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ABSTRACT 
For a graph G = (V G , E G ) a coloring C: V(G) → 𝕫k , k ≥ 2 (not a proper coloring) called the modular 
coloring if for each pair of neighboring vertices 𝒮 u ≠ 𝒮(v). The minimum k for which G has an modular k 
- coloring is called modular chromatic number of G. The modular k- coloring of a graph is denoted by 
mc G .In this study we examine the modular chromatic number for some snow graph and extended snow 
graph of cycle related graph. 

 
Keywords: Snow graph, extended snow graph, wheel graph, gear graph, friendship graph, generalized fan 
graph, flower graph. 
 
INTRODUCTION  
There are many real-world applications for graph theory. That's when a graph coloring comes into play. 
One of the research's emerging topics is modular coloring. We consider the finite undirected connected 
graph. F. Okamoto, E. Salehi, and P.Zhang in 2010. In [1], a modular k- coloring, k ≥ 2 of a graph without 
isolated vertices is a coloring of the vertices of G with the element in 𝕫k  (where adjacent vertices may be 
colored the same) having the property that for every two adjacent vertices of G,The sum of the colors of 
the neighbors are different in 𝕫k . The minimum k for which G has a modular k- coloring is called modular 
chromatic number mc G . 
Let G be any graph and H is a double claw graph. Let {v1, v2 ,… , vμ} are the external vertex (except the 

center vertex) of a graph G, take μ copies of H and the root vertex of the double claw  graph joined with 
the each external node G is called snow graph and it is denoted by STdc (Gμ) where μ is the number of 

external vertices of graph G and Tdc  denote the double claw tree graph. 
Let G be the cyclic graph and H is any γ −  ary tree graph. Let {v1 , v2, … , vμ} are the external vertex (except 

the center vertex)  of a cyclic graph, take μ copies of H and the root vertex of the γ −  ary  tree joined with 
the external node of G by an edge is called extended snow graph denoted by STγ(Gμ) where μ, γ is the 

number of external vertices of cyclic graph G and height of n-ary tree graph T respectively. 
In [2] P. Sumathi, S. Tamilselvi, determined the modular chromatic number of certain cyclic graphs. In [3], 
we obtain the modular chromatic number of the inflated graphs of the wheel, gear, fan, friendship, and 
flower graphs. In [4], also we examined the modular coloring of the corona product of a generalized 
Jahangir graph. In [5] N. Paramaguru, R. Sampathkumar, investigatedmodular colorings of join of two 
special graphs. In [6], T. Nicholas, G. R, Sanma, discussed the modular colorings of cycle related graphs. In 
[7], R.Rajarajachozhan, R.Sampathkumar, found the modular coloring of the cartesianproducts Km □Kn , 
Km □Cn , And Km □Pn . In [8], T. Nicholas, G. R, Sanma, found the modular colorings of circular Halin graphs 
of level two.In [9] Sanma. G. R, P. Maya obtained the Modular coloring and switching in some planar 
graphs. 
 
Main results 
Let G be a non-trivial undirected connected graph. In this paperwe introduced two new graph structures, 

snow graph STdc  Gμ  and extended snow graph STγ(Gμ) of cycle related graphs. The following theorem 

results that the snow graph and its extended snow graph of cycle related graph admits modular coloring. 
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Theorem 1. For any integer μ ≥ 3,the modular chromatic number of a snow graph of wheel graph 

mc(STdc  Wμ ) =  
3 when μ is even
4 when μ is odd

 . 

Proof: The construction of the snow graph of Wμ is described as, letWμ be a wheel graph on μ vertices and 

H is any double claw tree Tdc . Each external vertex of Wμ except the center vertex is attached with the root 

vertex of the Tdc  is joined by an edge is called snow graph of wheel graph. LetV  STdc  Wμ  = c0 ∪ vα ∪

vαβwhere  1 ≤ α ≤ μ and 1 ≤ β ≤ 6 andlet E  STdc  Wμ  = c0vα ∪ vα
′ : 1 ≤ α ≤ μ ∪ vαβ

′ : 1 ≤ α ≤ μ and 1 ≤

β ≤ 6. The modular coloring of STdc  Wμ  is defined by the following two cases 

Case 1: When μ is odd, 

Coloring of STdc  Wμ  is  

C(c0) = 0, C vα = 0 for all α. 
When α ranges from 1 toμ − 1 and β ranges from 1 to 6 

For all odd α; C vαβ =  
1:           β = 2 
0:   otherwise

 , 

For all even α; C vαβ =  
2:           β = 2 
0:   otherwise

  

When;C vαβ =  
3:  β = 2 

0:   otherwise
 . 

