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Abstract. In this work, we establish the necessary and sufficient conditions for oscillation of a
class of functional differential equations of the form

((x(t) + p(t)x(t− σ))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0

of a neutral coefficient p(t), by using the Knaster-Tarski fixed point theorem and Banach’s fixed
point theorem.

1. Introduction

Consider a class of first-order nonlinear neutral differential equations of the form

((x(t) + p(t)x(t− σ)))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0, (1.1)

where r, q, v, τ, σ, η ∈ C(R+,R+), p ∈ C(R+,R), φ ∈ C(R,R) such that xφ(x) > 0, xφ(x) > 0

for x 6= 0 and φ, ψ ∈ C(R,R) satisfying the property xφ(x) > 0, uψ(u) > 0 for x, u 6= 0.

In this work, our objective is to establish the necessary and sufficient condition results for oscil-

lation of all solutions of (1.1), where

(A0) p ∈ C([0,∞),R), f ∈ C(R,R), q, τ, σ, η ∈ C(R+,R+) such that t − τ < t, t − σ < t and

t− η < t;

(A1) φ, ψ ∈ C(R,R) are nondecreasing and satisfy uφ(u) > 0, uψ(u) > 0 for u, v 6= 0.

Fatima et al. [1] studied the nonlinear neutral differential equation (NDDE) of the form

[r(t)(x(t) + p(t)x(t− τ))]′ + q(t)x(t− σ) = 0, (1.2)

where p ∈ C[[t0,∞)],R], r, q ∈ C[[t0,∞),R+], τ, σ+ ∈ R+, and they obtained new sufficient

conditions for all solutions of NDDE (1.2) to be oscillatory.

Graef et al. [8] studied the first order neutral delay differential equations of the form

[x(t) + p(t)x(t− τ)]′ + q(t)f(x(t− σ)) = 0, (1.3)

under the conditions

(a) p ∈ R, τ and σ are positive constants;
(b) q : [t0,∞)→ R is a continuous function with q(t) > 0;

(c) f : R→ R is continuous with uf(u) > 0 for u 6= 0, and there is a positive constant

M such that f(u)uα ≥M > 0, where α is a ratio of odd positive integers. They established internal

conditions for all solutions of nonlinear first order neutral delay differential equations.

Grammatikopoulos et al. [9] studied first order neutral delay differential equations of the form

[x(t)− p(t)x(t− τ)]′ +Q(t)x(t− δ)) = 0, (1.4)
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where p,Q, δ ∈ C([t0,∞)],R+), and lim
t→∞

(t− δ(t)) = ∞. They established sufficient conditions for

oscillation of all solutions of the the neutral delay differential equations.

The motivation of the present work comes from the above studies. In this work, an attempt is

made to establish the necessary and sufficient condition for asymptotic behaviour of solutions of

(1.1), under various ranges in the neutral coefficient p(t). Clearly, (1.2), (1.3) and (1.4) are special

cases of (1.1). However, there are few results to study the oscillation of (1.1). The purpose of

this work is to obtain some sufficient condition results for oscillation of (1.1). This work would be

interesting than the works of [15,19] as long as (1.1) is concerned.

Neutral delay differential equations find numerous applications in electric network. For example,

they are frequently used for the study of distributed networks containing lossless transmission lines

which arise in high speed computers where the lossless transmission lines are used to interconnect

switching circuits (see for example [12]). The problem of obtaining sufficient conditions to ensure

the second order differential equations which are special cases of (1.1) is oscillatory has received a

great attention. Since the first order equations have the applied applications, there is permanent

interest in obtaining new sufficient conditions for oscillation or nonoscillation of solutions of varietal

type of the first order equations (see [2–7,11,13,14,16–18,20]).

Definition 1.1. By a solution of (1.1), we mean a continuously differentiable function x(t) which

is defined for t ≥ T ∗ = min{(t− σ0), (t− τ0), (t− η0)} such that x(t) satisfies (1.1) for all t ≥ t0.

In the sequel, it will always be assumed that the solution of (1.1) exists on some half line [t1,∞),

t1 ≥ t0. A solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is

called nonoscillatory. Equation (1.1) is called oscillatory if all its solutions are oscillatory.

