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ABSTRACT

In this paper, the concept of fuzzy group algebra is introduced using a finite group G and a fuzzy group p
on G. we had proved certain basic properties of fuzzy group algebra, including its behaviour as a fuzzy
algebra and as a fuzzy G - module. The work is a continuation of the concept of semi simplicity of fuzzy G
- modules and its properties including relationships with complete reducibility and injectiviness, which
was already defined by the authors. The intersections and a- cuts of fuzzy group algebra are also
analyzed.
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1. INTRODUCTION

The introduction of fuzzy sets by Lofti A Zadeh led way to the fuzzification of algebraic structures. Fuzzy
groups and groupoids were defined by[Rosenfield, A. (1971)]. The theory of fuzzy G - modules was
studied by [Fernandez, S. (2004)]. The concept of semi simplicity for fuzzy G - modules was introduced by
the authors [Abraham, P., & Sebastian, S. (2012)]. Semi simplicity of fuzzy G - modules is related with
complete reducibility and injectiviness of fuzzy G - modules. The chain conditions on fuzzy G - modules
are also introduced by [Abraham, P., & Sebastian, S. (2017)].

We turn our attention towards fuzzification of Maschke’s Theorem on semi simplicity of group algebra.
The primary objective in this process was to introduce the fuzzy version of a group algebra. In this paper,
we introduce the concept of fuzzy group algebra using a finite group G and a fuzzy group p on G. we had
observed the basic properties of fuzzy group algebra, including its behaviour as a fuzzy algebra and as a
fuzzy G - module. The intersections and « - cuts of fuzzy group algebra are also analyzed. This will led to
desirable results asserting the main objectives.

2. Preliminaries

Given a finite group G, a vector space M over a field K is said to be a G - module if for every g € G and
m € M there exists a product ‘gm’ called action of G on M satisfying

i) 1cm=m,Vm € M

ii) (gh)m = g(hm)vVg,h € Gandm € M

iii) g(kym; +k,m,) = ky(gm;) + K,(gm,) Vmy, my, € M,g h € Gand ky,k, €K

A subspace of M, which itself is a G - module with the same action is called G - sub module. A non zero G -
module M is irreducible if the only G - sub modules of M are M and {0}. Otherwise it is reducible. A non-
zero G - module M is completely reducible if for every G - sub module N of M there exists a G - sub module
N* of M such that M=N @ N*. A G - module M is semi simple if there exists a family of irreducible G - sub
modules M; suchthatM =,_1® M;

A fuzzy G - module over a G - module M is a fuzzy set £/ on Msuch that

i) p(ax + by) = min(p(x), u(y))va,b € Kandx,y € M

ii) u(gm) > p(m)vm € Mandge G

The standard fuzzy intersection of finite number of fuzzy G - modules is again a fuzzy G- module.

Let G be a group and K be a field. The K vector space having G as Hamel basis is called the Group Algebra
denoted by K(G). It contains elements of the forma = },¢; a;g a; € Kanda, = 0 for all but a finite

number of elements of G. The addition and multiplication in K(G)are defined by the following operations.
Fora =Y, agg and b = ¥, begin K(G)
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at+b= Z(ag +bg)g = Z agbg-1

g€eG geG
With these two operations K(G) is a K algebra with identity element

Ik = Z aggwhere a, = 1y if g = 1gand a; = 0 otherwise.
g€eG
With the action of G on K(G) defined by

Z agx |g = Z ayXg =Z ayg—1X

geG x€G x€G

K(G) can be considered as a G - module. It can be noted that If H is a subgroup of G then K(H) is a
subgroup of K(G)

3. Fuzzy Group Algebra
3.1 Definition
Let G is a finite group and p is a fuzzy group on G. The fuzzy set K(1) on K(G) defined by

K(w) (Z agg) = min u(g)

is called the fuzzy group algebra of u over the group algebra K(G).

u is called the fuzzy group corresponding to fuzzy group algebra K(p).