Modular coloring of STdc  Wμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1:  1 ≤ α ≤ μ − 1, where α is odd
2: 1 ≤ α ≤ μ − 1, where α is even 

3: α = μ

  

When α ranges from 1 toμ − 1 and β ranges from 1 to 6 

For all odd α; 𝒮 vαβ =  
0:    β = 1,2,3 
1:   otherwise

 , for all even α; 𝒮 vαβ =  
0: β = 1,2,3 
2: otherwise

 .  

When α = μ;𝒮 vαβ =  
0: β = 1,2,3 
3: otherwise

 . 

Case 2:When μ is even, 

Coloring of STdc  Wμ  is  

C(c0) = 0, C vα = 0 for all α. 
When α ranges from 1 toμ and β ranges from 1 to 6 

For all odd α; C vαβ =  
1:           β = 2 
0:   otherwise

 , for all even α; C vαβ =  
2:           β = 2 
0:   otherwise

 . 

Modular coloring of STdc  Wμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1: for all odd α 
2: for all odd α 

  

When α ranges from 1 toμ − 1 and β ranges from 1 to 6 

For all odd α; 𝒮 vαβ =  
0:    β = 1,2,3 
1:   otherwise

 , for all even α; 𝒮 vαβ =  
0: β = 1,2,3 
2: otherwise

 . 

From the above cases the graph STdc  Wμ  is 4 modular colorable, therefore the modular coloring  

ofmc  STdc  Wμ  = 4. 

 
Theorem 2. For any integer μ ≥ 3,the modular chromatic number of a snow graph of gear graph 

mc(STdc  Gμ ) = 2. 

Proof: The structure of the snow graph of  Gμ, let the graph Gμ be a gear graph with μ vertices then take μ 

copies of dc, each external vertex of Gμ is affixed by one dc, let V  STdc  Gμ  = c0 ∪ vα ∪ vαβwhere 

1 ≤ α ≤ μ and 1 ≤ β ≤ 6 and let E  STdc  Gμ  = vα
′ : 1 ≤ α ≤ 2μ ∪ vαβ

′ : 1 ≤ α ≤ μ and 1 ≤ β ≤ 6. 

Coloring of STdc  Gμ is C(c0) = 0, when α ranges from 1 toμ; C vα =  
0: for all odd α 
1: for all even α

 . 

When α ranges from 1 to μ and β ranges from 1 to 6 

For all odd α; C vαβ =  
1:           β = 2 
0:   otherwise

 , for all even α; C vαβ = 0.  

Modular coloring of STdc  Gμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1: for all odd α 
0: for all odd α 

  

When α ranges from 1 toμ − 1 and β ranges from 1 to 6 

For all odd α; 𝒮 vαβ =  
0:    β = 1,2,3 
1:   otherwise

 , for all even α; 𝒮 vαβ =  
1:  β = 1,2,3 
0: otherwise

 . 
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From the above cases the graph STdc  Gμ  is modular 2- colorable, therefore the modular coloring of 

mc  STdc  Gμ  = 2. 

 
Theorem 3. For any integer μ ≥ 3,the modular chromatic number of a snow graph of friendship 

graphmc(STdc  Fμ ) = 3. 

Proof: The construction of the snow graph of  Fμ is described as, letFμ be a friendship graph onμ vertices 

then take μ copies of dc, each external vertex of Fμ is affixed by one dc, let V  STdc  Fμ  = c0 ∪ vα ∪

vαβwhere1 ≤ α ≤ 2μ and 1 ≤ β ≤ 6 and letE  STdc  Fμ  = c0vα
′ : 1 ≤ α ≤ 2μ ∪ vα

′ : 1 ≤ α ≤ μ ∪ vαβ
′ : 1 ≤

α ≤ μ and 1 ≤ β ≤ 6. 

Coloring of STdc  Fμ  is, C(c0) = 0, when α ranges from 1 to 2μ; C vα = 0. 

When α ranges from 1 to 2μ and β ranges from 1 to 6, 

For all odd α; C vαβ =  
1:           β = 2 
0:   otherwise

 , for all even α; C vαβ =  
2:           β = 2 
0:   otherwise

 .  

Modular coloring of STdc  Fμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1: for all odd α 
2: for all even α

  

When α ranges from 1 to 2μ and β ranges from 1 to 6 

For all odd α; 𝒮 vαβ =  
0:    β = 1,2,3 
1:   otherwise

 , for all even α; 𝒮 vαβ =  
0:  β = 1,2,3 
2: otherwise

 . 

The graph STdc  Fμ  is modular 3- colorable, therefore the modular coloring of mc  STdc  Fμ  = 3. 

 
Theorem 4. For any integer μ ≥ 3,the modular chromatic number of a snow graph of generalized fan 

graphmc(STdc  GFμ ) = 3. 

