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Abstract.
In this paper, we introduce two iterative algorithms for finding the solution of the sum of two

monotone operators by using hybrid projection methods and shrinking projection methods. Under
some suitable conditions, we prove strong convergence theorems of such sequences to the solution
of the sum of an inverse-strongly monotone and a maximal monotone operator. Finally, we present
a numerical result of our algorithm which defined by the hybrid method.
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1 Introduction
In this work, we consider the problem is finding a zero point of the sum of three monotone operators�
that is,

find z ∈ H such that 0 ∈ (A+B + C)z, (1.1)
where A is a multi-valued maximal monotone operator and B,C are two single monotone operators.
In 2017, Davis and Yin [5] shown that the problem (1.1) can be related to a convex optimization
problem, that is,

minimizex∈HF (x) +G(x) +M(x),

where A = ∂R,B = ∂S and C = ∇P with ∂R and ∂S denote the subdiferentials of R and S,
respectively. The convex optimization problem involves several specific problems that have emerged
in material sciences, medical and image processing and signal and image processing (see more in
[6, 7]). Moreover, the monotone inclusion problems (1.1) includes some special cases. For example,
when B = 0, problem (1.1) becomes find x ∈ H, such that

0 ∈ Ax+ Cx. (1.2)

If C = 0, problem (1.1) reduces to find x ∈ H, such that

0 ∈ Ax+Bx. (1.3)
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If B = 0 and C = 0, problem (1.1) reduces to the simple monotone inclusion find x ∈ H such that

0 ∈ Ax. (1.4)

So, we have the problem (1.1) is very important. Many researcher study and develop algorithm
methods to solve the solution. Davis and Yin [5] introduced the fixed-point equation for solving
monotone inclusions with three operators. In 2018, Cevher et al. [8] extended the three-operator
splitting algorithm [5] from the determinist setting to the stochastic setting for solving the problem
(1.1). Similarly, Yurtsever et al. [9] introduced a stochastic three-composite minimization algo-
rithm to solve the convex minimization of the sum of three convex functions. In addition, Yu et
al. [10] introduced an outer reflected forward-backward splitting algorithm to solve this problem
as

xn+1 = JA
r (xn − λBxn − λCxn)− r(Bxn −Bxn−1). (1.5)

The sequence {xn} converges weakly to solution of the problem (1.1).
Motivated and inspired by all above contributions, in this work, we will introduce two iter-

ative algorithms for finding the solution of the sum of three monotone operators by using hybrid
projection method and shrinking projection method. Under some suitable conditions, we prove
strong convergence theorems of such sequences to the solution of the sum of three monotone op-
erators. Finally, we will present a numerical result of our algorithm which defined by the hybrid
method and applied to image inpainting.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Denote that → and
⇀ are a weak and strong convergence, respectively. I denotes the identity operator on H. For a
given sequence, let ωw(xn) := {x : ∃xnk

⇀ x} denote the weak ω-limit set of {xn}.

Lemma 2.1. Let x ∈ H and z ∈ C. Then we have

(i) z = PC(x) if ⟨x− z, z − y⟩ ≥ 0, for all y ∈ C.

(ii) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥, for all x, y ∈ H

(iii) ∥x− PC(x)∥2 ≤ ∥x− y∥2 − ∥y − PC(x)∥2 for all y ∈ C.

Definition 2.2. [1] Let T : H → H be a single-valued operator. Then

(i) T is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ H.

(ii) T is said to be firmly nonexpansive if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2, for all x, y ∈ H.

It is obvious that a firmly nonexpansive operator is nonexpansive.

(iii) T is said to be L-Lipschitz continuous, for some L > 0, if

∥Tx− Ty∥ ≤ L∥x− y∥, for all x, y ∈ H.

If L = 1, then T is nonexpansive.
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(iv) T is said to be c-cocoercive (or c-inverse strongly monotone), if

⟨x− y, Tx− Ty⟩ ≥ c∥Tx− Ty∥, for all x, y ∈ H,

where c > 0.

(v) T is said to be monotone if

⟨Tx− Ty, x− y⟩ ≥ 0, for all x, y ∈ H.

