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ABSTRACT

For a graph G = (V(G),E(G)) a coloring C:V(G) — z,, k = 2 (not a proper coloring) called the modular
coloring if for each pair of neighboring vertices §(u) # §(v). The minimum k for which G has an modular k
- coloring is called modular chromatic number of G. The modular k- coloring of a graph is denoted by
m, (G).In this study we examine the modular chromatic number for some snow graph and extended snow
graph of cycle related graph.

Keywords: Snow graph, extended snow graph, wheel graph, gear graph, friendship graph, generalized fan
graph, flower graph.

INTRODUCTION

There are many real-world applications for graph theory. That's when a graph coloring comes into play.
One of the research's emerging topics is modular coloring. We consider the finite undirected connected
graph. F. Okamoto, E. Salehi, and P.Zhang in 2010. In [1], a modular k- coloring, k > 2 of a graph without
isolated vertices is a coloring of the vertices of G with the element in z, (where adjacent vertices may be
colored the same) having the property that for every two adjacent vertices of G,The sum of the colors of
the neighbors are different in z,. The minimum k for which G has a modular k- coloring is called modular
chromatic number m,(G).

Let G be any graph and H is a double claw graph. Let {v;, vy, ...,v,} are the external vertex (except the
center vertex) of a graph G, take p copies of H and the root vertex of the double claw graph joined with
the each external node G is called snow graph and it is denoted by STy (G,) where p is the number of
external vertices of graph G and T, denote the double claw tree graph.

Let G be the cyclic graph and H is any y — ary tree graph. Let {v;, v, ..., v, } are the external vertex (except
the center vertex) of a cyclic graph, take p copies of H and the root vertex of the y — ary tree joined with
the external node of G by an edge is called extended snow graph denoted by ST, (G,) where y,y is the
number of external vertices of cyclic graph G and height of n-ary tree graph T respectively.

In [2] P. Sumathi, S. Tamilselvi, determined the modular chromatic number of certain cyclic graphs. In [3],
we obtain the modular chromatic number of the inflated graphs of the wheel, gear, fan, friendship, and
flower graphs. In [4], also we examined the modular coloring of the corona product of a generalized
Jahangir graph. In [5] N. Paramaguru, R. Sampathkumar, investigatedmodular colorings of join of two
special graphs. In [6], T. Nicholas, G. R, Sanma, discussed the modular colorings of cycle related graphs. In
[7], R.Rajarajachozhan, R.Sampathkumar, found the modular coloring of the cartesianproducts K, 0K,
K,OC,, And K,,OP,. In [8], T. Nicholas, G. R, Sanma, found the modular colorings of circular Halin graphs
of level two.In [9] Sanma. G. R, P. Maya obtained the Modular coloring and switching in some planar
graphs.

Main results

Let G be a non-trivial undirected connected graph. In this paperwe introduced two new graph structures,
snow graph STy, (Gu) and extended snow graph ST, (G,) of cycle related graphs. The following theorem
results that the snow graph and its extended snow graph of cycle related graph admits modular coloring.
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Theorem 1. For any integer p = 3,the modular chromatic number of a snow graph of wheel graph
(3 when piseven

me(STee (W) = {4 when pis odd”

Proof: The construction of the snow graph of W, is described as, letW, be a wheel graph on p vertices and

H is any double claw tree T, . Each external vertex of W, except the center vertex is attached with the root

vertex of the Ty is joined by an edge is called snow graph of wheel graph. LetV (STdC (Wu)) =cyUv, U
vegWhere 1 <a<pand1<f <6 andlet E(STdc(Wu)) =V UVl <a< qu;B:l <a<pandl <

B < 6. The modular coloring of STy, (Wu) is defined by the following two cases
Case 1: When pis odd,
Coloring of STy, (Wu) is
C(cp) = 0,C(vy) = 0 forall a.
When o ranges from 1 top — 1 and 3 ranges from 1 to 6
1: =2
For all odd o; C(VQB) = {0: otheEwise'

For all even a; C(Vaﬁ) = {0: otherwise

) _( 3:B=2
When;C(veg) = {0: otherwise’
Modular coloring of STy, (Wu) is

1: 1 < a < p—1,where ais odd
§(cy) =0, S(vy) =42:1 <a < p—1,whereaiseven
Jra=yp
When a ranges from 1 top — 1 and $ ranges from 1 to 6
For all odd «; S(VQB) = {0: p=123

1: otherwise
0:=123

3: otherwise’

0:=1.23
, for all even o; S(VQB) = {2_ ftherwise'

When a = u;é‘(vag) = {

Case 2:When p is even,

Coloring of STy, (Wu) is

C(cp) = 0,C(vy) = 0 forall a.

When a ranges from 1 top and 8 ranges from 1 to 6
1: =2

For all odd «; C(VQB) = {0: otheBrwise

Modular coloring of STy, (Wu) is

B _ (1:forall odd a
S(co) =0, S(ve) = {2: for all odd a

When a ranges from 1 top — 1 and 3 ranges from 1 to 6

0: =123 0:=123
Forallodd a; S = e, L.
oraftodda (V“B) {1: otherwise 2: otherwise

From the above cases the graph STy, (Wu) is 4 modular colorable, therefore the modular coloring
ofm, (STdC (W, ) = 4.

