
Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024
 VOL. 33, NO. 2, 20

 449 Santhosh J et al 449-459

Cloud Off loading Efficiency With Deepsmote And Ant Lion
Optimizer Enhanced By Non-Linear Analysis

Santhosh J1, Muniyandy Elangovan2, S. Srinivasan3, Malatthi Sivasundaram4,

Aravindh R5, Amit Chauhan6

1Assistant Professor, Department of Computer Applications, Sri Krishna Adithya College of Arts and
Science, Coimbatore, Tamilnadu, India, Email: santhoshj@skacas.ac.in

2Department of Biosciences, Saveetha School of Engineering. Saveetha Institute of Medical and Technical
Sciences, Chennai, and Applied Science Research Center. Applied Science Private University, Amman,

Jordan, Email: muniyandy.e@gmail.com
3Professor, Department of Advanced Computing Sciences, AMET University, Chennai, India,

Email: srinikcgmca@gmail.com
4Associate Professor, Department of CSD, KSR College of Engineering, Tiruchengode, Namakkal, India,

Email: malathi.gurunathan@gmail.com
5Assistant Professor, Department of Electrical and Electronics Engineering, Kongu Engineering College,

Perundurai, Erode, India, Email: aravindhraju.eee@gmail.com
6Department of Life Sciences, CHRIST University, Bengaluru, Karnataka, India,

Email: amit_chauhan777@yahoo.in

 Received: 08.04.2024 Revised : 17.05.2024 Accepted: 24.05.2024

ABSTRACT
Managing and processing enormous volumes of data depends on cloud computing, which has evolved into
a fundamental instrument. Effective cloud offloading methods determine both reduced latency and
optimization of computer resources. Deep SMote, a modified Synthetic Minority over-sampling technique,
and the Ant Lion Optimizer (ALO) are rising as possible methods for raising cloud offloading efficiency.
Particularly in dynamic environments with imbalanced datasets, conventional cloud offloading methods
can find it difficult to balance compute load with mizing latency. Current approaches cannot sufficiently
solve the challenges given by high-dimensional data and the complex complexity of offloading decisions.
This paper proposes a combination approach to increase cloud offloading efficacy by use of the Ant Lion
Optimizer and Deep SMote. Deep Smote generates synthetic samples for balancing unbalanced datasets,
therefore improving the quality of the input data for optimization. Inspired by nature, the Ant Lion
Optimizer develops a metaheuristic leading to optimal offloading methods. Techniques of non-linear
analysis enable fit to complex data patterns and aid to enhance the optimization process. The proposed
approach clearly surpasses accepted knowledge. Numerical studies show a 23% drop in latency and an
increase in offloading efficiency by 19% compared to baseline techniques. Moreover, using the approach
increases general system throughput by 15%. These results show how well DeepSMote and ALO coupled
with non-linear analysis tackle cloud offloading issues.

Keywords: Cloud offloading, DeepS MOTE, Ant Lion Optimizer, non-linear analysis, optimization.

INTRODUCTION
In cloud computing, work offloading and effective use of resources define most of the improvement in
system speed and user experience [1]. Commonly difficult in cloud systems is managing several virtual
machines (VMs) housing different applications and services [2]. Effective offloading methods can
significantly raise system performance including latency, efficiency, throughput, and processing load [3].
Regarding the explosion of data and applications, traditional methods struggle to satisfy the rising needs
and complexity of cloud systems [4].
Dealing with the dynamic and diverse character of cloud environments provides the main challenge in
cloud offloading [5]. Dealing with the distribution of computational tasks becomes progressively more
challenging as the VMs increase [6]. Sometimes insufficient standard optimization techniques are used to
handle unbalanced data, non-linear relationships, and the great complexity of optimization areas [7].
Moreover, the inclusion of modern algorithms into present systems poses significant difficulties to
maintain performance and efficiency [8].

mailto:santhoshj@skacas.ac.in
mailto:muniyandy.e@gmail.com
mailto:srinikcgmca@gmail.com
mailto:malathi.gurunathan@gmail.com
mailto:aravindhraju.eee@gmail.com
mailto:amit_chauhan777@yahoo.in

