A New Introduction to Fuzzy Group Algebra

Prathish Abraham¹, Eldo Varghese², Jyothy Thomas³, Priyanka P⁴

¹ Department of Mathematics, St. Dominic's College Kanjirapally, Kottayam, Kerala, India, Email: prathishabraham@sdck.in

² Department of Mathematics, Union Christian College, Aluva, Ernakulam, Kerala, India
 ³ Department of Mathematics, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
 ⁴ PG Department of Mathematics, Mahatma Gandhi College, Iritty, Kannur, Kerala, India

Received: 19.04.2024	Revised : 20.05.2024	Accepted: 28.05.2024
		•

ABSTRACT

In this paper, the concept of fuzzy group algebra is introduced using a finite group G and a fuzzy group μ on G. we had proved certain basic properties of fuzzy group algebra, including its behaviour as a fuzzy algebra and as a fuzzy G - module. The work is a continuation of the concept of semi simplicity of fuzzy G - modules and its properties including relationships with complete reducibility and injectiviness, which was already defined by the authors. The intersections and α - cuts of fuzzy group algebra are also analyzed.

Key words: Fuzzy G - Module, Fuzzy Group, Group Algebra, Fuzzy Group Algebra, Intersections and α - cuts of Fuzzy Group Algebra

1. INTRODUCTION

The introduction of fuzzy sets by Lofti A Zadeh led way to the fuzzification of algebraic structures. Fuzzy groups and groupoids were defined by[Rosenfield, A. (1971)]. The theory of fuzzy G – modules was studied by [Fernandez, S. (2004)]. The concept of semi simplicity for fuzzy G - modules was introduced by the authors [Abraham, P., & Sebastian, S. (2012)]. Semi simplicity of fuzzy G - modules is related with complete reducibility and injectiviness of fuzzy G - modules. The chain conditions on fuzzy G - modules are also introduced by [Abraham, P., & Sebastian, S. (2017)].

We turn our attention towards fuzzification of Maschke's Theorem on semi simplicity of group algebra. The primary objective in this process was to introduce the fuzzy version of a group algebra. In this paper, we introduce the concept of fuzzy group algebra using a finite group G and a fuzzy group μ on G. we had observed the basic properties of fuzzy group algebra, including its behaviour as a fuzzy algebra and as a fuzzy G – module. The intersections and α - cuts of fuzzy group algebra are also analyzed. This will led to desirable results asserting the main objectives.

2. Preliminaries

Given a finite group G, a vector space M over a field K is said to be a G - module if for every $g \in G$ and $m \in M$ there exists a product 'gm' called action of G on M satisfying

i) $1_G m = m, \forall m \in M$

ii) $(gh)m = g(hm) \forall g, h \in G and m \in M$

iii) $g(k_1m_1+k_2m_2) = k_1(gm_1) + k_2(gm_2) \forall m_1, m_2 \in M, g, h \in G and k_1, k_2 \in K$

A subspace of M, which itself is a G - module with the same action is called G - sub module. A non zero G - module M is irreducible if the only G - sub modules of M are M and {0}. Otherwise it is reducible. A non-zero G - module M is completely reducible if for every G - sub module N of M there exists a G - sub module N^{*} of M such that $M=N \bigoplus N^*$. A G - module M is semi simple if there exists a family of irreducible G - sub modules M_i such that $M = \underset{i=1}{\overset{n}{\oplus}} \underset{i=1}{\overset{n}{\longleftrightarrow}} \underset{i=1}{\overset{n}{\circlearrowright}} \underset{i=1}{\overset{n}{\longleftrightarrow}} \underset{i=1}{\overset{n}{\longleftrightarrow}} \underset{i=1}{\overset{n}{\longleftrightarrow}} \underset{$

A fuzzy G - module over a G - module M is a fuzzy set $\,\mu$ on Msuch that

i) $\mu(ax + by) \ge \min(\mu(x), \mu(y)) \forall a, b \in K \text{ and } x, y \in M$

ii) $\mu(gm) \ge \mu(m) \forall m \in M \text{ and } g \in G$

The standard fuzzy intersection of finite number of fuzzy G - modules is again a fuzzy G- module.