2: B=2

, for all even o; C(vyp) = {0: otherwise"

for all even a; S(VQB) = {

Theorem 2. For any integer p > 3,the modular chromatic number of a snow graph of gear graph
mc(STy (G,)) = 2.

Proof: The structure of the snow graph of G, let the graph G, be a gear graph with p vertices then take p
copies of dc, each external vertex of G, is affixed by one dc, let V(STdC (Gu)) = ¢y U vy Uvgwhere

1<a<pand1<B<6andletE(STe(G,)) = vl <Sa<2uUvgl<a<pand1<B<6.
0: for all odd a

Coloring of STy, (Gu)is C(cp) = 0, when a ranges from 1 toy; C(v,) = {1. for all even o
When o ranges from 1 to p and 8 ranges from 1 to 6

) _ (L B=2
For all odd «; C(vaﬁ) = {O: otherwise
Modular coloring of STy, (Gu) is

_ __(1:forall odd o
S(co) =0, S(vy) = {0: for all odd «

When a ranges from 1 top — 1 and 3 ranges from 1 to 6

0: =1,2,3
For all odd o; S(VQB) = {1: (?therwise

, for all even «; C(vaﬁ) =0.

1: p=1,23

,for all even a; S(veg) = {0: otherwise"
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From the above cases the graph STy, (Gu) is modular 2- colorable, therefore the modular coloring of
m, (STdc (Gu)) =2.

Theorem 3. For any integer p = 3,the modular chromatic number of a snow graph of friendship
graphmc(STy, (Fu)) = 3.
Proof: The construction of the snow graph of F is described as, letF, be a friendship graph onp vertices

then take u copies of dc, each external vertex of F, is affixed by one dc, let V(STdc (Fu)) =cgUv, U

vggwherel S <2pand 1<B<6 and IletE (STy(F,)) = covir 1 S A< 21 Uviel S @ S pU Vi1 <
a<pandl<B<6.

Coloring of STy, (Fu) is, C(cp) = 0, when a ranges from 1 to 2p; C(v,) = 0.

When a ranges from 1 to 2p and 8 ranges from 1 to 6,

1: =2
Forallodd a; C(vg) = {o° _ P=2

Modular coloring of STy (F, ) is

_ _(1:forall odd a
S(co) =0, S(vy) = {2; for all even «

When a ranges from 1 to 2p and 3 ranges from 1 to 6

0: B=123 0: B=123
Forallodd a; § = . ca’
or all odd a; S (Vap) {1: otherwise 2: otherwise

The graph STy (F, ) is modular 3- colorable, therefore the modular coloring of m, (STdC (Fu)) =3.

2: B=2

,forall even o; C(VQB) = {0: otherwise"

,forall even a; S(veg) = {

Theorem 4. For any integer pu > 3,the modular chromatic number of a snow graph of generalized fan
graphmc(STy, (GFH)) = 3.

Proof:A snow graph of a generalised fan graph STy (GF,)) is constructed by taking a generalised fan graph
GF, = K., ® P, and p copies double claw graph (dc), since all the vertex of the generalized fan graph GF,
is external vertices, each vertex of the GF, attached by the double claw graph. The vertex set of STy (GF,)
is defined as v, U v,g such that 1 < a < p=m+nand1 < B < 6. consider bi-vertex sets V;(GF,) is a
vertex set of K, complement, and V, (GFu) is a vertex set of a path graph P,. The graph ST, (GFH) contains
K3 as an induced sub graph so, it is minimum 3 colors are necessary to color the graph, that implies
m, (STy. (GFu)) < 3. The graph’scoloring is accomplished based on the vertex sets, likeC(V; (GFu)) = land
C(V, (GF“)) = (0. The dc graph affixed with the vertex set Vl(GFu) is colored in a way that; C(VaB) =
0 for all B. For the dc graph that is attached with VZ(GFH), the coloring is given by, when a is odd ;

1: =1to3 . 1: =2 R
= h ; = L Its th 1 1
C(VaB) {0: otherwise’ VIeM @ is even; C(VQB) {0: otherwise t results the modular coloring is

NUA (GFu)) = 0 and when o ranges from 1 to nS(VZ(GFH)) = {21 V\:/}}llzrrll gif 23;

1:B=1to3
0: otherwise

. The modular chromatic

number of v.g that is connected to Vl(GFu)is S(VQB) = { , similarly which is connected to

. 0: B=1to3
V,(GF,) is S(GF,) = {1: ithervs?ise
m, (ST (GF,)) = 3.

Note: The previously mentioned theorem applies to the modular chromatic number of the snow graph of
the fan graph.