2. Oscillation results

This section deals with the oscillation results for necessary and sufficient conditions for oscil-

lation of all solutions of (1.1), Throughout our discussion, we use the following notation

z(t) = x(t) + p(t)x(t− σ).

Lemma 2.1. [10] Let p, x, z ∈ C([0,∞),R) be such that z(t) = x(t) + p(t)x(t − σ), t ≥ τ > 0,

x(t) > 0 for t ≥ t1 > τ , lim inft→∞ x(t) = 0 and lim
t→∞

z(t) = L exists. Let p(t) satisfy one of the

following conditions:

i) 0 ≤ p1 ≤ p(t) ≤ p2 < 1, ii) 1 < p3 ≤ p(t) ≤ p4 <∞, iii) −∞ < −p5 ≤ p(t) ≤ 0,

where ri > 0, 1 ≤ i ≤ 5.

Then L = 0.

Theorem 2.2. Assume that (A0) and (A1) hold and 0 ≤ a1 ≤ p(t) ≤ a2 < 1 for t ∈ R+. Let φ,

ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every solution of (1.1)

converges to zero as t→∞ if and only if

(A2)
∫∞
t [q(s) + v(s)]ds =∞.

Proof. Assume that (A2) holds. Let x(t) be a solution of (1.1) on [tx,∞], tx ≥ 0. Let x(t) > 0 for

t ≥ tx. Set

z(t) = x(t) + p(t)x
(
t− σ

)
, t ≥ t0. (2.1)

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 32, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC

2SETHI ET AL 1-9



Then (1.1) becomes

z′(t) = −q(t)φ(x(t− τ))− v(t)ψ(x(t− η)) < 0, (2.2)

and hence z(t) is a decreasing function for t ≥ t1 > t0 +ρ. Since z(t) > 0 for t ≥ t2, lim
t→∞

z(t) exists.

Consequently, z(t) > x(t) implies that x(t) is bounded. Our aim is to show that lim
t→∞

x(t) = 0. For

this, we need to show that lim inft→∞ x(t) = 0. If lim inft→∞ x(t) 6= 0, then there exist t3 > t2 and

β > 0 such that x(t− σ) ≥ β > 0 for t ≥ t3. Ultimately,∫ t

t3

[φ(x(t− τ)) + v(t)ψ(x(t− η))] dt ≥ φ(β)[q(t)]dt+ ψ(β)

∫ t

t3

[v(t)]dt

→ +∞, as t→∞,

due to (A2).

On the other hand, we integrate (2.2) from t3 to t(> t3) to obtain∫ t

t3

[q(t)φ(x(t− τ)) + v(t)ψ(x(t− η))] dt ≤ −z(t) + z(t3)

<∞, as t→∞,

which is a contradiction. Therefore, lim inft→∞ x(t) = 0. Consequently, lim
t→∞

z(t) = 0 due to Lemma

2.1. Thus we obtain

0 = lim
t→∞

z(t) = lim sup
t→∞

(x(t) + p(t)x(t− σ))

≥ lim sup
t→∞

x(t),

which implies that lim supt→∞ x(t) = 0, that is, lim
t→∞

x(t) = 0.

Assume that x(t) < 0 for t ≥ t0. Setting y(t) = −x(t) for t ≥ t0 in (1.1), we obtain

((y(t) + p(t)y(t− σ)))′ + q(t)φ(y(t− τ)) + v(t)ψ(y(t− η)) = 0,

and proceeding as above it is easy to prove that limt→∞ y(t) = 0.

In order to prove the condition (A2) is necessary, we suppose that∫ ∞
t

[q(s) + v(s)] ds <∞ (2.3)

and we need to show that the equation (1.1) admits a nonoscillatory solution which does not tend

to zero as t→∞ when the limit exists. If possible, let there exist t1 > 0 such that∫ ∞
t

[q(s) + v(s)] ds <
1− a1

10c
,

where C = max{C1,
C2
L , φ(1), ψ(1)}, C1 is the Lipschitz constant of φ and C2 is the Lipschitz

constant of ψ on
[2(1−a1)

5 , 1]. For t2 > t1, set Y = BC([t2,∞),R), the space of real valued bounded

continuous functions on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||Y || = sup{|Y (t)| : t ≥ t2}.