Remark 2.3. If C is c-cocoercive, then C is 1/c-Lipschitz continuous and monotone. By using
the L-Lipschitz continuity of B, we obtain that B+C is (L+1/c)-Lipschitz continuous. Moreover,
since C is c-cocoercive, we have C is monotone.

Definition 2.4. Let A : H → 2H be a set-valued operator and the domain of A be D(A) = {x ∈
H : Ax ̸= ∅}. The graph of A is denoted by Graph(A) = {(x, u) ∈ H × H : u ∈ Ax}. Then the
operator A is monotone if ⟨x1 − x2, z1 − z2⟩ ≥ 0 whenever z1 ∈ Ax1 and z2 ∈ Ax2.

A monotone operator A is maximal if for any (x, z) ∈ H ×H such that

⟨x− y, z − w⟩ ≥ 0

for all (y, w) ∈ Graph(A) implies z ∈ Ax.

Let A be a maximal monotone operator and r > 0. Then we can define the resolvent Jr :
R(I + rA) → D(A) by

JA
r = (I + rA)−1

where D(A) is the domain of A. We know that JA
r is nonexpensive and we can study the other

properties in references [12, 11, 13].

Lemma 2.5. [4] Let A : H → 2H be a maximal monotone mapping and let B : H → H be a
Lipschitz continuous and monotone mapping. Then A+B is maximally monotone.

Lemma 2.6. [2] Let C be a closed convex subset of a real Hilbert space H, x ∈ H and z = PCx.
If {xn} is a sequence in C such that ωw(xn) ⊂ C and

∥xn − x∥ ≤ ∥x− z∥,

for all n ≥ 1, then the sequence {xn} converges strongly to a point z.

Lemma 2.7. [3] Let C be a closed convex subset a real Hilbert space H, and x, y, z ∈ H. Then,
for given a ∈ R, the set

U = {v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a}

is convex and closed.

3 Hybrid Projection Methods
In this section, we introduce a intertial hybrid projection method and prove a strong convergence
theorem.

(A1) A : H → 2H is maximal monotone.

(A2) B : H → H is monotone and L-Lipchitz continuous, for some L > 0.
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(A3) C : H → H is c-cocoercive.

(A4) Ω := (A+B + C)−1(0) ̸= ∅.

The method is of the following form.

Algorithm 3.1 : Inertial hybrid projection algorithm (IHP Algorithm) Initializa-
tion : Choose x0, x1 ∈ H,αn ∈ [0, 1).

Iterative step : Compute xn+1 via

wn = xn + αn(xn + xn−1),
yn = JA

rn(wn − rnBwn − rnCwn),
zn = yn − rn(Byn −Bwn),
Cn = {z ∈ H : ∥zn − z∥2 ≤ ∥wn − z∥2 − (1− rn

2c − L2r2n)∥wn − yn∥2},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qn

(x0),

(3.1)

where
0 < rn < min{c, 1

2L
} and lim

n→∞
rn = 0.

Lemma 3.1. Let {zn} be a sequence generated by IHP Algorithm. If conditions (A1)− (A4) hold,
we have

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω. (3.2)

Proof. Let an = r2n∥Byn −Bwn∥2 − 2rn⟨yn − u,Byn −Bwn⟩. Thus

∥zn − u∥2 = ∥yn − rn(Byn −Bwn)− u∥2

= ∥yn − u∥2 − 2rn⟨yn − u,Byn −Bwn⟩+ r2n∥Byn −Bwn∥2

= ∥wn − u∥2 + ∥yn − wn∥2 + 2⟨wn − u, yn − wn⟩+ an

= ∥wn − u∥2 + ∥yn − wn∥2 − 2⟨yn − wn, yn − wn⟩+ 2⟨yn − wn, yn − u⟩+ an

= ∥wn − u∥2 − ∥yn − wn∥2 − 2⟨yn − u,wn − yn + rn(Byn −Bwn)⟩
+r2n∥Byn −Bwn∥2. (3.3)

Since B is L-Lipchitz continuous, we have

∥Bwn −Byn∥ ≤ L∥wn − yn∥. (3.4)

By using (3.3) and (3.4), we have

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− L2r2n)∥wn − yn∥2 − 2⟨yn − u,wn − yn + rn(Byn −Bwn)⟩. (3.5)

