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ABSTRACT 

The vehicle routing problem (VRP) is part from a combinatorial optimization problem (COP) with huge 
numbers of applications. One of its important applications is Capacitated VRP (CVRP) which is it 
generalizes the travelling salesman problem (TSP).This research divided into two parts, the first part is 
the theoretical part; which includes introducing the mathematical formulation of the CVRP and some 
special cases. While the second part is the practical part.In this partwe introduced new heuristic methods 
for solving the CVRP. The results of these techniques are compared with exact methods (such as complete 
enumeration method). Also, they compared with optimal datasets. The comparison results proved the 
efficiency and speed in CPU-time of the suggested techniques. 
 
Keywords: Vehicles Routing Problems, Capacitated Vehicles Routing Problems, Complete Enumeration 
Method, Branch and Bound Method, Nearest Neighbours Method. 

 

1. INTRODUCTION 
The vehicle routing problems (VRPs) is an NP-hard combinatorial optimization (CO) and integer 
programming problem with main goal to construct an optimal route(or Best route) among set of routes 
that deliver goods from depot center (distributions center) to set of locations (cities) with known given 
data (demands of each locations, distance between each cities and distribution center and each cities to 
other, vehicles capacity, etc) that aim to minimizing the main objective function (cost, distance, travel 
time, etc)[1]. 
VRPs consider among the most studied problems in the space of CO.It first appeared in a paper by Dantzig 
and Ramser in 1959,although the Traveling Salesman Problem (TSP) could be seen as belonging to the 
class, the most basic and studied problem is the CVRP, where cities, each with a known certain demand, 
delivered by number of identical vehicles. Each vehicle has to go only one route. All routes start from the 
distribution center and return to it. The main goal to be considered involve the assignment of cities to 
vehicles and the sequencing vehicles in such a way that the total routing distance is minimized. In general, 
the VRPs is used when the cities to be visited are assigned to numbers of vehicles.[2] 
The VRP consists of several branch which includes; single TSP, Multiple TSP, CVRP, VRP with time 
windows (VRPTW), dynamic VRP (DVRP), pickup and delivery VRP (PDVRP), periodic VRP (PVRP), single 
CVRP and so on. These variants have several applications[3]. Some of the classifications of VRP is shown 
in figure(1). 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. VRP Classification. 
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VRP is a type of COP with numerous application possibilities. There are currently many methods for 
solving VRPs, which can be divided into two categories: exact methods and heuristic (meta-heuristic) 
methods. However, due to the complexity of VRPs, exact methods are limited for solving large-number of 
nodes VRPs. Many successful attempts to solve VRP have been made in recent years, depending on 
computer science and applications such as MATLAB[4]. 
As Literature Survey we have many applications of VRP.In 2018, Qiu et al.[5]apply the Tabu search (TS) 
algorithm to solve VRP. The experimental results show the accuracy of the TS. In 2019, Lu et al.[6]using 
machine learning ML-based techniques to solve VRP. They show that the applied exercise has improved 
the solution at the same computational cost. In2020, Adnan et al.[7]introducing a graph representing the 
roads is created for VRP, then Dijkstra’s algorithm is used and show the improvement through results. In 
2021 Abdoul-Hafaret al.[8]presented newparticle swarm algorithm (PSO) for the CVRP and prove its 
efficiency from other given techniques. In 2022, Xiaodong et al.[9]Using differential evolutionary 
(DE)based onwhale optimization algorithm (WOA)to solve VRP. The result of the proposed model is 
faster than basic WOA and the overall optimization is improved by 23%. In 2023, Kangye et al.[10]takethe 
novel coronavirus pandemic is a major global public health emergency, which is considered as VRP based 
on the problems of insufficient timeliness and high total system cost of emergency logistics distribution in 
major epidemic situations. The total cost was reduced by 20.1%by using improved PSO algorithm 
compared with the basic PSO algorithm. 
In this paper we will focus the general CVRP and introduce new heuristic methods to solve the Problem. 
In section (2) we introduce the basic concepts and definitions of the Graph Theory. In section (3) we give 
the definition of CVRP and its mathematical model and their assumptions. In section (4) discuss some of 
CVRP special cases. In section (5) we present an overview of the methods used for the solution of the 
CVRP.In section (6) we introduce our new methods for solving CVRP.In section (7) applied examples to 
the new proposed methods. In section (8) introduce the discussions and analysis of results. 