Let’s define

S =

{
u ∈ Y :

2(1− a1)
5

≤ u(t) ≤ 1, t ≥ t2
}
.
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Clearly, S is a closed and convex subspace of Y . Let T : S → S be defined by

Ty(t) =

{
Ty(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)y(t− σ) + 2+3a1
5 +

∫∞
t [q(s)φ(y(t− τ)) + v(s)ψ(y(t− η))] ds, t ≥ t2 + ρ.

For every y ∈ S,

Ty(t) ≤ 2 + 3a1
5

+ φ(1)

∫ ∞
t

[q(s)]ds+ ψ(1)

∫ ∞
t

[v(s)]ds

<
2 + 3a1

5
+

1− a1
10

=
1 + a1

2
< 1

and

Ty(t) ≥ −p(t)y(t− τ) +
2 + 3a1

5

≥ −a1 +
2 + 3a1

5
=

2(1− a1)
5

which imply that Ty ∈ S. Now, for y1, y2 ∈ S,

|Ty1(t)− Ty2(t)| ≤ |p(t)||y1(t− τ)− y2(t− τ)|

+ C1

∫ ∞
t

q(s)|y1(s− σ)− y2(s− σ)|ds+ C2

∫ ∞
t

v(s)|y1(s− η)− y2(s− η)|ds,

that is,

|Ty1(t)− Ty2(t)| ≤ a2||y1 − y2||+ C1||y1 − y2||
∫ ∞
t

[q(s)]ds+ C2||y1 − y2||
∫ ∞
t

[v(s)]ds

<

(
a1 +

1− a1
10

)
||y1 − y2||,

which implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction mapping, where µ = a1 + 1−a1
10 = 1+9a1

10 < 1. Since S is complete and T is

a contraction on S, by the Banach’s fixed point theorem, T has a unique fixed point on
[
2(1−a1)

5 , 1
]
.

Hence Ty = y and

y(t) =

{
y(t2 + ρ), t ∈ [t2, t2 + ρ]

−p(t)y(t− σ) + 2+3a1
5

[∫∞
t q(s)φ(y(s− τ)) +

∫∞
t v(s)ψ(y(s− η)))

]
ds, t ≥ t2 + ρ

is a nonoscillatory solution of (1.1). Therefore, (A2) is necessary. This completes the proof of the

theorem. �

Theorem 2.3. Assume that (A0) and (A1) hold and 1 < a3 ≤ p(t) ≤ a4 < ∞ such that a23 > a4
for t ∈ R+. Let φ, ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every

solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. The sufficient part is the same as in the proof of Theorem 2.2.

For the necessary part, we suppose that (2.2) holds. It is possible to find a t1 > 0 such that∫ ∞
t

[q(s) + v(s)] ds <
a3 − 1

2K
,
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where K = max{K1,
K2
L }, K1, K2 are Lipschitz constants of φ and ψ on [a, b] and K2 = φ(a), ψ(b)

such that

a =
2λ(a3

2 − a4)− a4(a3 − 1)

2a32a4
,

b =
a3 − 1 + 2λ

2a3
, λ >

a4(a3 − 1)

2(a32 − a4)
> 0.

Let Y = BC([t2,∞),R) be the space of real valued bounded continuous functions on [t2,∞).

Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Define

S = {u ∈ Y : a ≤ u(t) ≤ b, t ≥ t2} .

It is easy to see that S is a closed convex subspace of Y . Let T : S → S be such that

Tx(t) =


Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

− x
(
t+σ
)

p
(
t+σ)

) + λ

p
(
t+σ)

) + 1

p
(
t+σ)

) [∫∞
s+σ q(s)φ(x(s− τ))ds+

∫∞
s+σ v(s)ψ(x(s− η)))ds

]
, t ≥ t2 + ρ.