Since yn = JA
rn(wn − rnBwn − rnCwn), we have (I − rnB − rnC)wn ∈ (I + rnA)yn. So, we obtain

1

rn
(wn − rnBwn − rnCwn − yn) ∈ Ayn. (3.6)

Since 0 ∈ (A+B + C)u, we have
−Bu− Cu ∈ Au. (3.7)

Since the operator A is maximal monotone, one gets

1

rn
⟨wn − rnBwn − rnCwn − yn + rnBu+ rnCu, yn − u⟩ ≥ 0.
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This implies that

⟨wn − rnBwn − rnCwn − yn + rnBu+ rnCu, yn − u⟩ ≥ 0.

It follows that

⟨wn − yn + rn(Byn −Bwn), yn − u⟩ ≥ ⟨rnByn − rnBu− rnCu+ rnCwn, yn − u⟩
= ⟨rnByn − rnBu, yn − u⟩+ ⟨rnCwn − rnCu, yn − u⟩
≥ ⟨rnCwn − rnCu, yn − u⟩ (3.8)

and since C is c-cococercive, we have

2rn⟨Cwn − Cu, yn − u⟩ = 2rn⟨Cwn − Cu, yn − wn⟩+ 2rn⟨Cwn − Cu,wn − u⟩
≥ −2rn∥Cwn − Cu∥∥yn − wn∥+ 2crn∥Cwn − Cu∥2

≥ −2crn∥Cwn − Cu∥2 − rn
2c

∥yn − wn∥2 + 2crn∥Cwn − Cu∥2

= −rn
2c

∥yn − wn∥2. (3.9)

Combining the equation (3.8) and (3.9), we obtain

−2⟨wn − yn + rn(Byn −Bwn), yn − u⟩ ≤ rn
2c

∥yn − wn∥2. (3.10)

Combining the equation (3.5) and (3.10), we obtain

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω.

This completed the proof.

Lemma 3.2. Let the operators A,B and C satisfies conditions (A1)− (A4). The three sequences
{xn}, {wn} and {yn} generated by IHP Algorithm. Assume that limn→∞ ∥wn−xn∥ = limn→∞ ∥wn−
yn∥ = 0. If a subsequence {xnk

} of {xn} converges weakly to some x∗ ∈ H, then x∗ ∈ Ω where
Ω := (A+B + C)−1(0).

Proof. Suppose that (u, v) ∈ Graph(A + B + C). Thus v − Bu − Cu ∈ Au. Since ynk
=

JA
rnk

(wnk
− rnk

Bwnk
− rnk

Cwnk
), we have (I − rn(B + C)) ∈ (I + rnk

A)ynk
. This implies that

1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

) ∈ Aynk
.

By using the maximal monotonicity of A, we get

⟨u− ynk
, v −Bu− Cu− 1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

)⟩ ≥ 0.

It follows that

⟨u− ynk
, v⟩ ≥ ⟨u− ynk

, (B + C)u+
1

rnk

(wnk
− ynk

− rnk
(B + C)wnk

)⟩

= ⟨u− ynk
, (B + C)u− (B + C)wnk

⟩+ 1

rnk

⟨u− ynk
, wnk

− ynk
⟩

= ⟨u− ynk
, (B + C)u− (B + C)ynk

⟩+ ⟨u− ynk
, (B + C)ynk

− (B + C)wnk
⟩

+
1

rnk

⟨u− ynk
, wnk

− ynk
⟩

≥ ⟨u− ynk
, (B + C)ynk

− (B + C)wnk
⟩+ 1

rnk

⟨u− ynk
, wnk

− ynk
⟩.
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Since limn→∞ ∥wn − xn∥ = limn→∞ ∥wn − yn∥ = 0 and B + C is Lipschitz continuous, we have
limn→∞ ∥(B + C)ynk

− (B + C)wnk
∥ = 0. From 0 < rn < min{c, 1

2L}, one get

lim
n→∞

⟨u− ynk
, v⟩ = ⟨u− x∗, v⟩ ≥ 0.

Since A+B+C is maximal monotone, we have 0 ∈ (A+B+C)x∗. We can conclude that x∗ ∈ Ω.
This completed the proof.