 
2. Graph Theory[11],[12] 
In mathematics, graph theory (GT) is the study of graphs, which are mathematical structures used to 
model pairwise relations between objects,a graph G(V; E) is a set V of vertices and a set E of edges. In an 
undirected graph, an edge is an unordered pair of vertices,A distinction is made between undirected 
graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices 
asymmetrically. 
A graph is an ordered pair G = (V, E) comprising: 
 V a set of vertices (also called nodes or points) 
 E ⊆ {{x, y}  ∣ x, y and x ≠ y}, a set of edges (also called links or lines) which are unordered pairs of 

vertices (that is, an edge is associated with two distinct vertices). 
 As shown below figure (2-a) show a graph with three vertices and three edge and figure (2-b) a 

drawing of a graph.  
 A graph G =  (V, E) consists of a set V of vertices (also called nodes) and a set E of edges. 
 If an edge connects to a vertex, we say the edge is incident to the vertex and say the vertex is an 

endpoint of the edge. 
 Two vertices that are joined by an edge are called adjacent vertices. 
 If an edge has only one endpoint, then it is called a loop edge. 
 If two or more edges have the same endpoints then they are called multiple or parallel edges. 
In mathematics, the Euclidean Distance (ED) between two points in Euclidean space are the length of the 
line segment between them. It can be calculated from the Cartesian coordinates of the points using the 
Pythagorean theorem, and therefore, is occasionally called the Pythagorean distance. 
 

 
 

In the Euclidean plane, let point p have Cartesian coordinates  𝑝1 , 𝑝2 and let point q have coordinates 
 𝑞1, 𝑞2 . Then the distance between 𝑝 𝑎𝑛𝑑 𝑞 is given by: 

𝑑(𝑝, 𝑞) =   𝑝1 − 𝑞1 
2 +  𝑝2 − 𝑞2 

2        (1) 
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3. Capacitated Vehicles Routing Problem 
The capacitated vehicle routing problem (CVRP) refers to a VRP in which vehicles with known limited 
carrying capacity pick up or deliver items at a variety of locations. The vehicles have a maximum carrying 
capacity. The challenge is to deliver the items over the shortest distance while never exceeding the 
capacity of the vehicles. 
Dantzigand and Ramser (1959)[13]define the CVRP as follows: A central depot houses a large number of 
similar vehicles with a specific capacity. They are available to service a specific set of city orders (either 
all deliveries or all pickups). Each client's order has a particular location and size. Costs for traveling 
between every point are provided. The goal is to generate a low-cost set of vehicle routes that visit all 
customers once while adhering to vehicle capacity. 
 

3.1 Mathematical Model of CVRP[14] 
I. The Objective Function of CVRP 
The main objective of CVRP is finding the minimum scheduling total route length (shortestpath length can 
be used to obtain the minimum time for resource distribution). 

 

II. CVRP  Requirements 
1. Suppose that the position of the Distribution Centre (DC) is known, and the distance between the DC 

and every city in the graph network is known as well between them.  
2. The resource at each point orcity is delivered by just one vehicle. 
3. At any demand point or city,the load capacity of every vehicle mustsatisfy the demand for cities. 
4. Supposing that every vehicle has the same capacity and speed. 
5. there is no priority level,all level of cities demand is the same in each point. 
 
III. Variable Definitions   
𝒏 : number of cities. 
𝒎 : number of vehicles. 
𝒃𝒌  : Load of each vehicle, 𝑘 = 1,2, … , 𝑚. 
𝒓𝒊    : Resource requirements of each point, 𝑖 = 1,2, … , 𝑛. 
𝒅𝒊𝒋  : Distance from demand city𝑖 to 𝑗. 

𝒅𝟎𝒊,𝒅𝒊𝟎 : Represents distance from DC to demand point 𝑖.  

𝒗 𝒊𝒌 =  
  1    𝑖𝑓 𝑘 − 𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑔𝑜𝑒𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝒙 𝒊𝒋𝒌 =   
1   𝑖𝑓 𝑘𝑡ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑜𝑖𝑛𝑡 𝑖 a𝑛𝑑 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑝𝑜𝑖𝑛𝑡 𝑗

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 
 
IV. Model Construction 
We have 𝑛 cities not including the DC with 𝑚 vehicles. 
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(CVR-1): is the objective function of CVRP, which assign the shortest route can be graphed to minimize 
the total distance moved by all the specific vehicles. 
(CVR-2):means that each city demand point is only receive just one vehicle. 
(CVR-3):represents that each vehicle starts from the DC and moved via each point in specific route. 
(CVR-4):means that there one vehicle passing via each resource demand point.  
(CVR-5):means no overload of vehicles, in another word, that the load capacity of distribution vehicles 
will not be less than that demand points visited. 
(CVR-6): denotes that the rout length from point 𝑖 to point 𝑗(𝑖 → 𝑗) is the same as that from 𝑗 → 𝑖. That 
mean our CVRP is symmetric. 
(CVR-(7,8,9,10)):describe the range of values of the CVRPvariable. 
Example (1):let say we have 𝑛 = 6 cities with given coordinate (𝑥, 𝑦)as shown in table (1), and vehicles 
capacity is 100. 

