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Abstract

A Lie point symmetry analysis of a class of higher order difference
equations with variable coefficients is considered and new symmetries
are found. These symmetries are utilized to investigate the existence
of solutions. The results in this paper generalize some results in the
literature.
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1 Introduction

Recently, rational difference equations have become a centre of interest of
many authors, see [1–4]. Many methods have been developed to solve dif-
ference equations in closed form, that is, when every solution can be written
in terms of the initial values and the indexing variable index n only. Among
others, is the Lie symmetry approach used for differential equations. This
differential equations method for difference equations was studied by P. Hy-
don and others (see [5–7, 9–11]). In [6], the author introduced an algorithm
for obtaining symmetries and conservation laws of second-order difference
equations. Now, it is known that these tools can be used to lower the order,
via the invariants of the Lie group of transformations, as it was established
for differential equations.
In this work, we aim to use the Lie symmetry approach to solve the following
difference equations:

xn+1 =
xn−k

βn + γn
k∏
i=0

xn+i

, (1)
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where βn and γn are real sequences. The definitions and notation in this
paper follow the ones used by Hydon in [6]. Therefore, we will have to shift
the equation k times and study

un+k+1 =
un

Bn + An
k∏
i=0

un+i

, (2)

instead.
Our work is a natural generalization of the results by Elabbasy, et. al. [1].
These authors used induction method to give solutions of

xn+1 =
αxn−k

β + γ
k∏
i=0

xn+i

, (3)

where the parameters α, β and γ are non-negative real numbers and the
initial values are positive numbers.

2 Definitions and algorithm

As mentioned earlier, the definitions and notation used in this paper follow
those adopted by Hydon in [6].

Definition 2.1 A parameterized set of point transformations,

Γε : x 7→ x̂(x; ε), (4)

where x = xi, i = 1, . . . , p are continuous variables, is a one-parameter local
Lie group of transformations if the following conditions are satisfied:

1. Γ0 is the identity map if x̂ = x when ε = 0

2. ΓaΓb = Γa+b for every a and b sufficiently close to 0

3. Each x̂i can be represented as a Taylor series (in a neighborhood of
ε = 0 that is determined by x), and therefore

x̂i(x : ε) = xi + εξi(x) +O(ε2), i = 1, ..., p. (5)
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Consider the k + 1th-order difference equation

un+k+1 = Ω(un, un+1, . . . , un+k), (6)

for some function Ω. We shall restrict our attention to Lie point symmetries
where ûn is a function of n and un only. In other words, we assume that the
Lie point symmetries are of the form

n̂ = n; ûn = un + εQ(n, un) (7)

and that the analogous prolonged infinitesimal symmetry generator takes the
form

X [k] =
k∑
i=0

Q(n+ i, un+i)
∂

∂un+i
, (8)

where Q = Q(n, un) is referred to as the characteristic. We define the sym-
metry condition as

ûn+k+1 = Ω(n, ûn, ûn+1, ..., ûn+k) (9)

whenever (6) holds. Substituting the Lie point symmetries (7) into the sym-
metry condition (9) leads to the linearized symmetry condition

Q(n+ k + 1, un+k+1)−X [k]Ω = 0, (10)

whenever (6) holds.
One can solve for the characteristic Q(n, un) using the method of elimination
and thereafter lower the order the difference equation (6) via the canonical
coordinate [8]

Sn =

∫
dun

Q(n, un)
. (11)

3 Main results

3.1 Symmetries

Consider the k + 1 th-order difference equations of the form (2), i.e.,

un+k+1 = Ω =
un

Bn + An
k∏
i=0

un+i

.
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We impose the symmetry condition (10) on (2) to get

Q(n+ k + 1, un+k+1)−
k∑
i=0

Ω,un+i
Q(n+ i, un+i) = 0, (12)

where Ω,y denotes the partial derivative of Ω with respect to y.
The characteristic in (12) takes different arguments and one can eliminate the
undesirable variable by implicit differentiation. In this optic, we differentiate
(12) with respect to un+1 ( keeping Ω fixed) and viewing un+2 as a function
of un, un+1, . . . , un+k and Ω, that is, we act the operator

L =
∂

∂un+1

+
∂un+2

∂un+1

∂

∂un+2

=
∂

∂un+1

−
Ω,un+1

Ω,un+2

∂

∂un+2

(13)

on (12). This yields

− Ω,un+1Q
′(n+ 1, un+1) + Ω,un+1Q

′(n+ 2, un+2)