Proof:A snow graph of a generalised fan graph STdc (GFμ) is constructed by taking a generalised fan graph 

GFμ = Km ⊕ Pn  and  μ copies double claw graph (dc), since all the vertex of the generalized fan graph GFμ 

is external vertices, each vertex of the GFμ attached by the double claw graph. The vertex set of STdc (GFμ) 

is defined as vα ∪ vαβ such that 1 ≤ α ≤ μ = m + n and 1 ≤ β ≤ 6. consider bi-vertex sets V1 GFμ  is a 

vertex set of Km  complement, and V2 GFμ  is a vertex set of a path graph Pn . The graph STdc  GFμ  contains 

K3  as an induced sub graph so, it is minimum 3 colors are necessary to color the graph, that implies 

mc(STdc  GFμ ) ≤ 3. The graph’scoloring is accomplished based on the vertex sets, likeC(V1 GFμ ) = 1and 

C(V2 GFμ ) = 0. The dc graph affixed with the vertex set  V1 GFμ  is colored in a way that; C vαβ =

0 for all β. For the dc graph that is attached with V2 GFμ , the coloring is given by, when α is odd ; 

C vαβ =  
1:  β = 1 to 3 
0:   otherwise

 , when α is even; C vαβ =  
1:           β = 2 
0:   otherwise

 . It results the modular coloring is  

𝒮(V1 GFμ ) = 0 and when α ranges from 1 to n𝒮(V2 GFμ ) =  
1:  when  α is odd 
2:   when α is even

 . The modular chromatic 

number of vαβ that is connected to  V1 GFμ is 𝒮 vαβ =  
1: β = 1 to 3 
0:  otherwise

 , similarly which is connected to 

V2 GFμ  is 𝒮 GFμ =  
0:  β = 1 to 3 
1:   otherwise

 . This is vividly produce the result that the modular coloring is 

mc  STdc  GFμ  = 3. 

Note: The previously mentioned theorem applies to the modular chromatic number of the snow graph of 
the fan graph. 
 
Theorem 5. For any integer μ ≥ 3,the modular chromatic number of a snow graph of flower 

graphmc  STdc  Flμ  = 3 or 4 

Proof: The construction of the snow graph of  Flμ is described as, letFlμ be a flower graph onμ vertices 

then take μ copies of dc, each external vertex of Flμ is affixed by one dc, let V  STdc  Flμ  = vα ∪ vαβwhere 

1 ≤ α ≤ 2μ and 1 ≤ β ≤ 6 and let E  STdc  Flμ  = c0vα
′ : 1 ≤ α ≤ 2μ ∪ vα

′ : 1 ≤ α ≤ μ ∪ vαβ
′ : 1 ≤ α ≤

μ and 1 ≤ β ≤ 6. 

Coloring of STdc  Flμ  is, 

C(c0) = 0, when α ranges from 1 to 2μ; C vα = 0. 
When α ranges from 1 to 2μ except α = 2μ − 1 and β ranges from 1 to 6, 
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For all odd αwhere α ≡ 2, 3 (mod 4); C vαβ =  
2:           β = 2 
0:   otherwise

 .  

For all odd αwhere ≡ 0, 1 (mod 4) ; C vαβ =  
1:           β = 2 
0:   otherwise

 . 

When α = 2μ − 1; C vαβ =  
3:           β = 2 
0:   otherwise

 . 

The modular coloring of STdc  Flμ  is, 

is 𝒮(c0) = 0,  
whenα ranges from 1 to 2μ except 2μ − 1, 

ifα ≡ 0,1(mod 4) ; 𝒮 vα = 1, 
ifα ≡ 2,3(mod 4) ; 𝒮 vα = 2, 
ifα = μ − 1; 𝒮 vα = 3. 

When α ranges from 1 to 2μ except 2μ − 1  and β ranges from 1 to 6, 

For all α where α ≡ 0, 1 (mod 4); 𝒮 vαβ =  
0:    β = 1,2,3 
1:   otherwise

 ,  

For all α where α ≡ 2, 3 (mod 4); 𝒮 vαβ =  
0:    β = 1,2,3 
2:   otherwise

 , 

When α = μ − 1;𝒮 vαβ =  
0:    β = 1,2,3 
3:   otherwise

 . 

From the above cases the graph STdc  Flμ  is modular 3- colorable, therefore the modular coloring of 

mc  STdc  Flμ  = 3. 

 
Extended snow graph 

Theorem 6. If G = Wμ and H is anγ − ary graph, then STγ Wμ  is modular 3 or 4 - colorable. 

Proof: Let H be a γ-ary graph with γ- children and G be a graph of Wμ with μ vertices. Then, since every 

vertex in the wheel graph Wμis an external vertex, the extended snow graph of wheelWμ is created by 

taking μ copies of the H = γ-ary graph and attaching them to the μ vertices of the wheel graph by an edge. 