 
Table 1. (𝑥, 𝑦) Coordinates for example (1). 

 
DC C1 C2 C3 C4 C5 C6 

Demands 0 15 13 14 12 9 10 

x 0 7 -1 8 -2 6 -2 

y 0 6 5 -3 -6 6 9 

(x, y) (0,0) (7,6) (-1,5) (8, -3) (-2, -6) (6,6) (-2,9) 

 
Then by using ED we can transforms table (1) from (𝑥, 𝑦) coordinates into distance between citiesusing 
relation (1)(see in table (2)). 

 
Table 2. Distance table using ED. 

 
Finally, by applying GT we can obtain the graph as shown in figure (3). 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3. graph of distances of cites of Example (1). 
 

Now if we have 2 vehicles available then we can apply any method to get the feasiblesolution path for 
each vehicle 𝑉1  and 𝑉2, the pathsare as follows: 

Distance DC C1 C2 C3 C4 C5 C6 

DC 0 9.2195 5.099 8.544 6.3246 8.4853 9.2195 

C1 9.2195 0 8.0623 9.0554 15 1 9.4868 

C2 5.099 8.0623 0 12.0416 11.0454 7.0711 4.1231 

C3 8.544 9.0554 12.0416 0 10.4403 9.2195 15.6205 

C4 6.3246 15 11.0454 10.4403 0 14.4222 15 

C5 8.4853 1 7.0711 9.2195 14.4222 0 8.544 

C6 9.2195 9.4868 4.1231 15.6205 15 8.544 0 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 4, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 25                                            Ali Abdulsahib Abdulrheem et al 21-33 

𝑉1 = 𝐷𝐶 →  𝐶3  →  𝐶1  →  𝐶5  →  𝐶6  →  𝐶2  →  𝐷𝐶   
𝑉2 = 𝐷𝐶 →  𝐶4  →  𝐷𝐶   
And by taking the distance from table (2) we can calculate the cost for each vehicle: 
𝐹  𝑉1 =  𝑑03 + 𝑑31 + 𝑑15 + 𝑑56 + 𝑑62 + 𝑑20  =  36.3655 
𝐹  𝑉2 =  𝑑04 + 𝑑40 =  12.6492 
Then the objective function OF is calculate by sum the cost of all vehicles𝐹  𝑉𝑘  , 𝑘 = 1,2. 

𝑂𝐹 =   𝐹  𝑉𝑘 

2

𝑘=1

 = 49.0147  , 𝑘 = 1,2.  

where all the constraints are satisfied: 
 
4. Special Cases for VRP 
In this section we will prove some facts and special cases for CVRP. 
Case (4.1):For CVRP, if 𝑚 = 1where capacity constraint is satisfied, then CVRP convertedtosingle CVRP 
(SCVRP) with multi-shift. 
Proof: For 𝑚 = 1, this means we uses one vehicle to fulfil demand over a scheduling  

period of serval work shifts. 
The objective function will be: 
𝑚𝑖𝑛  1

𝑘=1   𝑛
𝑗=0   𝑛

𝑖=0 𝑑𝑖𝑗 𝑥𝑖𝑗𝑘  = 𝑚𝑖𝑛   𝑛
𝑗=0   𝑛

𝑖=0 𝑑𝑖𝑗 𝑥𝑖𝑗     (2) 

for (n+1) cites: 
𝑥𝑖𝑗 ∈  0,1    , 𝑖. 𝑗 = 0,1,2, … , 𝑛        (3) 

and 
𝑣𝑖 ∈  0,1 , 𝑖 = 1,2,… , 𝑛       (4) 
And we have only one 𝑏1 > 0 which satisfied capacity constraint. 
This means we have SCVRP.         
 

Case (4.2): For VRP, if m=1, without capacity constraint, then VRP converted tobasic TSP.   
Proof: For 𝑚 = 1, since relation (2) is satisfied, then we have (𝑛 + 1) cities where DC is the starting and 
finishing city, since the capacity constraints is not satisfied, that means the (CVR-2), (CVR-4), (CVR-5) and 
(CVR-8) not important constraints. 
Then the mathematical formulation (CVR) will be: 

𝑚𝑖𝑛  

𝑛

𝑗=0

  

𝑛

𝑖=0

𝑑𝑖𝑗 𝑥𝑖𝑗  

𝑠. 𝑡. 
  𝑛

𝑖=0 𝑥𝑖𝑗 = 1 , 𝑗 = 0,1, … , 𝑛.     (5) 

  𝑛
𝑗=0 𝑥𝑖𝑗 = 1 , 𝑖 = 0,1, … , 𝑛.      (6) 

 𝑥𝑖𝑗 ∈  0,1      , 𝑖. 𝑗 = 0,1,2, … , 𝑛.      (7) 

 And that is the mathematical formation of TSP.     
 