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 450 Santhosh J et al 449-459

The basic problem of inefficiencies in current cloud offloading systems resulting to low efficiency, high
latency, and too heavy computational burden is aimed to be solved by this work [9]. Although present
methods such as DRLCOSCM and HCEA-DVFS provide some solutions, they do not fully manage the
complexity of modern cloud systems [10]. They especially find it challenging to mix real-time computing
activities in real-time with evolving loads, therefore causing resource waste and performance loss [11].
The primary objectives of this research are:
1. To design a superior cloud offloading scheme optimizing computing load, reducing latency, and

raising efficiency.
2. To increase performance criteria by applying creative data balancing techniques and metaheuristic

optimization strategies.
3. To record complex interactions and enhance optimization results using non-linear analysis.
This study is novel in that it combines the Ant Lion Optimizer (ALO) with augmented non-linear analysis
DeepSMote. DeepSMote handles data imbalance; ALO provides a metaheuristic approach to maximize
methods of work offloading. Non-linear analysis enables even more improvement of existing methods by
simulating complex, non-linear interactions between variables. This combination of methods is fresh
since it provides a whole solution for the limitations of present techniques.
Contributions:
1. The work offers a novel optimization structure combining ALO, Deep SMote, and non-linear analysis.

This hybrid approach exceeds the limits of traditional methods by effectively balancing data,
allocating resources, and modeling complex interactions.

2. Key performance measures—including latency, efficiency, throughput, and computational load—
show clear improvements in the recommended strategy. Empirical investigations show, compared to
present methods, up to 20% drop in latency and 10% increase in efficiency.

3. The method improves general system performance, efficiently manages several loads, and
demonstrates tremendous flexibility in dynamic cloud systems.

2. RELATED WORKS
The QoS-SLA-Aware Adaptive Genetic Algorithm (QoS-SLA-AGA) addresses the optimizing of application
execution time problem in heterogeneous edge-cloud computing systems. It deals with multi-request
unloading with an attention toward dynamic elements such truck speed and request overlaps. This
approach combines an adaptive penalty function to control Service Level Agreement (SLA) constraints
like latency, processing time, deadlines, CPU, and memory requirements. Particle Swarm Optimization
(PSO), random offloading, All Edge Computing (AEC), and All Cloud Computing (ACC) all baseline
strategies are ranked numerically by QoS-SLA-AGA as outperforming. It performs remarkably with
reduced SLA breaches and up to 9.41 times faster execution. Underlined in this work is the requirement
of adding SLA limitations into optimization strategies to guarantee better application performance and
compliance with service agreements [11].
This paper proposes a new hybrid integer multi-objective dynamic decision-making approach enhanced
with the gravity reference point method. This approach chooses the proper computation ratio between
cloud and edge servers. More rapidly convergence speed and accuracy of the whale optimization method
depends on using the gravitational potential reference point and crowding degrees. This hybrid model
eliminates the limitations of traditional whale algorithms, which rely on random randomness and varied
foraging tactics. All of which demonstrate substantial rise include time delay, energy efficiency,
dependability, quality of service, distributor throughput, asset availability, guarantee ratio. The approach
underlines improvements in balancing computational loads and optimizing resource consumption in the
cloud-edge paradigm, therefore addressing both efficiency and dependability problems [12][13].
Deep Reinforcement Learning-based Computation Offloading and Service Caching Mechanism
(DRLCOSCM) DRLCOSCM solves the Mixed Integer Non-Linear Programming (MINLP) problem using an
Asynchronous Advantage Actor-Critic (A3C)-based method, concentrated on improving offloading
decisions, service caching, and resource allocation techniques tomize costs and fulfill latency
requirements. This approach addresses challenging optimization problems in cloud-edge systems by
offering efficient solutions for cost and delay minimization. Simulation studies showing DRLCOSCM
greater performance over conventional methods emphasize the efficiency of deep reinforcement learning
in managing difficult, multifarious optimization challenges in edge-cloud systems [14].
We solve the NP-hard job scheduling problem in edge-cloud systems by use of a genetic algorithm (GA).
The proposed GA-based scheduling system maximizes both task completion rate and resource utilization.
It offers a skew mutation operator to manage resource heterogeneity brought about by population
growth. Extensive investigations show that the GA-based approach performs better than thirteen classical
and modern scheduling techniques in task completion rate. This work emphasizes the way evolutionary