Let G be a group and K be a field. The K vector space having G as Hamel basis is called the **Group Algebra** denoted by K(G). It contains elements of the forma = $\sum_{g \in G} a_g g$, $a_g \in K$ and $a_g = 0$ for all but a finite number of elements of G. The addition and multiplication in K(G) are defined by the following operations. For $a = \sum_{g \in G} a_g g$ and $b = \sum_{g \in G} b_g g$ in K(G)

$$a+b = \sum_{g \in G} (a_g + b_g)g = \sum_{g \in G} a_g b_{g^{-1}t}$$

With these two operations K(G) is a K algebra with identity element

$$1_{K(G)} = \sum_{g \in G} a_g g$$
 where $a_g = 1_K$ if $g = 1_G$ and $a_g = 0$ otherwise.

With the action of G on K(G) defined by

$$\left(\sum_{g \in G} a_g x\right)g = \sum_{x \in G} a_x xg = \sum_{x \in G} a_{xg^{-1}} x$$

K(G) can be considered as a G - module. It can be noted that If H is a subgroup of G then K(H) is a subgroup of K(G)

3. Fuzzy Group Algebra

3.1 Definition

Let G is a finite group and μ is a fuzzy group on G. The fuzzy set K(μ) on K(G) defined by

$$K(\mu)\left(\sum a_{g}g\right) = \min_{a_{g}\neq 0}\mu(g)$$

is called the **fuzzy group algebra** of μ over the group algebra K(G).

 μ is called the fuzzy group corresponding to fuzzy group algebra K(μ).

Every fuzzy group on G can be used to construct a fuzzy group algebra on K(G), the restriction of which to G yields the original fuzzy group. The mapping f defined by f(g) = 1.g is an isomorphism from G into K(G). This f is a fuzzy homomorphism from any fuzzy group μ of G to fuzzy group algebra K(μ) of K(G). It is evident from the fact that $f(\mu)(1.g) = \mu(g) = K(\mu)(1.g)$

3.2 Proposition

For any fuzzy group μ on a finite group G and field K, the fuzzy group algebra $K(\mu)$ on K(G) is a fuzzy algebra. In general, fuzzy group algebras are fuzzy algebras

Proof: Consider a fuzzy group μ on a finite group G,

then for $x, y \in K(G)$, $a, b \in K$,

$$K (\mu)(ax + by) = K (\mu) \left(\sum_{g \in G} a a_g g + \sum_{g \in G} b b_g g \right)$$
$$= K (\mu) \left(\sum_{g \in G} (a a_g + b b_g) g \right)$$
$$= \min_{a a_g + b b_g \neq 0} \mu(g)$$
$$\geq \min_{a_g \neq 0, b_g \neq 0} \mu(g)$$
$$\geq Min \left(\min_{a_g \neq 0} \mu(g), \min_{b_g \neq 0} \mu(g) \right)$$
$$= Min(K(\mu)(x), K(\mu)(y))$$
$$K (\mu)(xy) = K (\mu) \left(\sum_{t \in G} c_t t \right)$$
$$= \min_{c_t \neq 0} (\mu(t))$$
$$\geq \min_{c_t \neq 0} (\mu(g), \mu(g^{-1}t))$$
$$\geq Min \left(\min_{a_g \neq 0} \mu(g), \min_{b_g^{-1}t \neq 0} \mu(g^{-1}t) \right)$$
$$= Min(K(\mu)(x), K(\mu)(y))$$

This concludes the proof that fuzzy group algebras are fuzzy algebras.

3.3 Proposition

The fuzzy group algebra K(μ) is a fuzzy G - module on K(G), if K(G) is considered as a G - module. Proof: By Proposition 3.2, it is evident that K (μ)(ax + by) = Min(K(μ)(x), K(μ)(y))

For
$$m \in K(G)$$
 and $g \in G$, $K(\mu)(g, m) = K(\mu)\left(g\sum_{x \in G} a_x x\right)$

$$= K(\mu)[(1,g)\sum_{x \in G} (a_x x)]$$

$$= K(\mu)[\sum_{x \in G} (a_{xg^{-1}}x)]$$

$$= \min_{a_{xg^{-1}\neq 0}}(\mu(x))$$

$$\geq \min_{a_{x\neq 0}}(\mu(x))$$

This shows that all fuzzy group algebras behave as a fuzzy G - module over K(G).

3.4 Proposition

If μ and ϑ are two fuzzy groups defined on a group G, then K ($\mu \cap \vartheta$) = K(μ) \cap K(ϑ) on the fuzzy group algebra K(G). The fuzzy group algebra of the intersection of two fuzzy groups is the fuzzy intersection of the respective fuzzy group algebras of them.