Case (4.3): For CVRP, if 𝑚 = 𝑛 then CVRP has only one unique solution with 𝑛! paths. 
Proof: Since 𝑚 = 𝑛, this means we can assign one vehicle for each city, since the capacityconstraints are 
satisfied for each vehicle. Then it’s not important that which vehicle will travel to any city.So, we have 𝑛! 
paths with unique objective function and CVRP will convert toAssignment Problem (AP) with equal 
assigning values, which calculated by relation (8).  

            OF = 2𝑛  𝑚
𝑘=0 𝑑0𝑘           (8) 

             
Case (4.4): For CVRP, if 𝑑 = 𝑑𝑖𝑗  then CVRP has only one unique solution 𝐹 =  𝑑 + 1  𝑛 + 1  𝑚  with 𝑛! 

paths. 
Proof: From objective function (CVR-1) of CVRP. 
𝑚𝑖𝑛  𝑚

𝑘=1   𝑛
𝑗=0   𝑛

𝑖=0 𝑑𝑖𝑗 𝑥𝑖𝑗𝑘  =    𝑚
𝑘=1  𝑑 + 1   𝑛

𝑗=0   𝑛
𝑖=0 𝑥𝑖𝑗𝑘  

= 𝑑 + 1   𝑚
𝑘=1   𝑛

𝑗=0   𝑛
𝑖=0 𝑥𝑖𝑗𝑘  

= (𝑑 + 1)   𝑚
𝑘=1 (𝑛 + 1) =  𝑑 + 1  𝑛 + 1  𝑚 

Which has 𝑛! paths.           
 
5. Solving Methods for Capacitated Vehicles Routing Problem 
In this section we present an overview of some methods used for solving the CVRP. 
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5.1 Exact Methods 
Complete enumeration method (CEM) sampling is a method used mainly in surveys and data collect and 
analysis to explore all possible elements in a finite set. It involves the selection, acquisition, and 
quantification of a part of the solutions space, with the aim of providing a representative sample based on 
certain criteria. This approach is particularly useful when dealing with small problem, as it allows for an 
exact test to be conducted by considering the complete distribution of the test statistic[15]. 
The branchand bound (BAB) method is another exact method has been used extensively in recent 
decades to solve the CVRP and its main variants [16]. 

 
5.2 Heuristics Methods 
In recent decades, academics and researchers have become interested in general heuristic 
approximations, which can improve specific heuristics in the field. The researchers have vested and fed 
the related literature. Many methods have been developed, and it is extremely difficult to establish a 
systematic and widely accepted classification. A attainable grouping is as follows[17]: 
 Constructive heuristics:Its family of strategies can be that applies when the solution can be found by 

choosing the most suitable subset of a given set, starting from a blank set and iteratively adding a 
single aspect to the solution according to some specific criterion. 

 Meta-heuristics:Meta-heuristics, also known as local search methods (LSMs), are multi-goal methods 
or, more accurately, algorithmic schemes that arise independently of a specific COP. They introduced 
some components and their interactions, allowing them to create effective solutions. LSM include 
simulated annealing (SA), ariable neighbourhood search (VNS), tabu search (TS), greedy randomized 
adaptive search techniques (GRAST), stochastic local search (SLS), particle swarm optimization (PSO), 
and bee’s algorithm (BA) and genetic algorithm (GA) among others[18].  

 
5.3 Nearest Neighbours Method (NNM) 
One of the important heuristic methods is Nearest Neighbours Method (NNM) which is aneffective and 
fast algorithm for solving optimization problems as CVRP. The NNM is operating by firstly select a point 
that represents the starting position. Then select the nearest position to be go next and so on. if all 
positions have been connected, then the sequence is finish and must return to starting point[19]. 
NNM has a greedy nature, which means that the node closest to it will be served next. The identified route 
will be followed by various vehicles to meet the demands of various nodes. The first vehicle with 
everything it can carry starts from 0 and serves the nodes in the specified sequence of the route identified 
until its capacity is exhausted, when it returns to 0, the next vehicle starts from 0 and serves the balance 
demand of the last worked node and proceeds on the route until all the nodes are served. 
The NNM algorithm can be summarized follows[20]: 
Step1: Initialization; Read (𝑛, 𝑚,𝑑𝑖𝑗 ,𝑟𝑖 ,𝑏𝑘).𝑖, 𝑗 =  1,2, … , 𝑛 ;  𝑘 = 2,3, … , 𝑚. 