For every x ∈ S,

Tx(t) ≤ φ(b)

p
(
t+ σ)

) [∫ ∞
s+σ

q(s)ds+
ψ(b)

p
(
t+ σ)

) ∫ ∞
s+σ

v(s)ds

]
+

λ

p
(
s+ σ)

)
≤ 1

a3

[
a3 − 1

2
+ λ

]
= b

and

Tx(t) ≥ −
x
(
t+ τ)

)
p
(
t+ τ)

) +
λ

p
(
t+ τ)

)
> − b

a3
+
λ

a4

= −a3 − 1 + 2λ

2a23
+
λ

a4

=
2λ(a3

2 − a4)− a4(a3 − 1)

2a32a4
= a,

which imply that Tx ∈ S. For y1, y2 ∈ S,

|Ty1(t)− Ty2(t)| ≤
1

|p(t+ σ)|
|y1(t+ σ)− y2(t+ σ)|

+
K1

|p(t+ σ)|

[∫ ∞
s+σ

q(s)|y1(s− τ)− y2(s− τ)|
]
ds

+
K2

|p(t+ σ)|

[∫ ∞
s+σ

v(s)|y1(s− η)− y2(s− η)|
]
ds,

that is,

|Ty1(t)− Ty2(t)| ≤
1

p3
||y1 − y2||+

K1

a3
||y1 − y2||

∫ ∞
T

q(s)ds+
K2

a3
||y1 − y2||

∫ ∞
T

v(s)ds

<

(
1

a3
+
a3 − 1

2a3

)
||y1 − y2||,
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which implies that

||Ty1 − Ty2|| ≤ µ||y1 − y2||,

that is, T is a contraction, where µ =
(

1
a3

+ a3−1
2a3

)
< 1. Hence by the Banach’s fixed point theorem,

T has a unique fixed point which is a nonoscillatory solution of (1.1) on [a, b]. Thus the proof of

the theorem is complete. �

Theorem 2.4. Assume that (A0) and (A1) hold and −1 < −a5 ≤ p(t) ≤ 0, a5 > 0 for t ∈ R+.

Then every solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. Proceeding as in the proof of Theorem 2.2, we obtain (2.2). Hence r(t)z(t) is monotonic on

[t2,∞), t2 > t1. Let z(t) > 0 for t ≥ t2. Then limt→∞ z(t) exists. Let z(t) < 0 for t ≥ t2. We

claim that x(t) is bounded. If not, there exists {ηn} such that τ(ηn) ≤ τn and ηn →∞ as n→∞,

x(ηn)→∞ as n→∞ and

x(ηn) = max{x(s) : t2 ≤ s ≤ ηn}.

Therefore,

z(ηn) = x(ηn) + p(ηn)x(ηn − σ)

≥ (1− a5)x(ηn)

→ +∞, as n→∞,

which is a contradiction to the fact z(t) > 0. So our claim holds. Consequently, z(t) ≤ x(t) implies

that limt→∞ z(t) exists. Hence for any z(t), x(t) is bounded. Using the same type of argument

as in the proof of Theorem 2.2, it is easy to show that lim inft→∞ x(t) = 0 and by Lemma 2.1,

limt→∞ z(t) = 0. Indeed,

0 = lim
t→∞

z(t) = lim sup
t→∞

(
x(t) + p(t)x(t− σ))

)
≥ lim sup

t→∞
x(t) + lim inf

t→∞

(
−a5x(t− σ)

)
= (1− a5) lim sup

t→∞
x(t)

which implies that lim supt→∞ x(t) = 0. The rest of the proof follows from Theorem 2.2.

Next, we suppose that (2.2) holds. Then there exists t1 > 0 such that∫ ∞
s

[q(s) + v(s)] ds <
1− a5

5φ(1)ψ(1)
, t ≥ t1.

For t2 > t1, let Y = BC([t2,∞),R) be the space of all real valued bounded continuous functions

defined on [t2,∞). Clearly, Y is a Banach space with respect to sup norm defined by

||y|| = sup{|y(t)| : t ≥ t2}.

Let K = {y ∈ Y : y(t) ≥ 0, t ≥ t2}. Then Y is a partially ordered Banach space (see [8]). For

u, v ∈ Y , we define u ≤ v if and only if u− v ∈ K. Let

S =

{
X ∈ Y :

1− p5
5
≤ x(t) ≤ 1, t ≥ t2

}
.