Every fuzzy group on G can be used to construct a fuzzy group algebra on K(G), the restriction of which to
G yields the original fuzzy group. The mapping f defined by f(g) = 1.g is an isomorphism from
Ginto K(G). This f is a fuzzy homomorphism from any fuzzy group p of G to fuzzy group algebra
K(n) of K(G). Itis evident from the fact that f(n)(1.g) = u(g) = K(w(1.g)

3.2 Proposition

For any fuzzy group p on a finite group G and field K, the fuzzy group algebra K(u) on K(G) is a fuzzy
algebra. In general, fuzzy group algebras are fuzzy algebras

Proof: Consider a fuzzy group p on a finite group G,

then for x,y € K(G), a,b €K,

K(G@x+by) =KW | Y aag+ ) bbyg

g€EG g€G

=K@ | Y @aa, +bbyg
g€G
= min _u(g)

a ag+b bg#:O
min _p(g)

ag#0, bg#0

I\

> Min | min n(g), gnL%u(g)
= Min(K(W) ), KW (y))

K (10Gy) = K (1 (Z ctt>

teG

= min((0)
=  min (u(t))

Zagbg_1t¢0

> min _ (u(g,n@g')

ag iO,bg_1t

t

= Min(K(1) (%), K(W) (¥))

> . . . -1
= Min (g;gg)u(g),bgrgn; e t)>

This concludes the proof that fuzzy group algebras are fuzzy algebras.
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3.3 Proposition
The fuzzy group algebra K( 1 )is a fuzzy G - module on K(G), if K(G) is considered as a G - module.

Proof: By Proposition 3.2, it is evident that K (u) (ax + by) = Min(K(u) (x), K(w) (y))
Form € K(G)and g € G, K(w(gm) = KW (gz axx>

X€EG
=K (Ll)[(l g) Xxec (axx)]
=K (H) [ZXEG (axg’lx)]
=min, _,_ (&)
= min,,_, (460)

=K (W(m)

This shows that all fuzzy group algebras behave as a fuzzy G - module over K(G).

3.4 Proposition

If wand 9are two fuzzy groups defined on a group G, then K (un9) = K(n) N K@) on the fuzzy group
algebra K(G). The fuzzy group algebra of the intersection of two fuzzy groups is the fuzzy intersection of
the respective fuzzy group algebras of them.

Proof: For fuzzy groups p and 9 on group G, pu N 9 is also a fuzzy group.

KRN = K@nd) Zagg
g€G
=min,__, (kN 9(e))
= min, __, (1(g),9(g))
= min [minagﬂ,u(g), minagioﬁ(g)]
= min[K(w) (x), KE)9X)]
=KW NK® )

3.5 Proposition

If pand 9 two fuzzy groups on a group G with p < 9, then on the group algebra K(G) the fuzzy group
algebras satisfy, K(n) < K(9).

Fuzzy group algebras preserve the ordering of corresponding fuzzy groups.

Proof: By Definition, p < 9dgives u(g) < 9 (g) for every ginG.

For any x € K(G),

KADG) = K () agg) = minu(e)
< min9(g)

Ag#0

= K(®) () a48) = KO

3.6 Proposition

For a € [0,1], (K(p))a = K(u*") . The a cut of a fuzzy group algebra K(p) is the group algebra of the a cut

of the corresponding fuzzy group p.
Proof: Let a € [0,1] and x € K(G)

x€ (K@) - KWk =«

- min u(g) = a
Ag=0

- u(g) Zaforallag¢0inx=2agg
—>gEu“forallag¢0inx=Zagg
—>g€u°‘forallag¢01nx=2agg

5 x= ) a8 € KM
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CONCLUSION

We had succeeded in the primary objective of introducing the fuzzy version of group algebra. The
properties of fuzzy group algebra as fuzzy G - module will help to study its property of semi simplicity.
This will turn out to be a great step towards fuzzification of Maschke’s Theorem on semi simplicity of
group algebras.

REFERENCES

[1] Abraham, P., & Sebastian, S. (2012). Semi simple Fuzzy G-modules. Journal of Computer and
Mathematics Sciences, 3(4), 458-463.

[2] Abraham, P., & Sebastian, S. (2017). Chain conditions on fuzzy G - modules. International Journal of
Science and Research, 6(2), 2151-2153.

[3] Curtis, C. W., & Reiner, 1. (1962). Representation Theory of finite groups and associative algebras.
Wiley Eastern.

[4] Fernandez, S. (2004). A study of fuzzy G-modules (PhD Thesis). MG University, Kerala.

[5] Klir, G.]., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall, India.

[6] Lambek, ]. (1966). Lectures on rings and modules. Blaisdell Publishing Company.

[71 Musli, C. (1992). Introduction to rings and modules. Narosa Publishing House, India.

[8] Musli, C. (1993). Representation of finite groups. Hindustan Book Agency, India.

[9] Paley, H., & Weichsel, P. M. (1996). A first course in Abstract Algebra. Holt, Rinehart, Winston.

[10] Rosenfield, A. (1971). Fuzzy groups. In ] Math Anal. Appl.

42 Prathish Abraham et al 39-42