Step 2: Find route using nearest neighbour, starting from Positions 0 (𝑃0) and passing all other positions 
then return to 𝑃0. 

Step 3:Calculate the cost of the determined route.  
Step 4:Take in the consideration of the total demand and find the number of vehicles required. 
Step 5: While (total demand >0)  
Step 5.1: Route new vehicle on giant route delivering the different positions till its capacity exhausted.  
Step 5.2:Vehicles Return to 𝑃0.  
Step 5.3: Calculate the total cost for the vehicles. 
Step 5.4:End while. 
Step 6: Output the minimized objective function. 
In this paper we will use the NNM to compare its results with the results of new proposed methods for 
solving CVRP. 
 
6. New Techniques for Solving CVRP 
In this section we introduce new methods for solving CVRP. 

 

6.1 Enhanced nearest Neighbours Method (ENNM) 
We introduce a new constructive heuristic method to solved CVRP that give best solution to minimizing 
travel time (distance) in short time period comparing to the exact method. We called the new method as 
Enhanced nearest Neighbours Method (ENNM). This method based on NNM method and split the cities on 
every possible position on certain track. 
The ENNM algorithm steps are as follows: 
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Step 1:Input data (𝑛, 𝑚,𝑑𝑖𝑗 ,𝑟𝑖 ,𝑏𝑘),  𝑖, 𝑗 =  1,2,… , 𝑛 ;  𝑘 = 2,3, … , 𝑚. 

Step 2: calculate full route for all cities using nearest neighbour, starting from DC passing every city and 
return to it. 

Step 3: Get the total demand and calculate number of vehicles required. 
Step 4:While (total demand >0)  
Step 4.1: For the obtain route from step (2) with minimum number of vehicles try all possible assignment 
to each vehicle with same order as in the obtain route.  
Step 4.2: Route new vehicle on giant route delivering the different positions till its capacity exhausted. 
Step 4.3: Calculate the total cost for each vehicle𝐹(𝑉𝑘). 
Step 4.4: End While. 
Step (5): Outputs Calculate the objective function. Then take the minimum: 

𝐹 =   𝐹(𝑉𝑘)𝑚
𝑘=1 . 

 
6.2NearestPairs Sequence Cut (NPSC) 
We introduce a new constructive heuristic method to solve CVRP that give best solution to minimizing 
travel time (distance) in short time period comparing to the exact method.We called the new method as 
Nearest Pair Sequence Cut (NPSC) the technique of this method based on combine nearest point together 
as pair of (2,3,…) and sequence these pair as one point with all other ones. The NPSC algorithm steps are 
as follows: 
Step 1:Input data (𝑛, 𝑚,𝑑𝑖𝑗 ,𝑟𝑖 ,𝑏𝑘),𝑖, 𝑗 =  1,2, … , 𝑛 ;  𝑘 = 2,3, … , 𝑚. 

Step 2:Formulate pairs table its element𝑃´𝑟  from (𝑃𝑖 , 𝑃𝑗 ) with nearest position in distance and order it   

ascending. 

𝑃´1  ≤  𝑃´2 ≤  …  ≤  𝑃´𝑟    ;𝑟 =  𝐶2
𝑛  =

𝑛2−𝑛

2
 . 

Step 3: Take the minimum first pair P´ say (𝑃1 , 𝑃2) in step (2) and start comparing the minimum distance 
from 𝑃1  to 𝑃𝑖(𝑖 ≠ 1) and 𝑃2  to 𝑃𝑗 (𝑗 ≠ 2) then sequence the minimum one among them. 

Step 4: Remove selected pair 𝑃´ in Step (3) from the pairs table and remove every pair in that sequence 
from step (3) except first and last city. 

Step 5: If all cites 𝑃𝑖are sequenced then go to step (7) otherwise return tostep (3). 
Step 6: break the obtained sequence into m-subsequence (𝛽1, 𝛽2 , … , 𝛽𝑚),from (start-end) position with 

respect to not exceed vehicles capacity. 
Step 7: Calculate the sub-objective function for each subsequence: 
𝐹 𝛽𝑘  , 𝑘 = 1,2, … , 𝑚  . 
Step 8: Outputs Calculate the main objective function. Then take the minimum. 
𝐹 =   𝐹(𝛽𝑘)𝑚

𝑘=1 . 
 
6.3 Divided Tree Method (DTM) 
Another new heuristic method introduced to solve CVRP that minimizing travel time (distance),We called 
the new method as Divided Tree Method (DTM) they based on new rules for choosing the parent node 
that branching from their (demands requirements – far city from the center) then removing all sub trees 
that not include useful nodes base on the constraints. The DTM algorithm steps are as follows: 
Step 1:Input data (𝑛, 𝑚,𝑑𝑖𝑗 ,𝑟𝑖 ,𝑏𝑘) and Initialization. 