. This is vividly produce the result that the modular coloring is

Theorem 5. For any integer p = 3,the modular chromatic number of a snow graph of flower
graphmc (STdC (Flu)) =3o0r4

Proof: The construction of the snow graph of Fl, is described as, letFl, be a flower graph onp vertices
then take u copies of dc, each external vertex of Fl, is affixed by one dc, let V (STdC (Flu)) = Vg U vegwhere
1<a<2pand1<B<6 and let E(STy(Fl))=covpl<a<2uUvgl<a<pUvgl<as
pand1 < B < 6.

Coloring of STy, (Flu) is,

C(cp) = 0, when a ranges from 1 to 2y; C(v,) = 0.
When a ranges from 1 to 2p except a = 2 — 1 and $ ranges from 1 to 6,
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2: B=2
0: otherwise’
1: =2

0: otherwise’

For all odd awhere o = 2,3 (mod 4); C(Vaﬁ) = {

For all odd awhere = 0,1 (mod 4) ; C(Vaﬁ) = {
3: B=2
0: otherwise’
The modular coloring of STy, (Flu) is,
isS(cy) =0,
whena ranges from 1 to 2 except 2p — 1,

ifa = 0,1(mod 4); S(v,) =1,

ifa = 2,3(mod 4) ; S(v,) = 2,

ifa =p—1;8(,) = 3.
When a ranges from 1 to 2p except 2u — 1 and 3 ranges from 1 to 6,
For all a where a = 0,1 (mod 4); S(VQB) = {O: =123

1: otherwise’
0: B=123

2: otherwise’

When a = 2u—1; C(VQB) = {

For all a where a = 2,3 (mod 4); S(vyg) = {

0: B=123
3: otherwise’
From the above cases the graph STy, (Flu) is modular 3- colorable, therefore the modular coloring of

m (STac (F1,)) = 3.

Whena = p— 1;5(V0{B) = {

Extended snow graph
Theorem 6. If G = W, and H is any — ary graph, then STY(Wu) is modular 3 or 4 - colorable.
Proof: Let H be a y-ary graph with y- children and G be a graph of W, with p vertices. Then, since every
vertex in the wheel graph W, is an external vertex, the extended snow graph of wheelW, is created by
taking p copies of the H = y-ary graph and attaching them to the p vertices of the wheel graph by an edge.
The V[STY(W“)] ={v, U v, U VE“ 3 a - 1toyw;h - 1tonandB — 1to Zih;f Y Va,v,ni€N} and the
E[STY(Wu)] = {e, U v('x V] V; ] eE“ S a— 1to;h —» 1tonandf — 1 to Zih=1 Y vpye N}1.The following
two cases deals the theorem. The modular coloring of ST, (W,) is defined by an injective mapping
C(C: VqU Ve = 2y kK = 2.
Case 1: When pis odd,
The coloring of ST, (W,) is,
C(vy) = 0,C(v,) = 0forall a.
The modular coloring of the above vertices is
1 ifl <a<p-—1,whereaisodd
S(cy) =0, S(vy) = {2 if1 < a < p,where a is even
3 if a = p, where pis odd

Coloring of the y- aray graph ofSTy(Wu) is partitioned into three subcases as follows
Subcase 1:When y = 0(mod 4)
When a ranges from 1 to p — 1 and for all

ny _ (0 if1 <h < n,wherehis even
For all odd &; C(Vg ) - {1 if 1 < h < n,where his odd’

0 if1 <h < n,where his even
For all even «; C(Vgh) = {1 if 2 < h < n,where his odd,
2 ifh=1
0 if1 <h < n,wherehiseven
When o = y; C(Vgh) = {1 if 2 < h < n,where his odd
3 ifh=1

Modular coloring of ST, (W, ) is
When a ranges from 1 to p — 1 and for all
For all odd «; S(Vgh) _ {O if 1 < h < n,where his odd

1 if1 <h < n,wherehiseven’
0 if1 <h <n,wherehisodd

Foralleven o; S(v§") =41 if4 < h < n,where h is even.

2 ifh=2
0 ifl1 <h < n,wherehisodd
When a = p; S(v§") = {1 if <h < n,where his even.
3 ifh =2
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Subcase 2:When y = 1(mod 4)
When a ranges from 1 to p — 1 and for all

) ay _ (0 if1 <h < n,wherehiseven
Forall odd o C(VB )= {1 if1 <h < n,wherehis odd’

0 ifl1 <h < n,wherehiseven
For all even «; C(VB ) 1 if 2 < h < n,where his odd,
ifh=1
0 if 1 < h < n,where his even
1 if2 <h <n,h = 1(mod 4)where h is odd
2 if2 <h < n,h = 3(mod 4)where h is odd
ifh=1

When a = ; C(vgh) =

Modular coloring of ST, ( ) is
When a ranges from 1 to p — 1 and for all
e < .
For all odd o S(vgh) _ {O if 1 < h < n,where h is odd

2 if1 <h < n,wherehiseven’
0 if1 <h < n,wherehisodd

For all even a; 5(VB ) = {2 if 4 < h < n, where h is even.
ifh=2

0 if 1 <h < n,where his odd
1 h =2,n;n = 2(mod 4) where h is even

h = n,n = 0(mod 4), where h is even
3 if4 <h <n-—1,wherehis even
Subcase 3:When y = 2(mod 4)
whena ranges from 1 to p — 1 and for all