−
k∑
i=0

[
Ω,un+iun+1 −

Ω,un+1

Ω,un+2

Ω,un+iun+2

]
Q(n+ i, un+i) = 0

(14)

which simplifies to

− un+1un+2Q
′(n+ 2, un+2) + un+1un+2Q

′(n+ 1, un+1)− un+2Q(n+ 1, un+1)

+ un+1Q(n+ 2, un+2) = 0 (15)

after a set of rather long calculations. Note that ′ stands for the derivative
with respect to the continuous variable. The differentiation of (15) with
respect to un+1 twice (keeping un+2 fixed) leads to

[un+1Q
′(n+ 1, un+1)−Q(n+ 1, un+1)]

′′
= 0 (16)

after simplification. The solution of (16) is given by

Q (n, un) = anun + bnun lnun + cn (17)

for some functions an, bn and cn of n. These functions are obtained by
substituting (17) in (12) and by splitting the resulting equations with respect
to product of shifts of un, since they are functions of n only. It turns out
that bn = cn = 0 and we are left with the following reduced system:

1 : an+k+1 − an = 0 (18a)

un . . . un+k : an+1 + an+2 + · · ·+ an+k + an+k+1 = 0, (18b)
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or equivalently

an + an+1 + an+2 + · · ·+ an+k = 0. (19)

We have found that

an = exp

(
2πns

k + 1
i

)
, 1 ≤ s ≤ k. (20)

Thus, the k infinitesimal generators are given by

Xs = exp

(
2πns

k + 1
i

)
un
∂

∂un
, 1 ≤ s ≤ k. (21)

3.2 Reduction and exact solutions

Let

θs = exp

(
2πs

k + 1
i

)
and Qs(n, un) = (θs)

nun. (22)

To lower the order of (2), we introduce the canonical coordinate defined in
(11). We have

Sn =

∫
dun

Qs(n, un)
=

1

(θs)n
ln |un|. (23)

Thanks to (19), we have proved that

Xs

[
(θs)

nSn + (θs)
n+1Sn+1 + · · ·+ (θs)

n+kSn+k

]
= 0, 1 ≤ s ≤ k. (24)

So,

rn = (θs)
nSn + (θs)

n+1Sn+1 + · · ·+ (θs)
n+kSn+k (25)

is an invariant function of Xs, s = 0, 1, 2, . . . , k. For convenience, we consider

|r̃n| = exp{−rn} = ± 1
k∏
i=0

un+i

, (26)
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instead. We choose r̃n = 1/
k∏
i=0

un+i and the reader can readily check that r̃n

satisfies

r̃n+1 = Bnr̃n + An (27)

and that

r̃n = r̃0

(
n−1∏
k1=0

Bk1

)
+

n−1∑
l=0

(
Al

n−1∏
k2=l+1

Bk2

)
. (28)

Thanks to (26) and (2), we have that

un+k+1 =
r̃n
r̃n+1

un (29)

and thus

u(k+1)n+j = uj

n−1∏
s=0

r̃(k+1)s+j

r̃(k+1)s+j+1

, j = 0, 1, . . . , k. (30)

We have

u(k+1)n+j =uj

n−1∏
s=0

r̃0

(
(k+1)s+j−1∏

k1=0

Bk1

)
+

(k+1)s+j−1∑
l=0

(
Al

(k+1)s+j−1∏
k2=l+1

Bk2

)

r̃0

(
(k+1)s+j∏
k1=0

Bk1

)
+

(k+1)s+j∑
l=0

(
Al

(k+1)s+j∏
k2=l+1

Bk2

)

=uj

n−1∏
s=0

(
(k+1)s+j−1∏

k1=0

Bk1

)
+

(
k∏
i=0

ui

)
(k+1)s+j−1∑

l=0

(
Al

(k+1)s+j−1∏
k2=l+1

Bk2

)
(

(k+1)s+j∏
k1=0

Bk1

)
+

(
k∏
i=0

ui

)
(k+1)s+j∑

l=0

(
Al

(k+1)s+j∏
k2=l+1

Bk2

)
(31)

for j = 0, 1, . . . , k. The solution to the sequence {xn} is then given by

x(k+1)n+j−k = xj−k

n−1∏
s=0

(
(k+1)s+j−1∏

k1=0

βk1

)
+ P

(k+1)s+j−1∑
l=0

(
γl

(k+1)s+j−1∏
k2=l+1

βk2

)
(

(k+1)s+j∏
k1=0

βk1

)
+ P

(k+1)s+j∑
l=0

(
γl

(k+1)s+j∏
k2=l+1

βk2

)
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where j = 0, 1, 2, . . . , k and P =
k∏
i=0

x−i. In the subsequent sections, we

investigate solutions to special cases of the difference equations.