The V STγ Wμ  = {vo ∪  vα ∪ vβ
hα ∋ α → 1 toμ; h → 1 tonandβ → 1 to  γih−1

i=1   ∀ α, γ, n, i ∈ ℕ}  and the 

E STγ Wμ  = {eα ∪ vα
′ ∪  vα

′′ ∪ eβ
hα  ∋ α → 1 toμ; h → 1 tonandβ → 1 to γih

i=1  ∀ μ, γ ∈ ℕ}.The following 

two cases deals the theorem. The modular coloring of STγ(Wμ) is defined by an injective mapping 

C(Cμ):  vα ∪ vαβ → 𝕫k ; k ≥ 2. 

Case 1: When μ is odd, 
The coloring of STγ(Wμ) is, 

C(v0) = 0, C vα = 0 for all α. 
The modular coloring of the above vertices is 

𝒮(c0) = 0,  𝒮 vα =  

1 if 1 ≤ α ≤ μ − 1, where α is odd
2 if 1 ≤ α ≤ μ, where α is even
3 if α = μ, where μ is odd

  

Coloring of the γ- aray graph ofSTγ Wμ  is partitioned into three subcases as follows 

Subcase 1:When γ ≡ 0(mod 4) 
When α ranges from 1 to μ − 1 and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
3 if h = 1

  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ − 1 and for all β 

For all odd α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n, where h is even

 , 

For all even α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 4 ≤ h ≤ n, where h is even
2 if h = 2

 .  

When α = μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if ≤ h ≤ n, where h is even
3 if h = 2

 . 
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Subcase 2:When γ ≡ 1(mod 4) 
When α ranges from 1 to μ − 1 and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, h ≡ 1(mod 4)where h is odd

2 if 2 ≤ h ≤ n, h ≡ 3(mod 4)where h is odd

3 if h = 1

  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ − 1 and for all β 

For all odd α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

 , 

For all even α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 4 ≤ h ≤ n, where h is even
3 if h = 2

 .  

When α = μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 h = 2, n; n ≡ 2(mod 4) where h is even

2   h = n, n ≡ 0 mod 4 , where h is even
3 if 4 ≤ h ≤ n − 1, where h is even

  

Subcase 3:When γ ≡ 2(mod 4) 
whenα ranges from 1 to μ − 1 and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
2 if 1 ≤ h ≤ n, where h is odd

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
3 if h = 1

 . 

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ − 1 and for all β 

For all odd α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
3 if 1 ≤ h ≤ n, where h is even

 , 

For all even α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

 .  

When α = μ;𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is odd
1 ifh = 2 and h = n, h is even 
3 if 4 ≤ h ≤ n, where h is even

 . 

Subcase 4:When γ ≡ 3(mod 4) 
When α ranges from 1 to μ − 1 and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is even
1 if h ≡ 1 mod 4 , where h is odd 

2 if h ≡ 3 mod 4 , where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is even
1 if h ≡ 3 mod 4 , where h is odd 

2 if h ≡ 1 mod 4 , where h is odd

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n; h ≡ 3 mod 4 , where h is odd

2  if 5 ≤ h ≤ n; h ≡ 1 mod 4 , where h is odd
3 if h = 1

 . 

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ − 1 and for all β 
For all odd α; 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 0 mod 4 , and h = n, h ≡ 2 mod 4 

2 if  h = n, h ≡ 0 mod 4 

3                  if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , where h is even

 , 

For all even α; 
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𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , and h = n; h ≡ 0 mod 4 

2 if h = n; h ≡ 2 mod 4 

3                if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , wheren h is even

 .  

When α = μ; 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , and h = n; h ≡ 0 mod 4 

2 if h = 2 and h = n, h ≡ 2 mod 4 

3         if 1 ≤ h ≤ n − 1; h ≡ 0 mod 4 , where h is even

 . 

Thus from the above results STγ Wμ  is 4 modular colorable for μ- is odd, therefore the modular coloring  

ofmc  STγ Wμ  = 4. 

Case 2: When μ is even, 
C(v0) = 0, C vα = 0 for all α. 
The modular coloring of the above vertices are 

𝒮(c0) = 0,  𝒮 vα =  
1 if 1 ≤ α ≤ μ, where α is odd
2 if 1 ≤ α ≤ μ, where α is even

  

Coloring of STγ Wμ  is splitted as three subcases as follows 

Subcase 1:When γ ≡ 0(mod 3) 
When α ranges from 1 to μ and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

Modular coloring of STγ Wμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

 ,  

When α ranges from 1 to μ and for all β 

For all odd α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n, where h is even

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 4 ≤ h ≤ n, where h is even
2 if h = 2

 .  

Subcase 2:When γ ≡ 1(mod 3) 
When α ranges from 1 to μ and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
2 if 1 ≤ h ≤ n, where h is odd

 ,  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ and for all β 

For all odd α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if h = n, where n is even
2 if 1 ≤ h ≤ n − 1, where h is even

 , 

For all even α; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1, where h is even
2 if h = n, where n is even

 .  