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 451 Santhosh J et al 449-459

algorithms handle difficult scheduling problems and improve performance criteria in heterogeneous
edge-cloud systems [15].
Combining diversification and intensification methods with Dynamic Voltage Frequency Scaling (DVFS)
the hybrid chaotic evolutionary algorithm (HCEA) maximizes computational efficiency and energy use.
HCEA improves search capability and avoids early convergence by means of Archimedes Optimization
Algorithm-based diversification and Genetic Algorithm-based chaotic intensification. The HCEA-DVFS
variation even reduces energy usage by dynamically varying frequency levels and reallocating deep
neural network (DNN) layers. Experimental results reveal that HCEA-DVFS uses far less energy than other
approaches including PSO-GA and Greedy. This work underlines the benefits of merging chaos-based
algorithms with energy-efficient techniques to maximize performance in deep learning applications [16].

Table 1: Comparison
Method Algorithm Methodology Outcomes
QoS-SLA-Aware
Adaptive Genetic
Algorithm (QoS-SLA-
AGA)

Genetic Algorithm
(GA)

Integrates an adaptive
penalty function for SLA
constraints, considering
latency, processing time,
and resource requirements.

Requests executed 1.04
to 9.41 times faster;
fewer SLA violations
(up to 80.42%
reduction).

Hybrid Integer Multi-
Objective Dynamic
Decision-Making
Approach

Whale
Optimization
Algorithm (WOA)

Uses gravity reference
points and crowding
degrees to enhance foraging
behavior and convergence
speed.

Time latency improved
by 76.45%; energy
efficiency increased by
63.12%.

Deep Reinforcement
Learning-Based
Computation Offloading
and Service Caching
Mechanism (DRLCOSCM)

Asynchronous
Advantage Actor-
Critic (A3C)

Formulates optimization as
an MINLP problem; solves
with A3C algorithm for
offloading, caching, and
resource allocation.

Superior performance
in cost and
delaymization
compared to traditional
methods.

Genetic Algorithm for
Task Scheduling in Edge-
Clouds

Genetic Algorithm
(GA)

Optimizes task scheduling
using skew mutation
operator to handle resource
heterogeneity.

Outperforms thirteen
other algorithms in task
completion rate.

Hybrid Chaotic
Evolutionary Algorithm
(HCEA) and HCEA-DVFS

Chaotic
Evolutionary
Algorithm (CEA)

Combines diversification
(Archimedes Optimization)
and intensification (Genetic
Algorithm) with DVFS.

Energy consumption
reduced by up to
19.38% compared to
other methods.

Current methods may overlook the dynamic character of cloud-edge environments and the interplay
among overlapping multi-requests. They also sometimes overlook preemptive application characteristics,
therefore wasting energy and resources. Integrated solutions assuring both high performance and energy
economy not only maximize work offloading but also dynamically adjust to match heterogeneous
situations and changing loads. Solving these gaps will provide more robust and powerful cloud-edge
computing platforms.

3. PROPOSED METHOD
In this section, combining DeepSMote with the Ant Lion Optimizer (ALO) with non-linear analysis
techniques helps to increase cloud offloading efficiency. The process is carried out in the next phases as in
figure 1:

(a)

1.Data Preparation
with DeepSMOTE

1.Optimization with
Ant Lion Optimizer

Non-Linear Analysis

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 452 Santhosh J et al 449-459

(b)

Figure 1. Proposed Framework

1. Data Preparation with DeepSMOTE: Deep SMote data preparation begins, one could say, with
pretreatment of the dataset required for offloading choices. This approach generates synthetic
samples for minority classes in an imbalanced dataset, therefore improving the dataset
representativeness and guaranteeing a balanced training set for optimization.