If x0(t) = 1−a5
5 , then x0 ∈ S and x0 = g.l.b S. Further, if φ ⊂ S∗ ⊂ S, then

S∗ =

{
x ∈ Y : l1 ≤ x(t) ≤ l2,

1− a5
5
≤ l1, l2 ≤ 1

}
.
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Let v0(t) = l′2, t ≥ t3, where l′2 = sup{l2 : 1−a5
5 ≤ l2 ≤ 1}. Then v0 ∈ S and v0 = l.u.b S∗. For

t3 = t2 + ρ, define T : S → S by

Tx(t) =

{
Tx(t3), t ∈ [t2, t3]

−p(t)x(t− σ) + 1−a5
5

[∫∞
s q(η)φ(x(s− τ))ds+

∫∞
s v(s)ψ(x(s− η))ds

]
, t ≥ t3.

For every x ∈ S, Tx(t) ≥ 1−a5
5 and

Tx(t) ≤ a5 +
1− a5

5
+ φ(1)

∫ ∞
s

[q(s)]ds+ ψ(1)

∫ ∞
s

[v(s)]ds

<
2 + 3a5

5
< 1

which imply that Tx ∈ S. Now, for x1, x2 ∈ S, it is easy to verify that x1 ≤ x2 implies that

Tx1 ≤ Tx2. Hence by the Knaster-Tarski fixed point theorem ( [8, Theorem 1.7.3]), T has a unique

fixed point such that limt→∞ x(t) 6= 0. This completes the proof of the theorem. �

Theorem 2.5. Assume that (A0) and (A1) hold and −∞ < −a6 ≤ p(t) ≤ −a7 < −1, a6, a7 > 0

for t ∈ R+. Let φ, ψ be Lipschitzian on intervals of the form [α, β], 0 < α < β < ∞. Then every

bounded solution of (1.1) converges to zero as t→∞ if and only if (A2) holds.

Proof. The proof of the theorem follows from Theorem 2.2. For the necessary part, we need to

mention the following: ∫ ∞
s

[q(s) + v(s)] ds <
a7 − 1

2K
,

where K = max{K1,K2}, K1, K2 are Lipschitz constants of φ and ψ on [a, b], K2 = φ(a)ψ(b) such

that

a =
2λa7 − a6(a7 − 1)

2a6a7
, b =

λ

a7 − 1
for

λ >
a6(a7 − 1)

2a7
> 0,

and

Tx(t) =


Tx(t2 + ρ), t ∈ [t2, t2 + ρ]

−x
(
t+σ)

)
p
(
t+σ)

) − λ

p
(
t+σ)

) + 1

p
(
t+σ)

) [∫∞
s+σ q(s)φ(x(s− τ))ds+

∫∞
s+σ v(s)ψ(x(s− η))ds

]
,

where t ≥ t2 + ρ. This completes the proof of the theorem. �

Remark 2.6. In the above theorems, φ and ψ could be linear, sublinear or superlinear.

Remark 2.7. Lemma 2.1 does not include p(t) ≡ 1 for all t (see [8]). The present analysis does

not allow the case p(t) ≡ −1 for all t. Hence in our discussion, a necessary and sufficient condition

is established excluding p(t) = ±1 for all t. It seems that a different approach is necessary to study

the case p(t) = ±1.

3. An example

Example 3.1. Consider

((x(t) + x(t− π)))′ + etφ(x(t− 2π)) + etψ(x(t− 3π)) = 0, t ≥ 2π,

where φ(x) = ψ(x) = x3. Then all the conditions of Theorem 2.2 are satisfied for (1.1). Hence

every solution of (1.1) oscillates. In particular, x(t) = sint is one of such solution of (1.1).
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Clearly, all the conditions of Theorem 2.2 are satisfied. Hence, by Theorem 2.2 every solutions

of (1.1) oscillates.

4. Conclusion

In this work, we established the necessary and sufficient conditions for oscillation of a class of

functional differential equations of the form

((x(t) + p(t)x(t− σ))′ + q(t)φ(x(t− τ)) + v(t)ψ(x(t− η)) = 0

of a neutral coefficient p(t), by using the Knaster-Tarski fixed point theorem and Banach’s fixed

point theorem.
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