Proof: For fuzzy groups μ and ϑ on group G, $\mu \cap \vartheta$ is also a fuzzy group.

$$K (\mu \cap \vartheta)(x) = K (\mu \cap \vartheta) \left(\sum_{g \in G} a_g g \right)$$

= min_{a_{g \neq 0}} (\mu \cap \vartheta(g))
= min_{a_{g \neq 0}} (\mu(g), \vartheta(g))
= min \left[min_{a_{g \neq 0}} \mu(g), min_{a_{g \neq 0}} \vartheta(g) \right]
= min [K(\mu)(x), K(\vartheta) \vartheta(x)]
= K(\mu) \cap K(\vartheta)(x)

3.5 Proposition

If μ and ϑ two fuzzy groups on a group G with $\mu \leq \vartheta$, then on the group algebra K(G) the fuzzy group algebras satisfy, K(μ) \leq K(ϑ).

Fuzzy group algebras preserve the ordering of corresponding fuzzy groups. Proof: By Definition, $\mu \leq \vartheta$ gives $\mu(g) \leq \vartheta(g)$ for every g in G. For any $x \in K(G)$,

$$\begin{split} \mathsf{K}(\mu)(\mathbf{x}) &= \mathsf{K}(\mu) \left(\sum_{a_g g} a_{gg} \right) = \min_{\substack{a_{g \neq 0} \\ a_{gg \neq 0}}} \mu(g) \\ &\leq \min_{\substack{a_{g \neq 0} \\ a_{gg} \neq 0}} \vartheta(g) \\ &= \mathsf{K}(\vartheta) \left(\sum_{a_g g} a_{gg} \right) = \mathsf{K}(\vartheta)(\mathbf{x}) \end{split}$$

3.6 Proposition

For $\alpha \in [0,1]$, $(K(\mu))^{\alpha} = K(\mu^{\alpha})$. The α cut of a fuzzy group algebra $K(\mu)$ is the group algebra of the α cut of the corresponding fuzzy group μ .

Proof: Let $\alpha \in [0,1]$ and $x \in K(G)$

$$\begin{split} x \in (K(\mu))^{\alpha} & \to K(\mu)(x) \geq \alpha \\ & \to \min_{a_{g \neq 0}} \mu(g) \geq \alpha \\ & \to \mu(g) \geq \alpha \text{ for all } a_g \neq 0 \text{ in } x = \sum a_g g \\ & \to g \in \mu^{\alpha} \text{ for all } a_g \neq 0 \text{ in } x = \sum a_g g \\ & \to g \in \mu^{\alpha} \text{ for all } a_g \neq 0 \text{ in } x = \sum a_g g \\ & \to g \in \mu^{\alpha} \text{ for all } a_g \neq 0 \text{ in } x = \sum a_g g \\ & \to x = \sum a_g g \in K(\mu^{\alpha}) \end{split}$$

CONCLUSION

We had succeeded in the primary objective of introducing the fuzzy version of group algebra. The properties of fuzzy group algebra as fuzzy G - module will help to study its property of semi simplicity. This will turn out to be a great step towards fuzzification of Maschke's Theorem on semi simplicity of group algebras.

REFERENCES

- [1] Abraham, P., & Sebastian, S. (2012). Semi simple Fuzzy G-modules. Journal of Computer and Mathematics Sciences, 3(4), 458-463.
- [2] Abraham, P., & Sebastian, S. (2017). Chain conditions on fuzzy G modules. International Journal of Science and Research, 6(2), 2151-2153.
- [3] Curtis, C. W., & Reiner, I. (1962). Representation Theory of finite groups and associative algebras. Wiley Eastern.
- [4] Fernandez, S. (2004). A study of fuzzy G-modules (PhD Thesis). MG University, Kerala.
- [5] Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall, India.
- [6] Lambek, J. (1966). Lectures on rings and modules. Blaisdell Publishing Company.
- [7] Musli, C. (1992). Introduction to rings and modules. Narosa Publishing House, India.
- [8] Musli, C. (1993). Representation of finite groups. Hindustan Book Agency, India.
- [9] Paley, H., & Weichsel, P. M. (1996). A first course in Abstract Algebra. Holt, Rinehart, Winston.
- [10] Rosenfield, A. (1971). Fuzzy groups. In J Math Anal. Appl.