) any _ (0 if1 <h < n,wherehiseven

Forall odd o C(VB )= {1 if1 < h < n,whereh is odd’
if 1 <h < n,where h is even

if 1 <h < n,where his odd’
0 if1 <h < n,wherehiseven

Whenoc—u,C(v) {1 if 2 < h < n,wherehisodd.
ifh=1

When a = p; S(v§") =

For all even «; C(VB ) {2

Modular coloring of ST, (Wu) is
When a ranges from 1 to p — 1 and for all
Cefoahy _ 0 if 1 <h < n,wherehisodd

Forall odd o S(V - {3 if 1 < h < n,where h is even’
if 1 <h < n,where his odd
if 1 < h < n,where h is even’

0 ifl1 <h<n-1,wherehisodd
When a = u;S(Vgh) = {1 ifh = 2and h = n,his even

3 if 4 < h < n,where h is even
Subcase 4:When y = 3(mod 4)
When a ranges from 1 to p — 1 and for all

0 if1 <h<n-—1,wherehiseven
Forall odd o; C(v§") = {1 ifh = 1(mod 4), where his odd,

2 ifh = 3(mod 4), where his odd

For all even «; 5(VB ) {2

0 ifl1 <h<n-—1,wherehiseven
For all even q; C(v[3 ) {1 ifh = 3(mod 4), where his odd,

2 ifh = 1(mod 4), where his odd
0 if 1 < h < n,where his even

When a = 1; C(V ) 1 if1 <h<n;h=3(mod4), wherehisodd
3 ifh=1
Modular coloring of ST, (Wu) is
When a ranges from 1 to p — 1 and for all
For all odd «;
0 if 1 < h < n,where his odd
S(V“h) _ 1 f1<h<n—-1;h=0(mod4), andh=nh= 2(mod4)
B 2 if h = n,h = 0(mod 4)
3 if1<h<n-1;h=2(mod 4), where his even
For all even q;

15

2 if5<h<n;h=1(mod4), wherehisodd
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0 if 1 < h < n,where his odd
S(v“h)z 1 ifil<h<n-1;h=2(mod4),andh =n;h = 0(mod 4)
B 2 ifh = n;h = 2(mod 4) ’
3 if1 <h <n-1;h = 2(mod 4), wheren h is even
When a = y;
0 if 1 < h < n,where his odd
S(v“h)z 1 ifl1<h<n-1;h=2(mod4),andh =n;h = 0(mod 4)
B 2 ifh =2andh = n,h = 2(mod 4) :
3 if1<h<n-1;h =0(mod 4), wherehis even

Thus from the above results STy(Wu) is 4 modular colorable for p- is odd, therefore the modular coloring
ofm, (ST,(W,)) = 4.
Case 2: When pis even,
C(vy) = 0,C(v,) = 0forall a.
The modular coloring of the above vertices are

_ _ (1 ifl <a< p whereaisodd
$(co) =0, S(vo) = {2 if 1 < o < p, where a is even
Coloring of STV(WH) is splitted as three subcases as follows
Subcase 1:When y = 0(mod 3)
When a ranges from 1 to p and for all

1< .

For all odd a C(vgh) _ {0 if 1 < h < n,where h is even

1 ifl1 <h<n,wherehisodd’
0 ifl1 <h < n,wherehiseven
For all even «; C(VE‘h = {1 if 2 < h < n,where hisodd,
2 ifh=1
Modular coloring of ST, (Wu) is
1 if1 <h < n,wherehisodd
$(co) =0, §(vo) = {2 if 1 < h < n,where his even’
When a ranges from 1 to p and for all
Cefoahy _ 0 if 1 <h < n,wherehisodd
Forall odd o S(VB )= {1 if 1 < h < n,where h is even’
0 if1 <h <n,wherehisodd
For all even q; C(Vgh) = {1 if 4 < h < n,where h is even.
2 ifh=2
Subcase 2:When y = 1(mod 3)
When a ranges from 1 to p and for all
) any _ (0 if1 <h < n,wherehiseven
Forall odd o; C(VB )= {1 if1 <h < n,where hisodd’
0 if1 <h < n,wherehiseven

. ah) _—
Forall even o C(VB ) - {2 if 1 < h < n,where his odd’
Modular coloring of ST, (Wu) is
When a ranges from 1 to p and for all
0 if 1 < h < n,where his odd
For all odd «; S(Vgh) = {1 if h = n, where n is even ,
2 if1 <h<n-1,wherehiseven
0 if 1 < h < n,where his odd
For all even a; S(Vgh) = {1 if 1 <h < n— 1,where his even.
2 if h = n, where n is even
Subcase 3:When y = 2(mod 3)
When o ranges from 1 to p and for all 8
0 if1 <h < n,wherehiseven
Forall odd o; C(v§") = {1 ifh = 1(mod4), where n is odd,
2 ifh = 3(mod4), where h is odd
0 if1 <h < n,wherehiseven
For all even o; C(v§") = {1 ifh = 3(mod4), where n is odd,
2 ifh = 1(mod4), where h is odd
Modular coloring of ST, (Wu) is
When o ranges from 1 to p and for all 8
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0 if 1 < h < n,where his odd
if 1 <h < n; h = 0(mod4), where n is even
Forall odd o; S(v§") = and h = n, where n = 2(mod4) )
if1 <h < nh = 2(mod4),where h is even