2. Optimization with Ant Lion Optimizer: Preprocessing produces, for the Ant Lion Optimizer, a
balanced dataset. The ALO is investigated and applied for best offloading methods in the solution
space. The optimizer models predatory activities of ant lions to maximize trade-offs between
computation load and latency.

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 453 Santhosh J et al 449-459

3. Non-Linear Analysis: Still additional improvement in the optimization process is achieved using
non-linear analysis techniques. By use of non-linear models, data pattern analysis and optimization
result optimization assist one to change and improve the optimization outcomes.

Pseudocode
Function Cloud Off loading Enhancement(Data, Parameters):
 # Step 1: Data Preparation
 Balanced Data = DeepSMOTE(Data)
 # Step 2: Initialize Ant Lion Optimizer
 Initialize ALO with Parameters
 # Step 3: Optimization Process
 For each iteration in ALO:
 Generate potential offloading strategies
 Evaluate strategies using Balanced Data
 Update best strategy based on performance metrics
 # Step 4: Non-Linear Analysis
 Analysis Results = Non Linear Analysis(Best Strategy)
 # Step 5: Evaluation and Adjustment
 Evaluate performance of Best Strategy
 If necessary, adjust strategy to improve metrics
 Return Best Strategy, Performance Metrics

3.1. Data Preparation with DeepSMOTE
DeepSMote is a synthetic sample producing advanced technique to handle skewed datasets. It expands
the traditional SMote (Synthetic Minority over-sampling Technique) method using deep learning,
therefore enhancing the synthetic data quality.
1. Data Analysis and Preprocessing:

Analyzing the original dataset 1 2, ,..., nX x x x with
d

ix helps one to identify the minority and

majority classes in preprocessing and data analysis. Assuming dis the feature dimension shows the
original data with. Less cases than the majority class define the minority class samples.
2. Generating Synthetic Samples:
Using a deep learning model generally a neural network, DeepSMote learns the data distribution of the
minority class. The intention is to generate synthetic samples more like real minority class samples than
exactly reproductions. One gets at this by applying these rules:
 Model Training: The model captures complex patterns inside the minority class data by means of

minority class sample training for a neural network model learning to translate the input features xi
to a higher-dimensional feature space.

 Sample Generation: After training, the model generates synthetic examples xnewby interpolating
among present minority class data. Here let assume two minority class samples xi and xj. Synthetic
sample xnewcreated looks like this:

()new i j ix x x x

where
λ -random number, introducing variability in the synthetic samples.
3. Augmenting the Dataset:
Deep SMote creates synthetic samples for inclusion into the original dataset. This addition increases the
representation of the minority class so balancing the dataset. Let Xb represent the equally spaced dataset:

1 2{ , ,..., }b o new new newkX X x x x

where
k- number of synthetic samples generated.
The balanced dataset Xb then helps training and evaluation of machine learning models. One expects to
improve the model performance on minority class projections by addressing class imbalance. Using deep
learning, DeepSMote creates outstanding synthetic samples to enhance traditional SMote. Increasing the
representation of minority class examples balances the dataset therefore improving the performance of
subsequent machine learning models.

Pseudocode 1: Data Preparation with DeepSMOTE
Function DeepSMOTE(Data, MinorityClass, MajorityClass, NumberOfSyntheticSamples):

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 454 Santhosh J et al 449-459

 # Step 1: Data Analysis and Preprocessing
 Identify MinorityClassSamples from Data
 Identify MajorityClassSamples from Data
 # Step 2: Model Training
 Initialize Deep Learning Model
 Train Model using MinorityClassSamples
 # Step 3: Generate Synthetic Samples
 SyntheticSamples = []
 For each sample in MinorityClassSamples:
 # Generate synthetic samples for each minority class sample
 For i in range(NumberOfSyntheticSamples per sample):
 # Randomly select another minority class sample
 NeighborSample = RandomlySelect(MinorityClassSamples excluding current sample)
 # Interpolate between the current sample and the neighbor
 Lambda = RandomFloat(0, 1)
 SyntheticSample = sample + Lambda * (NeighborSample - sample)
 # Append the synthetic sample to the list
 Append SyntheticSample to SyntheticSamples
 # Step 4: Augment the Dataset
 BalancedDataset = Data
 Add SyntheticSamples to BalancedDataset
 Return BalancedDataset

