exploration Strategy Epsilon-Greedy 
Discount Factor(Gamma) 0.99 
Regularization Parameter 0.01 

 
 

 
Figure 4: Evaluation against various data split rate 

 
The experimental results reveal that the proposed method significantly surpasses current consensus 
mechanisms: PoCASBFT, PoW, PoS, and ClouD_RNN across several significant performance parameters as 
shown in figure 4. Throughput is the volume of transactions managed in one second. On the training set, 
the recommended approach completed 1600 transactions/sec; on the testing set, 1550; on the validation 
set, 1580. Indicating better processing capacity, this surpasses PoCASBFT (1500 transactions/sec), PoW 
(800 transactions/sec), PoS (1200 transactions/sec), and ClouD_RNN (1300 transactions/sec). The 
proposed method had lowest latency, that is, the time required for transaction processing, with 140 ms 
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during training, 135 ms in testing, and 138 ms in validation. This is especially less than PoCASBFT (150 
ms), PoW (300 ms), PoS (200 ms), ClouD_RNN (180 ms), thereby presenting speedier transaction 
handling. Kilowatt-hours (kWh) define energy usage. The recommended strategy used the least of all 
others with 40 kWh in training, 38 kWh in testing, and 39 kWh in validation. PoCASBFT underlined the 
energy efficiency of the recommended strategy by using 50 kWh, PoW 120 kWh, PoS 70 kWh, and 
ClouD_RNN 60 kWh. Transaction confirmation times show the typical length of time a transaction takes to 
be verified. The proposed technique achieved an average of 18 seconds in training, 17 seconds in testing, 
and 17.5 seconds in validation outperforming PoCASBFT (20 seconds), PoW (40 seconds), PoS (30 
seconds), and ClouD_RNN (25 years). Fault Tolerance was highest for the suggested technique at 95% in 
training, 94% in testing, and 94.5% in validation when PoCASBFT (90%), PoW (80%), PoS (85%), and 
ClouD_RNN (87%), were compared. This exhibits better resistance to faulty nodes. With just 10% 
performance loss with 100 nodes, the proposed method has scalability best of all; PoCASBFT (15%), PoW 
(30%), PoS (20%), and ClouD_RNN (18%). This shows as the network expands better consistency of 
performance. 
 
CONCLUSION 
The experimental results show how well the proposed Reinforcement Learning-Based Deep FEFM 
approach optimises blockchain consensus mechanisms. When compared to present methods including 
PoCASBFT, PoW, PoS, and ClouD_RNN, the proposed method demonstrates quite significant gains across 
several major performance metrics. Its exceptional throughput—well beyond all competitors—comes 
from its capacity to run up to 1600 transactions per second. Its lowered latency and transaction 
confirmation times—140 ms and 18 seconds respectively—highlight its efficiency in fast processing 
transactions. With merely 40 kWh, the recommended strategy reduces energy usage, therefore reflecting 
its environmental and financial efficiency. Moreover, the large fault tolerance of 95% provides robust 
performance even in faulty nodes. Scalability is significantly higher than in past methods when the 
network size increases merely by 10% performance degradation. Since it excels in processing efficiency, 
energy utilisation, fault tolerance, and scalability, the recommended method is thus a highly suitable one 
for blockchain consensus optimisation. Its whole performance improvements lead to it as a possible rival 
for overcoming present limitations, enhancing blockchain technologies, and redefining consensus 
procedures depending on performance. 
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