2 and h = n, where n = 0(mod4)

(0 if 1 < h < n,where his odd

| 1 if 1 <h < n; h = 2(mod4), where n is even
For all even o; C(v§") = { and h = n, where n = 0(mod4)

|

if 1 < h <nh = 0(mod4), where h is even
and h = n,where n = 2(mod4)
From the above cases the graph STy(Wu) is 3 modular colorable for p- is even, therefore the modular

coloring of m, (STY(WH ) =3.

kZ

Theorem 7.1f G = G, and H is any — ary graph, then STY(GP) is modular 2 - colorable.

Proof: Let H be a y-ary graph with y- children and G be a graph of G, with u vertices. Then, since every
vertex in the gear graph W) is an external vertex, the extended snow graph of gearG,, is created by taking p
copies of the H = y-ary graph and attaching them to the p vertices of the gear graph by an edge. The
V[ST,(G,)] ={vo U vqUVj*3 a > 1to2u;h - 1tonandB - 1 0 i y' Vo, y,n,i € N} and the

E[STY(GH)] = {e, UV, U Vg u eE“ Sa— 1to2u;h - 1tonandf » 1toY ;' V i,y € NL.The following
2

two cases deals the theorem. The modular coloring of ST,(G,) is defined by an injective
mappingC(C,): V - z; k = 2.The coloring of ST, (G,) is,
Case 1:When p > 3,yis odd
Subcase 1:h = 0 (mod 4)
The coloring of ST, (G,) is given by
C(vy) =1,C(v) = 0Vaq,
When a ranges from 1 to 2y, forall ,and1 <h <n
0 ifhisevenandh = 1 (mod 4); where h is odd
For each odd &; C(VEO{) - {1 ifh = 3(mod 4); where h is odd ’
0 ifhisoddandh = 0 (mod 4); where h is even
For each even a; C(V}Bm) - {1 ifh = 2 (mod i); whel)‘e h is even '
The modular coloring is

0 ifai
s =050 [0 105 v

When o ranges from 1 to 2, forall,and 1 <h <n

For each odd «; S(VE"‘) = {(1) ilffo?ilsseo‘;jei,

For each even q; S(Vé‘“) = {(1) 1iff0((xlisseo‘§<;'

Subcase 2:Excepth = 0 (mod 4)
The coloring of ST, (G,) is given by

0 ifai
C(vy) = 0,C(v,) = {1 o e,

When o ranges from 1 to 2, forall,and 1 <h <n
0 ifh = 1 (mod 4); where h is odd
. ha) g
For each odd a; C(VB ) {1 ifhis even and h = 3(mod 4); where h is odd’
0 ifhisoddandh = 2 (mod 4); where h is even
1 ifh = 0(mod 4); where h is even '
The above applications reflect themodular coloring is

0 ifaisodd
$(vo) = 0,8(vo) = {1 if ais even’

When a ranges from 1 to 2y, forall ,and1 <h <n

For each odd o S(VE“) = {(1) iiff}?ii::\?ei’

For each even «; S(VE“) = {(1) iiff};liissi)‘ae;

Case 2:When p > 3,y is even
The coloring of ST, (G,) is given by

0 ifaiseven
C(vo) = 0,C(vy) = {1 if ais o‘iid'

For each even «; C(VE"‘) = {
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When a ranges from 1 to 2y, forall ,and1 <h <n

For each odd «; C(vg“) = {(1) iiffl?iisS:\ii'

For each even q; C(VB"‘) = {(1) iiff}}lliissi)‘;eél.

The above applications reflect the modular coloring is

0 ifaiseven
$(vo) = 0,8(vo) = {1 ifais o\;ld'

When a ranges from 1 to 2y, forall ,and1 <h <n

For each odd «; S(vl}g‘“) = {(1) iiffl?iisS:\ii'

0 ifhiseven
1 ifhisodd’
Thus the above case is leads to STy(Gu) is 3 modular colorable, therefore the modular coloring of

m, (ST,(G,)) = 3.

Theorem 8. If G = F, and H is any — ary graph, then STY(FP) is modular 3 - colorable.