Subcase 3:When γ ≡ 2(mod 3) 
When α ranges from 1 to μ and for all β 

For all odd α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if h ≡ 1 mod4 , where n is odd

2 if h ≡ 3 mod4 , where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if h ≡ 3 mod4 , where n is odd

2 if h ≡ 1 mod4 , where h is odd

 ,  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ and for all β 
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For all odd α; 𝒮 vβ
αh =

 
 
 

 
 

0 if 1 ≤ h ≤ n, where h is odd

1
if 1 ≤ h ≤ n;  h ≡ 0 mod4 , where n is even 

and h = n, where n ≡ 2 mod4 

2
if 1 ≤ h ≤ n h ≡ 2 mod4 , where h is even

and h = n, where n ≡ 0 mod4 

 , 

For all even α; C vβ
αh =

 
 
 

 
 

0 if 1 ≤ h ≤ n, where h is odd

1
if 1 ≤ h ≤ n;  h ≡ 2 mod4 , where n is even 

and h = n, where n ≡ 0 mod4 

2
if 1 ≤ h ≤ n h ≡ 0 mod4 , where h is even

and h = n, where n ≡ 2 mod4 

 .  

From the above cases the graph STγ Wμ  is 3 modular colorable for μ- is even, therefore the modular 

coloring of mc  STγ Wμ  = 3. 

 

Theorem 7. If G = Gμ and H is anγ − ary graph, then STγ Gμ  is modular 2 - colorable. 

Proof: Let H be a γ-ary graph with γ- children and G be a graph of Gμ with μ vertices. Then, since every 

vertex in the gear graph Wμis an external vertex, the extended snow graph of gearGμ is created by taking μ 

copies of the H = γ-ary graph and attaching them to the μ vertices of the gear graph by an edge. The 

V STγ Gμ  =  vo ∪  vα ∪ vβ
hα ∋ α → 1 to 2μ; h → 1 tonandβ → 1 to γih−1

i=1   ∀ α, γ, n, i ∈ ℕ  and the 

E STγ Gμ  = {eα ∪ vα
′ ∪  vα

2

′′ ∪ eβ
hα  ∋ α → 1 to 2μ; h → 1 tonandβ → 1 to γih

i=1  ∀ μ, γ ∈ ℕ}.The following 

two cases deals the theorem. The modular coloring of STγ(Gμ) is defined by an injective 

mappingC(Cμ):  V → 𝕫k ; k ≥ 2.The coloring of STγ(Gμ) is, 

Case 1:When μ ≥ 3, γ is odd 
Subcase 1:h ≡ 0 (mod 4) 
The coloring of  STγ(Gμ) is given by  

C v0 = 1, C vα = 0 ∀α, 
When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  C vβ
hα =  

0 if h is even and h ≡ 1  mod 4 ; where h is odd

1 if h ≡ 3 mod 4 ; where h is odd
 , 

For each even α;  C vβ
hα =  

0 if h is odd and h ≡ 0  mod 4 ; where h is even

1 if h ≡ 2  mod 4 ; where h is even
 . 

The modular coloring is  

𝒮 v0 = 0, 𝒮 vα =  
0 if α is even
1 if α is odd

  ∀α, 

When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  𝒮 vβ
hα =  

0 if α is odd
1 if α is even

 , 

For each even α;  𝒮 vβ
hα =  

0 if α is even
1 if α is odd

 . 

Subcase 2:Excepth ≡ 0 (mod 4) 
The coloring of  STγ(Gμ) is given by  

C v0 = 0, C vα =  
0 if α is even
1 if α is odd

 , 

When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  C vβ
hα =  

0 if h ≡ 1  mod 4 ; where h is odd

1 if h is even and h ≡ 3 mod 4 ; where h is odd
 , 

For each even α;  C vβ
hα =  

0 if h is odd and h ≡ 2  mod 4 ; where h is even

1 if h ≡ 0 mod 4 ; where h is even
 . 

The above applications reflect themodular coloring is 

𝒮 v0 = 0, 𝒮 vα =  
0 if α is odd
1 if α is even

 , 

When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  𝒮 vβ
hα =  

0 if h is odd
1 if h is even

 , 

For each even α;  𝒮 vβ
hα =  

0 if h is even
1 if h is odd

  

Case 2:When μ ≥ 3, γ is even 
The coloring of  STγ(Gμ) is given by  

C v0 = 0, C vα =  
0 if α is even
1 if α is odd

 , 
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When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  C vβ
hα =  

0 if h is odd
1 if h is even

 , 

For each even α;  C vβ
hα =  

0 if h is even
1 if h is odd

 . 