Theorem 3.3. Let the operators A,B and C satisfy conditions (A1)− (A4). Then, the sequence
{xn} generated by IHP Algorithm converges strongly to x∗ = PΩ(x0).

Proof. It is obvious that Cn and Qn are closed convex for every n ∈ N. First, we will prove that
Ω ⊂ Cn, for all n ∈ N. By using Lemma 3.1, we obtain Ω ⊂ Cn, for all n ∈ N. Next, we prove that
Ω ⊂ Qn for all n ∈ N by the mathematical induction. By the definition of Qn in IHP Algorithm,
we have Q1 = H. For n = 1 , we note that Ω ⊂ H = Q1. Suppose that Ω ⊂ Qk for some k ∈ N.
Since Ck ∩Qk is closed and convex, we can define

xk+1 = PCk∩Qk
(x0).

This implies that
⟨xk+1 − z, x0 − xk+1⟩ ≥ 0 for all z ∈ Ck ∩Qk.

Since Ω ⊂ Ck ∩ Qk, we have Ω ⊂ Qk+1. It follows that Ω ⊂ Qn, for all n ∈ N. So, {xn} is well
defined. Next, we show that {xn} is a bounded sequence and limn→∞ ∥wn − yn∥2 = 0. Since
Ω ⊂ Cn ∩Qn, for all n ∈ N, and xn+1 = PCn∩Qn(x0), we have

∥xn+1 − x0∥ ≤ ∥x∗ − x0∥.

This mean that {xn} is bounde, so {wn} is also bounded. From the definition of Qn, we obtain
xn = PQn

(x0). Since xn+1 ∈ Qn, we have

∥xn − x0∥ ≤ ∥xn+1 − x0∥, for alln ∈ N.

This implies that limn→∞ ∥xn − x0∥ exists. Therefore,

∥xn+1 − xn∥2 = ∥(xn+1 − x0)− (xn − x0)∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2 − 2⟨xn+1 − xn, xn − x0⟩
≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.

It follows that limn→∞ ∥xn+1 − xn∥ = 0. Since xn+1 ∈ Cn ∩Qn ⊂ Cn, we have

∥zn − xn+1∥2 ≤ ∥wn − xn+1∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2.

Since 0 ≤ rn < min{c, 1
2L}, we have ∥zn − xn+1∥ ≤ ∥wn − xn+1∥. Moreover, by the definition of

{wn}, we get
∥wn − xn∥ = ∥xn + αn(xn − xn+1)− xn∥ = |αn|∥xn − xn+1∥

This implies that limn→∞ ∥wn − xn∥ = 0 and limn→∞ ∥xn − zn∥ = 0. Therefore,

(1− rn
2c

− L2r2n)∥wn − yn∥2 ≤ ∥wn − xn+1∥2 − ∥zn − xn+1∥2.

Since limn→∞ rn = 0, we have limn→∞(1− rn
2c −L2r2n) = 1. It follows that limn→∞ ∥wn− yn∥ = 0.

Finally, we show that {xn} converges strongly to x∗ = PΩ(x0). Let x∗ = PΩ(x0). Therefore,

∥xn − x0∥ ≤ ∥xn+1 − x0∥ ≤ ∥x0 − x∗∥.

By Lemma 3.2, we have every sequential weakcluster point of the sequence {xn} belong to Ω. That
is ωw(xn) ⊂ Ω. Hence by Lemma 2.6, we can conclude that the sequence {xn} converges strongly
to x∗ = PΩ(x0). This completes the proof. 2
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3 The Inertial Shrinking projection methods
In this section, we introduce a intertial shrinking projection method and prove a strong convergence
theorem.

Algorithm 3.2 : Inertial shrinking projection algorithm (ISP Algorithm) Initial-
ization : Choose x0, x1 ∈ H,αn ∈ [0, 1). Let C1 = H

Iterative step : Compute xn+1 via
wn = xn + αn(xn + xn−1),
yn = JA

rn(wn − rnBwn − rnCwn),
zn = yn − rn(Byn −Bwn),
Cn+1 = {z ∈ Cn : ∥zn − z∥2 ≤ ∥wn − z∥2 − (1− rn

2c − L2r2n)∥wn − yn∥2},
xn+1 = PCn+1

(x0),

(3.11)

where
0 < rn < min{c, 1

2L
} and lim

n→∞
rn = 0.