Proof: Let H be a y-ary graph with y- children and G be a graph of F, with p vertices. Then, since every
vertex in the friendship graph Fis an external vertex except the center vertex, the extended snow graph
of friendship graphF, is created by taking u copies of the H = y-ary graph and attaching them to the u
vertices of the friendship graph by an edge. The V[ST,(F,)]={v, U v,UV§*3 a— 1to2uh -
1tonandp » 1to ¥ 'y Va,v,n,i € N}and the E[STY(FH)] ={eyq UVyVyp1V odd a U elé"‘ Sa-
1top;h — 1tonandp — 1to Y™, v V i,y € N}.The following three cases deals the theorem. The modular
coloring of ST, (F ) is defined by an injective mappingC: V - z;; k = 2.The coloring of ST, (F,) is,

C(v,) = 0; wherea ranges from 0 to 2u. The coloring patterns and the modular coloring of the
graphSTY(Fu) are followed from the case 2 of theorem 6.

The graph STV(FH) is 3 modular colorable, therefore the modular coloring of m, (STY(FH)) = 3.

For each even q; S(VE"‘) = {

Theorem 9. If G = k,,® P, and H is any — ary graph, then STy(1_<mEB Pn) is modular 3 - colorable.

Proof: Let H be a y-ary graph with y- children and G be a graph of k,,@® P, with p vertices. Then, since
every vertex in the generalized fan graph k, @ Pis an external vertex, the extended snow graph of
generalized fan graphk,, @ B, is created by taking p = m + 1 copies of the H = y-ary graph and attaching
them to the p vertices of the generalized fan graph by an edge.The V[STY(I_(mGB P])] ={uy,da—-1tom U
Veda—>1t0lUvi*3h— 1tonandp - 1to X'y Va,v,n,i € NJand the E[ST,(k,®P,)] = {u; 2 a -
ltomUv,da—1tolu eE“ 5h - 1tonandB — 1to ¥, y' V u,y € N}.The following three cases deals
the theorem. The modular coloring of ST, (k,, ® B) is defined by an injective mappingC: V — z,; k = 2 .the
coloring ofST, (k,, @ P) is given by

C(uy,) = 0V arangeas from 1 to m
C(vy) = {1 if ais odd

2 ifaiseven
Case 1: when y = 0(mod 3)

When aranges from 1tom,1<h<n,and1<g< YL, vy
0 ifl1<h<n;hisodd
c(vg) = {1 if4 <h < n;hiseven
2 ifh=2andf =1
the modular coloring is
0 if1 <h <n;hiseven
S(vg®) = [1 if1l <h<n;hisodd,except1 < <yinh=3
2 ifl<pB<yinh=3
When aranges from1tol,1<h<n,and1<p< ¥,y
The coloring of the vertices of ST, (k,, @ B) is followed from subcase 1 of case 2 in the theorem 6.
Case 2: wheny = 1(mod 3)
When o ranges from1tom,1<h<n,and1 <f < YL,y
hay _ (0 ifhisodd
C(VB )= {1 ifh is even
the modular coloring is
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hay _ (0 ifhiseven
s = {3 if h is odd
When aranges from1tol,1<h<nand1<B< YL,y
Coloring of the vertices vgo‘is described in the same way of coloring of subcase 1 of case 2 in the theorem
6.
Case 3: wheny = 2(mod 3)
When aranges from1tom,1<h<nand1 << Y, v
For 1 < h < n;where his odd, C(VEO‘) =0,
Forh =2;C(vg*) = 1,
For h > 4; where h is even, the subsequent of the vertex(h) of the vertex (h — 2) which is colored by 1
C 2 h=1(mody)
then the col by C(v§*) =
en the coloring is given by (VB ) {1 otherwise

by C(VE“) =1
The modular coloring is

0 if1 <h < n;wherehiseven
C(VEO‘) =41 if3 <h < n,;wherehisodd

2 ith=1 _
When aranges from1tol,1<h<n,and1<p< XL,y
Coloring of C(vlﬁ“") described in the same way of coloring of subcase 2 of case 2 in the theorem 6.

The above results that, the graph ST, (k,, @ R) is modular -3 colorable, thus the m, (ST, (k@ R)) =3.

, that is colored by 2 then the coloring is given

Theorem 10. If G = Fl, and H is any — ary graph, then ST, (Flu) is modular 3 - colorable.
Proof: Let H be a y-ary graph with y- children and G be a graph of Fl, with p vertices. Then, since every
vertex in the flower graph Fl,is an external vertex except the center vertex, the extended snow graph of
flower graphFlu is created by taking pu copies of the H = y-ary graph and attaching them to the p vertices of
the flower graph by an edge. The V[STy (Flu)] ={v,U v, U VE“ Sa—- 1to2y;h — 1tonandf —
1toX" 'y Va,y,n,i€ N}and the E[STy (F1)] = {e2q U VoVay1V 0dd a U e}é“ Sa-1ltoy;h-
1tonandp —» 1to Y™,y V u,y € N}.The following three cases deals the theorem. The modular coloring of
ST, (F1,) is defined by an injective mappingC: V - z;k = 2.
The coloring of ST, (W) is,
Case 1: When pis odd,
C(vy) = 0,C(v,) = 0 forall a ranges from 1 to 2.
The modular coloring of the above vertices is

ifl<a<p—1landp+1<a< 2y whereaisodd;

o = 2|, where p is even

2 fl<a<p-—1,andp+1 < a < 2p;where ais even
3 if a = p, where pis odd
Coloring of the y- aray graph ofST, (Wu) is partitioned into three subcases as follows
Subcase 1:When y = 0(mod 4)
When o ranges from 1 to 2u except p and for all
0 if1 <h < n,where hiseven