The above applications reflect the  modular coloring is 

𝒮 v0 = 0, 𝒮 vα =  
0 if α is even
1 if α is odd

 , 

When α ranges from 1 to 2μ, for all β, and 1 ≤ h ≤ n 

For each odd α;  𝒮 vβ
hα =  

0 if h is odd
1 if h is even

 , 

For each even α;  𝒮 vβ
hα =  

0 if h is even
1 if h is odd

 . 

Thus the above case is leads to STγ Gμ  is 3 modular colorable, therefore the modular coloring of 

mc  STγ Gμ  = 3. 

 

Theorem 8. If G = Fμ and H is anγ − ary graph, then STγ Fμ  is modular 3 - colorable. 

Proof: Let H be a γ-ary graph with γ- children and G be a graph of Fμ with μ vertices. Then, since every 

vertex in the friendship graph Fμis an external vertex except the center vertex, the extended snow graph 

of friendship graphFμ is created by taking μ copies of the H = γ-ary graph and attaching them to the μ 

vertices of the friendship graph by an edge. The V STγ Fμ  = {vo ∪  vα ∪ vβ
hα ∋ α → 1 to 2μ; h →

1 tonandβ → 1 to  γih−1
i=1   ∀ α, γ, n, i ∈ ℕ}and the E STγ Fμ  = {e2α ∪ vαvα+1∀ odd α ∪  eβ

hα  ∋ α →

1 toμ; h → 1 tonandβ → 1 to γih
i=1  ∀ μ, γ ∈ ℕ}.The following three cases deals the theorem. The modular 

coloring of STγ(Fμ) is defined by an injective mappingC:  V → 𝕫k ; k ≥ 2.The coloring of STγ(Fμ) is, 

C vα = 0; whereα ranges from 0 to 2μ.  The coloring patterns and the modular coloring of the 

graphSTγ Fμ   are followed from the case 2 of theorem 6. 

The graph STγ Fμ  is 3 modular colorable, therefore the modular coloring of mc  STγ Fμ  = 3. 

 
Theorem 9. If G = k m⨁ Pn  and H is anγ − ary graph, then STγ k m⨁ Pn  is modular 3 - colorable. 

Proof: Let H be a γ-ary graph with γ- children and G be a graph of k m⨁ Pl  with μ vertices. Then, since 
every vertex in the generalized fan graph k m⨁ Plis an external vertex, the extended snow graph of 
generalized fan graphk m⨁ Pl is created by taking μ = m + l copies of the H = γ-ary graph and attaching 

them to the μ vertices of the generalized fan graph by an edge.The V STγ k m⨁ Pl  = {uα ∋ α → 1 to m ∪

vα ∋ α → 1 to l ∪ vβ
hα ∋ h → 1 tonandβ → 1 to γih−1

i=1   ∀ α, γ, n, i ∈ ℕ}and the E STγ k m⨁ Pn  = {uα
′ ∋ α →

1 to m ∪ vα
′ ∋ α → 1 to l ∪  eβ

hα  ∋ h → 1 tonandβ → 1 to γih
i=1  ∀ μ, γ ∈ ℕ}.The following three cases deals 

the theorem. The modular coloring of STγ(k m⨁ Pl) is defined by an injective mappingC:  V → 𝕫k ; k ≥ 2 .the 

coloring ofSTγ(k m⨁ Pl) is given by 

C uα = 0 ∀ α rangeas from 1 to m 

C vα =  
1 if α is odd
2 if α is even

  

Case 1: when γ ≡ 0(mod 3) 

When α ranges from 1 to m, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1  

C vβ
hα =  

0 if 1 ≤ h ≤ n; h is odd
1 if 4 ≤ h ≤ n; h is even
2 if h = 2 and β = 1

  

the modular coloring is  

𝒮 vβ
hα =  

0 if 1 ≤ h ≤ n; h is even
1 if 1 ≤ h ≤ n; h is odd, except 1 ≤ β ≤ γ in h = 3 
2 if 1 ≤ β ≤ γ in h = 3

  

When α ranges from 1 to l, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1  

The coloring of the vertices of STγ(k m⨁ Pl) is followed from subcase 1 of case 2 in the theorem 6. 

Case 2: when γ ≡ 1(mod 3) 

When α ranges from1 to m, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1  

C vβ
hα =  

0 if h is odd
1 if h is even

  

the modular coloring is  
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𝒮 vβ
hα =  

0 if h is even
1 if h is odd

  

When α ranges from 1 to l, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1  

Coloring of the vertices vβ
hα is described in the same way of coloring of subcase 1 of case 2 in the theorem 

6. 
Case 3: when γ ≡ 2(mod 3) 

When α ranges from 1 to m, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1  

For 1 ≤ h ≤ n; where h is odd,  C vβ
hα = 0, 

For h = 2; C vβ
hα = 1, 

For h ≥ 4; where h is even, the subsequent of the vertex(h) of the vertex (h − 2) which is colored by 1 

then the coloring is given by C vβ
hα =  

2 h ≡ 1(mod γ)
1 otherwise

 , that is colored by 2 then the coloring is given 

by C vβ
hα = 1. 