Optimization with Ant Lion Optimizer (ALO)
Inspired by the predatory behavior of ant lions—which catch ants by laying traps in the sand—this
metaheuristic Ant Lion Optimizer (ALO) searches and uses the search space efficiently in order to address
optimization difficulties. ALO runs here optimizing methods of cloud offloading:

The approach begins with a population of possible answers—that of ants 1 2, ,..., nP p p p initally.

Every ant location inside the search area corresponds to a feasible offloading method. Assume the
population of ants, where pi denotes the i-th ant's position in the decision space. Every ant position is
evaluated in compliance with a fitness criteria representing the quality of the offloading approach. The
fitness function f(pi) is intended to assess among performance factors latency and efficiency.

() Latency() Cost()i i if p p p

where Latency()ip and Cost()ip - performance metrics related to the offloading strategy.

Ant lions are selected from the best ants—that which mirror good solutions. These ant lions catch other
ants by restricting the search area. Every ant lion lj creates a trap based on the suitable location found:

Trap
jl bestp

where bestp - position of the ant with the best fitness value.

The traps the ant lions invented draw ants. The equation below defines this movement and modulates the
position of every ant:

() (rand 0.5)new

i i best ip p p p

where
α - scaling factor,
β - randomness, and
rand - random number between 0 and 1.
Position updates calculate the fitness of every ant. New finest solutions direct improvements for ant lions
and their traps. The process continues until a stopping criterion, such maximum number of iterations, is
satisfied. The best response found comes from retaken from the optimization process. This method of
offloading is the best one to optimize effectiveness and reduce delay.

Pseudocode 2: Optimization with Ant Lion Optimizer (ALO):
Function AntLionOptimizer(PopulationSize, Dimensions, MaxIterations, FitnessFunction):
 # Step 1: Initialization
 Initialize Ants with random positions in search space
 Initialize AntLions as empty

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 455 Santhosh J et al 449-459

 BestSolution = None
 BestFitness = ∞
 # Step 2: Main Optimization Loop
 For iteration in range(MaxIterations):
 # Evaluate fitness of each ant
 For each ant in Ants:
 Fitness = FitnessFunction(ant.position)
 If Fitness < BestFitness:
 BestFitness = Fitness
 BestSolution = ant.position
 # Update AntLions with the best ants
 AntLions = SelectBestAnts(Ants)
 # Create traps based on AntLions
 For each antLion in AntLions:
 Trap = antLion.position
 # Update positions of ants
 For each ant in Ants:
 # Move ant towards the trap
 RandomFactor = RandomFloat(-0.5, 0.5)
 ant.position = ant.position + α * (Trap - ant.position) + β * RandomFactor
 # Ensure ant is within the search space bounds
 ant.position = ClipPosition(ant.position)
 # Optional: Update AntLions with new best positions if needed
 UpdateAntLions(Ants, AntLions)
 # Step 3: Return Best Solution
 Return BestSolution, BestFitness

3.3. Non-Linear Analysis on Optimization
Non-linear analysis enhances the optimizing process by addressing complex, non-linear interactions in
data that traditional approaches could overlook. By means of non-linear analysis, complicated patterns
can be identified and decision-making enhanced in optimizing cloud offloading strategies, hence
improving the results obtained by means of algorithms as the Ant Lion Optimizer (ALO). First, one looks
at the optimization results in order to identify non-linear connections between variables. Cloud offloading
performance measurements, for example, might not have a clear linear link with choice criteria. We
capture these connections using non-linear models, comprising polyn poisson regressions or neural
networks. Designed for the ALO data, are non-linear models. This implies on the optimization results
support vector machines (SVMs) with non-linear kernel. The goal is to create a model able to correctly
predict performance criteria by means of complex interactions among factors. Using the non-linear model
helps one to polish the optimization process. The settings of the optimization algorithm are updated or
the search for better solutions guided by the model predicts. This may call for revisiting candidate
responses or looking in new directions of the search. Performance criteria confirm the better results of
optimization. Should necessary, the non-linear model or the optimization strategy is modified to improve.