1 if1 <h < n,wherehisodd’
0 if1 <h < n,wherehiseven
For all even aexcept a = Zu;C(Vgh) =141 if2 <h < n,wherehisodd,
2 ifh=1
0 if1 <h < n,where hiseven
When o = y; C(Vgh) = {1 if 2 < h < n,whereh is odd
3 ifh=1
Modular coloring of ST, (W,,) is
whena ranges from 1 to 2p except pand for all
0 if1 <h <n,wherehisodd

1 if1 <h < n,wherehiseven’
0 if1 <h < n,wherehisodd
For all even aexcept a = 2y S(Vgh) =11 if4 <h < n,wherehiseven
2 ifh=2
0 if1 <h < n,wherehisodd
When a = y; S(Vgh = {1 if <h < n,where his even.
ifh=2

S(co) =0, S(vo) =

For all odd aand o = 2, a is even; C(Vgh) = {

Forall odd a and o = 2y, acis even; S(v§") = {
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Subcase 2:When y = 1(mod 4)

When a ranges from 1 to 2p except p and for all

0 if1 <h < n,wherehiseven

1 if1 <h<n,wherehisodd’
0 if1 <h < n,wherehiseven

For all even aexcept a = 2; C(Vgh) = {1 if 2 < h < n,wherehis odd,
2 ifh=1

0 if 1 < h < n,where h is even

1 if2 <h <n,h=1(mod 4)where h is odd

2 if2 <h < n,h = 3(mod 4)where h is odd

3 ifh=1

Modular coloring of ST, (Wu) is

When a ranges from 1 to 2p except p and for all

0 if1 <h <n,wherehisodd

2 if1 <h < n,wherehiseven’
0 if1 <h <n,wherehisodd

For all even aexcept = 2y; S(Vﬁh) =142 if4 <h < n,wherehiseven.
3 ifh=2
0 if1 < h < n,where his odd
1 h = 2,n;n = 2(mod 4) where h is even
h =n,n = 0(mod 4), where h is even
3 if4 <h <n-—1,wherehiseven
Subcase 3:When y = 2(mod 4)
When a ranges from 1 to 2p except p and for all

For all odd o and a = 2, a is even; C(VB ) {

When o = y; C(vgh) =

For all odd o and o = 2, a is even; S(VB ) {

When a = y; S(VE‘h)

if 1 < h < n,where his even
if 1 <h < n,wherehisodd’
if 1 < h < n,where his even
if1 <h < n,wherehisodd’

0 if1 <h < n,where hiseven
For all even aexcept a = Zu,C(V h) = {1 if2 <h < n,where his odd.
ifh=1

For all odd o and o = 2, a is even; C(vB ) {1

For all even «; C(vB ) {2

Modular coloring of ST, (W,,) is

When a ranges from 1 to 2p except p and for all 8

1 eh < .
For all odd o and a = 2, a is even; S(Vgh = {g ilffll gttl;r?'\xvﬁl::eeﬁli?:\ii’

0 if1 <h < n,where hisodd
2 if1 <h < n,wherehiseven’
0 if1<h<n-1,wherehisodd
When a = u;S(Vgh) = {1 ifh = 2and h = n,his even
3 if 4 < h < n,where his even
Subcase 4:When y = 3(mod 4)
When a ranges from 1 to 2p except p and for all
0 ifl1 <h<n-—1,wherehiseven

For all even aexcept o = 2|; S(Vgh) = {

For all odd a and a = 2y, a is even; C(vB ) [1 ifh = 1(mod 4), where his odd,

2 ifh = 3(mod 4), where his odd
0 ifl1 <h<n-—1,wherehiseven
For all even aexcept a = 2; C(Vgh) = {1 ifh = 3(mod 4), where his odd
2 ifh = 1(mod 4), where his odd
0 if 1 < h < n,where h is even
1 if1 <h<n;h=3(mod4), wherehisodd
2 if5 <h<n;h= 1(mod 4), where his odd’
3 ifh=1
Modular coloring of ST, (Wp) is
When o ranges from 1 to 2u except p and for all
For all odd a and a = 2, a is even;

When o = y; C(VE‘h

0 if 1 <h < n,where his odd
5(v“h)= 1 ifil<h<n-1;h=0(mod4), andh—nh—Z(mod4)
g 2 if h =n,h = 0(mod 4)
3 if1<h<n-1;h=2(mod4), where his even