The modular coloring is  

C vβ
hα =  

0 if 1 ≤ h ≤ n; where h is even  
1 if 3 ≤ h ≤ n, ; where h is odd 
2 ifh = 1

  

When α ranges from 1 to l, 1 ≤ h ≤ n, and 1 ≤ β ≤   γih
i=1 . 

Coloring of C vβ
hα  described in the same way of coloring of subcase 2 of case 2 in the theorem 6. 

The above results that, the graph STγ(k m⨁ Pl) is modular -3 colorable, thus the mc(STγ(k m⨁ Pl)) =3. 

 

Theorem 10. If G = Flμ  and H is anγ − ary graph, then STγ Flμ  is modular 3 - colorable. 

Proof: Let H be a γ-ary graph with γ- children and G be a graph of Flμ  with μ vertices. Then, since every 

vertex in the flower graph Flμ is an external vertex except the center vertex, the extended snow graph of 

flower graphFlμ  is created by taking μ copies of the H = γ-ary graph and attaching them to the μ vertices of 

the flower graph by an edge. The V STγ Flμ  = {vo ∪  vα ∪ vβ
hα ∋ α → 1 to 2μ; h → 1 tonandβ →

1 to  γih−1
i=1   ∀ α, γ, n, i ∈ ℕ}and the E STγ Flμ  = {e2α ∪ vαvα+1∀ odd α ∪  eβ

hα  ∋ α → 1 toμ; h →

1 tonandβ → 1 to  γih
i=1  ∀ μ, γ ∈ ℕ}.The following three cases deals the theorem. The modular coloring of 

STγ(Flμ) is defined by an injective mappingC:  V → 𝕫k ; k ≥ 2 .  

The coloring of STγ(Wμ) is, 

Case 1: When μ is odd, 
C(v0) = 0, C vα = 0 for all α ranges from 1 to 2μ . 
The modular coloring of the above vertices is 

𝒮(c0) = 0,  𝒮 vα =  
1

if 1 ≤ α ≤ μ − 1 and μ + 1 ≤ α ≤ 2μ, where α is odd; 
α = 2μ, where μ is even

2 if 1 ≤ α ≤ μ − 1, and μ + 1 ≤ α ≤ 2μ; where α is even
3 if α = μ, where μ is odd

  

Coloring of the γ- aray graph ofSTγ Wμ  is partitioned into three subcases as follows 

Subcase 1:When γ ≡ 0(mod 4) 
When α ranges from 1 to 2μ except μ and for all β 

For all odd αand α = 2μ, α is even; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even αexcept α = 2μ;C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
3 if h = 1

  

Modular coloring of STγ Wμ  is  

whenα ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n, where h is even

 , 

For all even αexcept α = 2μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 4 ≤ h ≤ n, where h is even
2 if h = 2

 .  

When α = μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if ≤ h ≤ n, where h is even
3 if h = 2

 . 
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Subcase 2:When γ ≡ 1(mod 4) 
When α ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even αexcept α = 2μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, h ≡ 1(mod 4)where h is odd

2 if 2 ≤ h ≤ n, h ≡ 3(mod 4)where h is odd

3 if h = 1

  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

 , 

For all even αexcept = 2μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 4 ≤ h ≤ n, where h is even
3 if h = 2

 .  

When α = μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 h = 2, n; n ≡ 2(mod 4) where h is even

2   h = n, n ≡ 0 mod 4 , where h is even
3 if 4 ≤ h ≤ n − 1, where h is even

  

Subcase 3:When γ ≡ 2(mod 4) 
When α ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all even α; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
2 if 1 ≤ h ≤ n, where h is odd

 ,  

For all even αexcept α = 2μ;C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
3 if h = 1

 . 

Modular coloring of STγ Wμ  is  

When α ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
3 if 1 ≤ h ≤ n, where h is even

 , 

For all even αexcept α = 2μ; 𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

 .  

When α = μ;𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is odd
1 ifh = 2 and h = n, h is even 
3 if 4 ≤ h ≤ n, where h is even

 . 

Subcase 4:When γ ≡ 3(mod 4) 
When α ranges from 1 to 2μ except μ and for all β 

For all odd α and α = 2μ, α is even; C vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is even
1 if h ≡ 1 mod 4 , where h is odd 

2 if h ≡ 3 mod 4 , where h is odd

 , 

For all even αexcept α = 2μ; C vβ
αh =  

0 if 1 ≤ h ≤ n − 1, where h is even
1 if h ≡ 3 mod 4 , where h is odd 

2 if h ≡ 1 mod 4 , where h is odd

 ,  

When α = μ; C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n; h ≡ 3 mod 4 , where h is odd

2  if 5 ≤ h ≤ n; h ≡ 1 mod 4 , where h is odd
3 if h = 1

 . 