Pseudocode
Function Non Linear Analysis On Optimization(Optimization Results, Fitness Function, Non Linear Model,
Max Refinements):
 # Step 1: Identify Non-Linear Relationships
 Extract Features and PerformanceMetrics from OptimizationResults
 # Step 2: Model Fitting
 Train NonLinearModel using Features and PerformanceMetrics
 # Step 3: Optimization Refinement
 BestSolution = None
 BestFitness = ∞
 For refinement in range(MaxRefinements):
 # Predict performance of candidate solutions
 For each candidate in OptimizationResults:
 PredictedPerformance = NonLinearModel.Predict(candidate.features)
 # Evaluate if prediction improves performance
 If PredictedPerformance < BestFitness:

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 456 Santhosh J et al 449-459

 BestFitness = PredictedPerformance
 BestSolution = candidate
 # Update OptimizationResults based on the refined model
 OptimizationResults = UpdateResultsWithRefinedModel(BestSolution, FitnessFunction)
 # Step 4: Return Refined Best Solution
 Return BestSolution, BestFitness

4. RESULTS AND DISCUSSION
Under latency, efficiency, throughput, and computational load measures on a high-performance
computing cluster with 32 cores and 128 GB RAM, MATLAB was used to evaluate the proposed method,
which combines DeepSMote and the Ant Lion Optimizer (ALO) with non-linear analysis, under latency,
efficiency, throughput, and computational load measurements comparatively to baseline techniques. The
strategy demonstrated a 19% offloading efficiency and a 23% reduction in latency. Regarding latency
reduction and efficiency improvement, the suggested approach outperformed current methods
DRLCOSCM and HCEA-DVFS. HCEA-DVFS specifically generated a 17% latency decrease and a 14%
efficiency increase; DRLCOSCM acquired a 15% latency reduction and a 12% efficiency increase. Apart
from better performance indicators, the proposed method showed to be more flexible in dynamic
environments with unbalanced data.

Table 2: Experimental Setup/Parameters
Parameter Value
Number of Ants 50
Dimensions (Decision Variables) 10
Maximum Iterations 1000
Population Size 100
DeepSMOTE Synthetic Samples 500
Learning Rate (Deep Learning) 0.01
Number of Hidden Layers 3
Activation Function ReLU
Fitness Function Latency + Cost
α (Scaling Factor) 1.5
β (Randomness Factor) 0.1
Trap Influence Factor 0.5
Non-Linear Model Type Multi-layer Perceptron (MLP)
Maximum Refinements 50
Random Seed 42

Performance Metrics
 Latency: It calculates the time taken for the offloading process. Examining data and looking at how

quickly the system can offload tasks is incredibly crucial. Lower latency indicates faster
performance.

 Efficiency: Efficiency indicates the relative performance in terms of useful work completed against
overall work input. It assesses system resource expenditure. Greater efficiency indicates better
performance.

 Throughput: Throughput shows the offloaded or processed total data. It reveals whether the system
can efficiently control vast volumes of data.

 Computational Load: It calculates the tools required for the offloading tasks, thereby computing
load. It addresses memory and CPU utilization among other things. Reduced computational load
refers to a more economical system using resources.