For all even aexcept a = 2|;
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0 if 1 < h < n,where his odd
S(V“h)z 1 ifi<h<n-1;h=2(mod4),andh = n;h = 0(mod 4)
B 2 ifh = n;h = 2(mod 4) '
3 if1 <h<n-1;h = 2(mod 4), wheren h is even
When a = y;
0 if 1 < h < n,where his odd
S(v“h)z 1 ifil<h<n-1;h=2(mod4),andh =n;h = 0(mod 4)
B 2 ifh=2andh =n,h = 2(mod 4) '
3 if1<h<n-1;h=0(mod4), wherehiseven

Thus from the above results ST, (Wu) is 4 modular colorable for p- is odd, therefore the modular coloring
ofm, (ST, (W,)) = 4.
Case 2: When pis even,
C(vy) = 0,C(v,) = 0 for all a ranges from 1 to 2.
The modular coloring of the above vertices are
1 ifl1 < a < p whereaisodd
$(co) =0, S(ve) = {2 if 1 < a < p, where ais even
Coloring of ST, (Wu) is splitted as three subcases as follows
Subcase 1:When y = 0(mod 3)
When o ranges from 1 to 2p and for all 8
Forall1 < a < p, whereaisevenand;p+ 1 < o < 2y, where a is odd
C(V"‘h) _ {0 if 1 < h < n,where his even
B 1 if1 <h < n,wherehisodd’
Forall 1 < a < p, where aisodd and ;p+ 1 < a < 2y, where a is even
0 if1 <h < n,wherehiseven
C(Vgh) = {1 if2 <h < n,where his odd,
2 ifh=1
Modular coloring of ST, (W,,) is
1 if1 <h < n,where hisodd
$(c) =0, S(ve) = {2 if 1 < h < n,where h is even
When a ranges from 1 to 2p and for all B
Forall1 < a < p,whereaisevenand;p+ 1 < a < 2y, where a is odd
S(V“h) _ {0 if 1 <h < n,where his odd
B 1 if1 <h < n,wherehisevern’
Forall 1 < a < p, where aisodd and ;p+ 1 < a < 2y, where a is even
0 if1 <h < n,where hisodd
C(Vgh) = {1 if 4 < h < n,where h is even.
2 ifh=2
Subcase 2:When y = 1(mod 3)
When a ranges from 1 to 2p and for all B
Forall1 < a < p, whereaisevenand;p+ 1 < o < 2y, where a is odd
C(V“h) _ {0 if 1 < h < n,where his even
B 1 if1 <h < n,wherehis odd’
Forall 1 < a <y, where aisodd and ;pu+ 1 < a < 2y, where a is even
C(v“h) _ {0 if 1 < h < n,where h is even
B 2 if1 <h < n,wherehisodd’
Modular coloring of ST, (Wp) is
When a ranges from 1 to 2p and for all
Forall1 < a <y, whereaisevenand;p+ 1 < o < 2y, where a is odd
0 if 1 < h < n,where his odd
S(vgh) = {1 if h = n, where n is even ,
2 if1 <h <n-1,wherehiseven
Forall1 < a < p, whereaisodd and ;u+ 1 < a < 2y, where a is even
0 if 1 < h < n,where his odd
S(Vgh) = {1 if1 <h <n-—1,wherehis even.
2 if h = n, where n is even
Subcase 3:When y = 2(mod 3)
When o ranges from 1 to 2p and for all
Forall1 < a <y, whereaisevenand;pu+ 1 < o < 2y, where a is odd
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0 if1 <h < n,wherehiseven
C(vgh) =11 ifh = 1(mod4), where n is odd,
2 ifh = 3(mod4), where h is odd

Forall1 < o < p, whereaisodd and ;pu+ 1 < a < 2y, where « is even
0 if1 <h < n,wherehiseven

C(vgh) =1{1 ifh = 3(mod4), where n is odd,
2 ifh = 1(mod4), where h is odd
Modular coloring of ST, (Wu) is

When a ranges from 1 to p and for all

Forall1 < o < p, whereaisevenand;p+ 1 < o < 2y, where a is odd
0 if 1 < h < n,where his odd

if 1 < h < n; h = 0(mod4), where n is even

S(Vgh) =4 and h = n,where n = 2(mod4)

) if1 <h < nh = 2(mod4), where h is even
and h = n, where n = 0(mod4)

Forall1 < a < p, where aisodd and ;u+ 1 < a < 2y, where a is even

1]

0 if 1 <h < n,where his odd
1 if1 <h <n; h=2(mod4), where n is even
C(vgh) = and h = n,where n = 0(mod4)

if 1 <h < nh = 0(mod4), where h is even
and h = n,where n = 2(mod4)
From the above cases the graph ST, (Wu) is 3 modular colorable for p- is even, therefore the modular

coloring of m, (STY (Wu)) =3.

CONCLUSION

In this paper, we developed two new graphs called snow graph and extended snow graph, and in addition
to that, we examined the modular coloring for some famous graphs, such as snow graph and its extended
snow graph of wheel, gear, friendship, generalized fan, and flower graph. It results in the graph being
modular - K colorable, and the modular chromatic number is obtained. The application of the result is
extended to the traffic signal of a busy road with huge passengers, and in the future we can develop many
applications related to this work using various graph structures.
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