Modular coloring of STγ Wμ  is  

When α ranges from 1 to 2μ except μ and for all β 
For all odd α and α = 2μ, α is even; 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 0 mod 4 , and h = n, h ≡ 2 mod 4 

2 if  h = n, h ≡ 0 mod 4 

3                  if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , where h is even

 , 

For all even αexcept α = 2μ; 
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𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , and h = n; h ≡ 0 mod 4 

2 if h = n; h ≡ 2 mod 4 

3                if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , wheren h is even

 .  

When α = μ; 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1; h ≡ 2 mod 4 , and h = n; h ≡ 0 mod 4 

2 if h = 2 and h = n, h ≡ 2 mod 4 

3         if 1 ≤ h ≤ n − 1; h ≡ 0 mod 4 , where h is even

 . 

Thus from the above results STγ Wμ  is 4 modular colorable for μ- is odd, therefore the modular coloring  

ofmc  STγ Wμ  = 4. 

Case 2: When μ is even, 
C(v0) = 0, C vα = 0 for all α ranges from 1 to 2μ. 
The modular coloring of the above vertices are 

𝒮(c0) = 0,  𝒮 vα =  
1 if 1 ≤ α ≤ μ, where α is odd
2 if 1 ≤ α ≤ μ, where α is even

  

Coloring of STγ Wμ  is splitted as three subcases as follows 

Subcase 1:When γ ≡ 0(mod 3) 
When α ranges from 1 to 2μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 2 ≤ h ≤ n, where h is odd
2 if h = 1

 ,  

Modular coloring of STγ Wμ  is  

𝒮(c0) = 0,  𝒮 vα =  
1 if 1 ≤ h ≤ n, where h is odd
2 if 1 ≤ h ≤ n, where h is even

  

When α ranges from 1 to 2μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n, where h is even

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 4 ≤ h ≤ n, where h is even
2 if h = 2

 .  

Subcase 2:When γ ≡ 1(mod 3) 
When α ranges from 1 to 2μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if 1 ≤ h ≤ n, where h is odd

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
2 if 1 ≤ h ≤ n, where h is odd

 ,  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to 2μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if h = n, where n is even
2 if 1 ≤ h ≤ n − 1, where h is even

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

𝒮 vβ
αh =  

0 if 1 ≤ h ≤ n, where h is odd
1 if 1 ≤ h ≤ n − 1, where h is even
2 if h = n, where n is even

 .  

Subcase 3:When γ ≡ 2(mod 3) 
When α ranges from 1 to 2μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 
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C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if h ≡ 1 mod4 , where n is odd

2 if h ≡ 3 mod4 , where h is odd

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

C vβ
αh =  

0 if 1 ≤ h ≤ n, where h is even
1 if h ≡ 3 mod4 , where n is odd

2 if h ≡ 1 mod4 , where h is odd

 ,  

Modular coloring of STγ Wμ  is  

When α ranges from 1 to μ and for all β 
For all 1 ≤ α ≤ μ, where α is even and ;μ + 1 ≤ α ≤ 2μ, where α is odd 

𝒮 vβ
αh =

 
 
 

 
 

0 if 1 ≤ h ≤ n, where h is odd

1
if 1 ≤ h ≤ n;  h ≡ 0 mod4 , where n is even 

and h = n, where n ≡ 2 mod4 

2
if 1 ≤ h ≤ n h ≡ 2 mod4 , where h is even

and h = n, where n ≡ 0 mod4 

 , 

For all 1 ≤ α ≤ μ, where α is odd and ;μ + 1 ≤ α ≤ 2μ, where α is even 

C vβ
αh =

 
 
 

 
 

0 if 1 ≤ h ≤ n, where h is odd

1
if 1 ≤ h ≤ n;  h ≡ 2 mod4 , where n is even 

and h = n, where n ≡ 0 mod4 

2
if 1 ≤ h ≤ n h ≡ 0 mod4 , where h is even

and h = n, where n ≡ 2 mod4 

 .  

From the above cases the graph STγ Wμ  is 3 modular colorable for μ- is even, therefore the modular 

coloring of mc  STγ Wμ  = 3. 

 
CONCLUSION 
In this paper, we developed two new graphs called snow graph and extended snow graph, and in addition 
to that, we examined the modular coloring for some famous graphs, such as snow graph and its extended 
snow graph of wheel, gear, friendship, generalized fan, and flower graph. It results in the graph being 
modular - K colorable, and the modular chromatic number is obtained. The application of the result is 
extended to the traffic signal of a busy road with huge passengers, and in the future we can develop many 
applications related to this work using various graph structures. 
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