Theorem 3.4. Let the operators A,B and C satisfy conditions (A1)− (A4). Then, the sequence
{xn} generated by ISP Algorithm converges strongly to x∗ = PΩ(x0).

Proof. By Lemma 3.1, we obtain

∥zn − u∥2 ≤ ∥wn − u∥2 − (1− rn
2c

− L2r2n)∥wn − yn∥2, for all u ∈ Ω.

It follows from xn = PCn
(x0) and xn+1 = PCn+1

(x0) ∈ Cn+1 ⊂ Cn that

∥xn − x0∥ ≤ ∥xn+1 − x0∥.

On the other hand, since x∗ ∈ Ω ∈ Cn and xn = PCn
(x0), we have ∥xn − x0∥ ≤ ∥x∗ − x0∥. Thus

{xn} is bounded and limn→∞ ∥xn − x0∥ exists. Similarly proof of Theorem 3.3, we can proof that
limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥wn − yn∥ = 0. By Lemma 2.6 and Lemma 3.2, we can
conclude that {xn} converges strongly to x∗ = PΩ(x0). This completes the proof. 2

4 Numerical results
In this section, we firstly present by following the ideas of He et al. [14] and Dong et al. [15]. For
C = H, we can write the algorithm 3.1 as in the following

x0, z0 ∈ H,
yn = αnzn + (1− αn)xn,
zn+1 = JA

rn(yn − rn(B + C)yn),
un = αnzn + (1− αn)xn − zn+1,
vn = (αn∥zn∥2 + (1− αn)∥xn∥2 − ∥zn+1∥2)/2,
Cn = {z ∈ C : ⟨un, z⟩ ≤ vn},
Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = pn, if pn ∈ Qn,
xn+1 = qn, if pn /∈ Qn,

(4.1)

7
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where

pn = x0 −
⟨un, x0⟩ − vn

∥un∥2
un,

qn =

(
1− ⟨x0 − xn, xn − pn⟩

⟨x0 − xn, wn − pn⟩

)
pn +

⟨x0 − xn, xn − pn⟩
⟨x0 − xn, wn − pn⟩

wn,

wn = xn − ⟨un, xn⟩ − vn
∥un∥2

.

Next, we will applies the above to image inpainting. We consider the degradation model
that represents an actual image restoration problems or through the least useful mathematical
abstractions thereof.

y = Hx+ w

where y,H, x and w are the degraded image, degradation operator, or blurring operator; original
image; and noise operator, respectively.

The regularized least-squares problem can be solve to obtain the reconstructed image is the
following

min{1
2
∥H(x)− y∥22 + µφ(y)} (4.2)

where µ > 0 is the regularization parameter and φ(.) is the regularization functional. A well-known
regularization function used to remove noise in the restoration problem is the l1 norm, which is
called Tikhonov regularization [?]. The problem (4.2) can be written in the form of the following
problem as:

min
x∈Rk

{1
2
∥H(x)− y∥22 + µ∥x∥1} (4.3)

Note that problem (4.3) is a spacial case of the problem (1.1) by setting A = ∂f(.), B = 0,
and C = ∇L(.) where f(x) = ∥x∥1 and L(x) = 1

2∥Hx − y∥22 This setting we have that C(x) =
∇L(x) = H ′(Hx−y), where H ′ is a transpose of H. We begin the problem by choosing images and
degrade them by random noise and different types of blurring. The random noise in this study is
provided by Gaussian white noise of zero mean and 0.0001 variance. We solve the problem in (4.3)
by using the above algorithm. We set c = 70n2, L = 0.001 and rn = 1

100n+1 . All the experiments
were implemented in Matlab R2015 running on a Desktop with Intel(R) Core(TM) i5-7200u CPU
2.50 GHz, and 4 GB RAM. We obtain the following results.
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(a) Mandril (b) Gaussian blur (c) Our algorithm

Figure 1: Pictures of animals

(a) Lotus (b) Gaussian blur (c) Our algorithm

Figure 2: Pictures of lotus

(a) Fabric (b) Gaussian blur (c) Our algorithm

Figure 3: Pictures of Thai fabric
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