Step 2: For k-vehicles let 𝐺(𝑢) = (𝑉(𝑢,Ꝉ), 𝐸(𝑢,Ꝉ)), u = 1,2, . . 𝑘; Ꝉ = 𝐴, 𝐵 be undirected graphconsists of 
finite set of 𝑉 vertices and a set 𝐸 of Pairs of vertices. 

Step 3: For each 𝐺(𝑢) in step (2) we first calculate the parent node (say𝑃𝛼) where is represent the 
following: 
Approach (A) – AP1: Pα is the city with highest demands. 
Approach (B) – AP2: Pα is the city with biggest distance from the DC. 

While demands ≤𝒃𝒌 
Step 4: Calculate the nearest two cities to the parent node (Pα) and consider them as the edge 

𝐸 = (𝐸 (1, 𝐴), 𝐸 (1, 𝐵)). [ 1st level of branching]. 
Step 5: Now set 𝑃𝛼 = 𝐸 (1,𝐴) then set 𝑃𝛼 = 𝐸 (1, 𝐵). [ 2nd level of branching]. 
Step 6: Calculate distance for the fourth branching in level 2 and take the minimum one and remove the 

others. 
Step 7: if all cities are sequenced go to step (7) otherwise go to step (4). 
Step 8: Connect the vertices V1(A) and V2(B) from both sides of divided tree. 

V1(A) = {Pi};  V1(B) = {Pj};  i =  1,2, … , s ;  j =  1,2, … , s; s ≤ n   
V1 = [V1(A) V1(B)] with F(V1)  =  Obj(V1(A))  + Obj(V1(B)). 

Step (9): Outputs Calculate the main objective function by sum the objective function for each vehicle. 
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F =   F Vk m
k=1 . 

Remark (1):To improve the solutions of CVRP for all proposed methods, when one vehicle has n ≤
10 cities in its path we apply one of the exact methods (like CEM), else we apply the specific methods as 
it’s described in sections (6.1) step (4.2), (6.2) step (6) and (6.3) step (8). 

 
7. Applied the Proposed Techniques toSolve CVRP 
To applied the proposed techniques, firstly we take 5 random sets ofexamples for each n = 4: 10 
(positions coordinates X, Y between [-10,10]) and test it with all vehicles range (m = 2, . . , n − 1) and 
compare the result with the optimal solutions obtained from CEM. 

Note: For all tables we give the following notations: 
OP: Optimal value of objective function. 
BV: Best value of objective functions. 
T: CPU-time in seconds. 

POP: Percentage of BV for OP, s.t. POP =  
BV

OP
 × 100% . 

R: Time less than 1 second, R ∈ (0,1). 
TM: Total mean. 
U: Unknown. 

Table (3) show comparing the results of the sets of simulation random examples between CEM with NNM 
and ENNM.Table (4) introduce the comparing results of the simulation sets between CEM with NPSC and 
DTM. 
 

Table 3. Comparing results of NNMand ENNM with CEM for n=4:10. 

n m 
CEM NNM ENNM POP 

OP T BV T BV T NNM ENNM 

4 
2 47 

R 
47 

R 
47 

R 
100% 100% 

3 57 57 57 100% 100% 

Mean 51.9 R 52 R 52.0 R 100% 100% 

5 

2 48 

R 

50 

R 

49 

R 

95% 98% 

3 56 58 56 96% 99% 

4 67 69 67 98% 100% 

Mean 57.0 R 59 R 57.3 R 97% 99% 

6 

2 55 

R 

57 

R 

56 

R 

97% 99% 

3 62 63 62 98% 100% 

4 70 72 70 98% 100% 

5 83 84 83 99% 100% 

Mean 67.5 R 69 R 67.8 R 98% 100% 

7 

2 57 

R 

58 

R 

57 

R 

98% 99% 

3 62 64 63 97% 99% 

4 70 71 70 98% 100% 

5 80 85 80 94% 100% 

6 92 98 92 94% 100% 

Mean 72.2 R 75 R 72.5 R 96% 100% 

8 

2 58 

4.2 

61 

R 

59 

R 

95% 98% 

3 63 67 64 94% 98% 

4 70 77 70 91% 100% 

5 79 85 79 94% 101% 

6 91 92 91 99% 100% 

7 106 107 106 99% 100% 

Mean 77.9 4.2 81 R 78.2 R 96% 100% 
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9 