4 The case when βn and γn are 1-periodic

In this case, we assume that β0 = βj for all j ≥ 1 and γ0 = γj for all j ≥ 1.

4.1 The case when β0 6= 1

The solution becomes

x(k+1)n+j−k = xj−k

n−1∏
s=0

β
(k+1)s+j
0 +

(
k∏
i=0

x−i

)
1−β(k+1)s+j

0

1−β0 γ0

β
(k+1)s+j+1
0 +

(
k∏
i=0

x−i

)
1−β(k+1)s+j+1

0

1−β0 γ0

, j = 0, 1, 2, . . . , k.

Set β0 = γ0 = 1
a

where a is a constant. Then the solution reduces to

x(k+1)n+j−k = xj−k

n−1∏
s=0

(a−1)(k+1)s+j +

(
k∏
i=0

x−i

)
1−(a−1)(k+1)s+j

1−a−1 a−1

(a−1)(k+1)s+j+1 +

(
k∏
i=0

x−i

)
1−(a−1)(k+1)s+j+1

1−a−1 a−1
,

which is equivalent to

x(k+1)n+j−k = xj−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+j−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+j∑

l=0

al
.

More explicitly, we have

x(k+1)n−k = x−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s∑
l=0

al
,
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x(k+1)n+1−k = x1−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s∑
l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+1∑

l=0

al
,

x(k+1)n+2−k = x2−ka
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+2∑

l=0

al
,

...

x(k+1)n−1 = x−1a
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−2∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−1∑

l=0

al

and

x(k+1)n = x0a
n

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
(k+1)s+k−1∑

l=0

al

1 +

(
k∏
i=0

x−i

)
(k+1)s+k∑

l=0

al
.

This solution has appeared in [1].

4.1.1 The special case β = −1 and k is odd

The solution simplifies to

x(k+1)n−k = x−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,

x(k+1)n+1−k = x1−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
n,

x(k+1)n+2−k = x2−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,
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...

x(k+1)n−1 = x−1(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
−n,

x(k+1)n = xj−k(−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
n,

as long as the denominator does not vanish.
However, the solution above can be written in compact form as

x(k+1)n+j−k = xj−k (−1 + (x−kx−k+1x−k+2 . . . x−1x0)γ0)
(−1)j+1n

for j = 0, 1, . . . , k.
This solution has appeared in [1] (See Theorem 9).

Remark 4.1 Note that if γ0
k∏
i=0

x−i = 2, the solution is periodic with period

k + 1.

4.1.2 The special case β = −1 and k is even

In this case, we have

x(k+1)n+j−k = xj−k

n−1∏
s=0

(−1)s+j +

(
k∏
i=0

x−i

)
1−(−1)s+j

2
γ0

(−1)s+j+1 +

(
k∏
i=0

x−i

)
1−(−1)s+j+1

2
γ0

= xj−k

n−1∏
s≥0,

s−j is even

1

−1 +

(
k∏
i=0

x−i

)
γ0

n−1∏
s≥0,

s−j is odd

(
−1 +

(
k∏
i=0

x−i

)
γ0

)
.

If j is even and n is odd,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c

= xj−k

(
−1 + γ0

k∏
i=0

x−i

)−1
.
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If j is odd and n is odd,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c(
−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k

(
−1 + γ0

k∏
i=0

x−i

)
.

If j is even and n is even,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k.

If j is odd and n is even,

x(k+1)n+j−k = xj−k

(
−1 + γ0

k∏
i=0

x−i

)−bn−1
2
c−1(

−1 + γ0

k∏
i=0

x−i

)bn−1
2
c+1

= xj−k.

In summary, and more compactly, the solution is

x(k+1)n+j−k =

xj−k
(
−1 + γ0

k∏
i=0

x−i

)(−1)j+1

, if n is odd

xj−k, if n is even.

This solution has appeared in [1] (See Theorem 8).

4.1.3 The case when β0 = 1

The solution is given by

x(k+1)n+j−k = xj−k

n−1∏
s=0

1 +

(
k∏
i=0

x−i

)
((k + 1)s+ j)γ0

1 +

(
k∏
i=0

x−i

)
((k + 1)s+ j + 1)γ0

, j = 0, 1, 2, . . . , k.
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5 Conclusion

We have utilized symmetry analysis to find point symmetries for certain
(k + 1) th-order difference equations. We performed the group reduction of
the equations using one of these symmetries and solutions were given in a
unified manner. Our results generalise those in [1] in the sense that (a) α,
β and γ need not necessarily be non-negative integers and (b) the constants
can be replaced with sequences (variable constants).
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