2 56 

201.7 

61 

R 

60 

R 

92% 94% 

3 62 70 64 88% 97% 

4 71 79 71 89% 99% 

5 81 87 81 93% 100% 

6 92 98 92 94% 100% 

7 105 108 105 98% 100% 

8 119 123 119 97% 100% 

Mean 83.8 201.7 89 R 84.6 R 94% 99% 

10 

2 69 

1861.3 

75 

R 

72 

R 

92% 95% 

3 76 84 79 91% 96% 

4 85 92 86 92% 98% 

5 94 104 96 91% 99% 

6 106 113 107 93% 99% 

7 118 123 118 95% 99% 

8 131 134 131 97% 100% 

9 145 149 148 98% 98% 

Mean 102.8 1861.3 109 R 104.6 R 94% 98% 

TM 79.5 689.1 83 R 80.2 R 95% 99% 

 
Table 4. Comparing results of NPSC, DTM with CEM for n=4:10 

n m 
CEM NPSC DTM POP 

OP T BV T BV T NPSC DTM 

4 
2 47 

R 
47 

R 
47 

R 
100% 100% 

3 57 57 57 100% 100% 

Mean 51.9 R 52 R 52.0 R 100% 100% 

5 

2 48 

R 

50 

R 

51 

R 

95% 94% 

3 56 58 57 96% 98% 

4 67 69 68 98% 99% 

Mean 57.0 R 59 R 58.7 R 97% 97% 

6 

2 55 

R 

55 

R 

58 

R 

100% 96% 

3 62 62 67 100% 92% 

4 70 70 70 100% 100% 

5 83 83 83 100% 100% 

Mean 67.5 R 68 R 69.5 R 100% 97% 

7 

2 57 

R 

57 

R 

59 

R 

99% 96% 

3 62 63 64 99% 98% 

4 70 70 72 100% 98% 

5 80 80 80 100% 100% 

6 92 92 92 100% 100% 

Mean 72.2 R 72 R 73.4 R 100% 98% 

8 

2 58 

4.2 

60 

2.1 

62 

R 

97% 93% 

3 63 64 63 98% 100% 

4 70 71 70 99% 100% 

5 79 80 81 99% 98% 

6 91 91 91 100% 100% 
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7 106 106 106 100% 100% 

Mean 77.9 4.2 79 2.1 78.9 R 99% 99% 

9 

2 56 

201.7 

59 

2.3 

60 

R 

96% 94% 

3 62 65 67 95% 93% 

4 71 73 71 96% 100% 

5 81 83 81 98% 100% 

6 92 94 95 99% 97% 

7 105 105 105 100% 100% 

8 119 119 119 100% 100% 

Mean 83.8 201.7 86 2.3 85.5 R 98% 98% 

10 

2 69 

1861.3 

72 

2.5 

75 

R 

95% 92% 

3 76 81 82 94% 92% 

4 85 88 89 96% 95% 

5 94 97 99 97% 95% 

6 106 107 108 99% 98% 

7 118 119 120 99% 98% 

8 131 132 134 99% 97% 

9 145 146 148 99% 98% 

Mean 102.8 1861.3 105 2.50000 106.9 R 98% 96% 

 
Table (5) shows the summary of results in table (3) and (4) by taking the mean time only for n=4:10 for 
CEM, NNM, ENNM, NPSC and DTM. 
 

Table 5. the summary of results in table (3) and (4) for n = 4: 10 for CEM, NNM, ENNM, NPSC and DTM. 

 n    
CEM NNM ENNM NPSC DTM POP 

OP T BV T BV T BV T BV T NNM 
ENN
M 

NPSC DTM 

4 51.9 R 51.9 R 52.0 R 51.9 R 52.0 R 
100
% 

100% 
100
% 

100
% 

5 57.0 R 58.9 R 57.3 R 58.9 R 58.7 R 97% 99% 97% 97% 

6 67.5 R 68.9 R 67.8 R 67.5 R 69.5 R 98% 100% 
100
% 

97% 

7 72.2 R 75.3 R 72.5 R 72.4 R 73.4 R 96% 100% 
100
% 

98% 

8 77.9 4.2 81.5 R 78.2 R 78.7 2.1 78.9 R 96% 100% 99% 99% 

9 83.8 201.7 89.5 R 84.6 R 85.5 2.3 85.5 R 94% 99% 98% 98% 

10 
102.
8 

1861.
3 

109.2 R 104.6 R 105.3 2.5 106.9 R 94% 98% 98% 96% 

TM 79.5 689.1 83.5 R 80.2 R 80.7 2.3 81.5 R 95% 99% 98% 98% 

 
Figure (5) shows the comparison results of table (5) for n = 4: 10. 
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Figure 5. the comparison results of table (5) for n = 4: 10. 
 
Table (6) shows the comparison results between the optimal solution obtain from external dataset obtain 
from Augerat et al[21] with results of proposed methods ENNM, NPSC and DTM (n = 21,31,52,60,79,100) 
for choosing m. 
 

Table 6. comparison results between the optimal solution of external dataset with results of proposed 
methods ENNM, NPSC and DTM (n = 21,31,52,60,79,100) for choosing m 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

   Figure (6) show the comparison results of table (6) for n = 21,31,52,60,79,100. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 6. the comparison results of table (6) for n = 21,31,52,60,79,100. 

n m 

CEM NNM ENNM NPSC DTM - AP1 DTM - AP2 POP 

 

OP BV T BV T BV T BV T BV T NNM ENNM NPSC 
DTM-

AP1 

DTM-

AP2 
 

21 4 375 493 R 383 R 380 4.6 375 2.2 383 3.2 76.1% 97.9% 98.7% 100.0% 97.9%  

31 5 784 1024 R 842 R 792 6.2 797 2.2 817 2.1 76.6% 93.1% 99.0% 98.4% 96.0%  

52 7 1010 1162 1.9 1103 1.9 1035 15.9 1067 2.4 1053 2.0 86.9% 91.6% 97.6% 94.7% 95.9%  

60 9 1034 1286 1.6 1107 R 1095 22.2 1114 3.0 1071 2.3 80.4% 93.4% 94.4% 92.8% 96.5%  

79 10 1763 2034 1.7 1949 1.6 1854 45.7 1958 3.2 1904 2.3 86.7% 90.5% 95.1% 90.0% 92.6%  

100 10 820 1095 1.7 820 1.9 827 88.2 827 309.0 820 2.2 74.9% 100.0% 99.2% 99.2% 100.0%  

TM 964.3 1182.3 1.1 1034.0 0.9 997.2 30.5 1023.0 53.7 1008.0 2.3 81.6% 93.3% 96.7% 94.3% 95.7%  
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Table (7) shows Accuracy percentage of CEM with NNM, ENNM NPSC and DTM  
 

Table 7. Accuracy percentage of CEM with NNM, ENNM NPSC and DTM 

Method  
Accuracy percentage 

n= 
4:10 

n= 21 n=31 n=52 n=60 n=79 n=100 TM 

CEM 100% 100% 100% 100% 100% 100% 100% 100% 

NNM 95% 76% 77% 87% 80% 87% 75% 82% 

ENNM 99% 98% 93% 92% 93% 91% 100% 95% 

NPSC 98% 99% 99% 98% 94% 95% 99% 97% 

DTM-AP1 98% 100% 98% 95% 93% 90% 99% 96% 

DTM-AP2 98% 98% 96% 96% 97% 93% 100% 97% 

 
7. Discussions and Analysis of Result 

1. The results in table (3) and (6) show that our new ENNM has superiors over the classic NNM and 
increase mean accuracy of the objective function by (4%) and (12%) respectively. 

2. After comparing CPU-time of methods NNM and ENNM it’s obvious that the two methods achieve 
same results according to their results CPU-time (R).   

3. When comparing results of table (4) and (6) it’s obvious that the best methods with respect to 
accuracy is DTM-AP2 at (98%) and (96.7) respectively. 

4. While DTM give advanced time speed of around (R) and (2.3 Sec) respectively. 

5. Over all when comparing all the proposed methods results (Simulations, External Data) we get two 
facts: 

a- The Best method among them with respect to its accuracy is equal between NPSC and DTM-AP2. 
b- According to CPU-time the best one of the introduced methods is ENNM given CPU-time (R).  
 
8. Conclusions and Future Work 
Based on the recent real problem and computational results and analysis, from the various applications 
and operational perspective, leads to serval facts: 
1. Althoughthat the exact method such as CEM and BAB give optimal solutions, still sometimes can be 

expensive due to its high completion time for large scale problem such as in different disasters 
(earthquake, hurricane, health pandemic, emergency logistics, etc) where vehicles are required to 
delivered the supplies of the affected sites in a shortest time possible. 

2. Here comes the importance of heuristic methods that give best solutions (near optimal solutions or 
even sometimes an optimal solutions) that obtain in much shorter time as soon as possible at fair 
results. 

3. There are hundreds of heuristic methods to the present day that give best solutions and the attempts 
continue to improve this result to minimizing cost and distance for the CVRP problem. 

4. The proposed method for solving CVRP prove their effecting through their results in solving CVRP. 
5. Notice that the NPSC and DTM-AP2 are the best in accuracy while ENNM is the best in CPU-time in 

solving CVRP. 
6. We suggest using exact methods to solve CVRP like BAB method to obtain optimal solutions. 
7. We suggest usingLSMs like GA, PSO,BA,…, etc to solve CVRP. 
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