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 457 Santhosh J et al 449-459

Figure 2. Latency (ms)

Figure 3. Efficiency (%)

Figure 4. Throughput (MB/s)

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 458 Santhosh J et al 449-459

Figure 5. Computational Load (CPU %)

The proposed method routinely beats current approaches (DRLCOSCM and HCEA-DVFS) over many
criteria as the number of VMs increases. In terms of latency, the suggested solution comes out to be up to
10% less than HCEA-DVFS and up to 20% less than DRLCOSCM. Faster processing times shown by this
enable task offloading to be accelerated. Reflecting better resource use, the recommended approach also
considerably increases efficiency—up to 10% higher than DRLCOSCM and up to 8% higher than HCEA-
DVFS. Emphasizing better data handling capacity, throughput increases by up to 30 MB/s over
DRLCOSCM and 20 MB/s over HCEA-DVFS. Computational burden is reduced by up to 12% suggesting a
more resource-efficient approach compared to DRLCOSCM and 8% respectively. Consequently, the
recommended method exhibits superior performance, thus it is a more effective method to manage
obligations related to big-scale cloud offloading.

5. CONCLUSION
Over current approaches including DRLCOSCM and HCEA-DVFS, integrating DeepSMote with the Ant Lion
Optimizer (ALO) and improved by non-linear analysis demonstrates considerable increases in cloud
offload efficiency. Extensive testing over many numbers of virtual machines (VMs) reveals that the
proposed approach routinely beats its predecessors in critical performance criteria. Its up to 10%
improved efficiency represents better utilization of resources; its down to 20% lower latency implies
faster work offloading and processing. Moreover showing a more efficient and less resource-intensive
solution, the recommended method reduces compute load by up to 12% and shows increased throughput
by up to 30 MB/s. These results show how effectively current techniques such DeepSMote and non-linear
analysis fit optimization algorithms. The recommended method not only improves efficiency but also fits
dynamically by means of data balancing, search algorithm optimization, and detection of complex
linkages. This makes it a strong response for maximizing cloud dumping chores as well as for offering
faster, more efficient, reasonably priced cloud computing solutions.

REFERENCES
[1] Cheng, J., Shi, Y., Bai, B., & Chen, W. (2016, May). Computation offloading in cloud-RAN based mobile

cloud computing system. In 2016 IEEE International Conference on Communications (ICC) (pp. 1-6).
IEEE.

[2] Sriramulugari, S. K., Gorantla, V. A. K., Gude, V., Gupta, K., & Yuvaraj, N. (2024, March). Exploring
mobility and scalability of cloud computing servers using logical regression framework. In 2024 2nd
International Conference on Disruptive Technologies (ICDT) (pp. 488-493). IEEE.

[3] Bi, J., Zhang, K., Yuan, H., & Zhang, J. (2022). Energy-efficient computation offloading for static and
dynamic applications in hybrid mobile edge cloud system. IEEE Transactions on Sustainable
Computing, 8(2), 232-244.

[4] Saravanan, V., Madiajagan, M., Rafee, S. M., Sanju, P., Rehman, T. B., & Pattanaik, B. (2024). IoT-based
blockchain intrusion detection using optimized recurrent neural network. Multimedia Tools and
Applications, 83(11), 31505-31526.

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 459 Santhosh J et al 449-459

[5] Liu, T., Fang, L., Zhu, Y., Tong, W., & Yang, Y. (2020). A near-optimal approach for online task
offloading and resource allocation in edge-cloud orchestrated computing. IEEE Transactions on
Mobile Computing, 21(8), 2687-2700.

[6] Dhanasekaran, S., Rajput, K., Yuvaraj, N., Aeri, M., Shukla, R. P., & Singh, S. K. (2024, May). Utilizing
Cloud Computing for Distributed Training of Deep Learning Models. In 2024 Second International
Conference on Data Science and Information System (ICDSIS) (pp. 1-6). IEEE.

[7] Du, J., Zhao, L., Feng, J., & Chu, X. (2017). Computation offloading and resource allocation in mixed
fog/cloud computing systems with min-max fairness guarantee. IEEE Transactions on
Communications, 66(4), 1594-1608.

[8] Gorantla, V. A. K., Sriramulugari, S. K., Gorantla, B., Yuvaraj, N., & Singh, K. (2024, March). Optimizing
performance of cloud computing management algorithm for high-traffic networks. In 2024 2nd
International Conference on Disruptive Technologies (ICDT) (pp. 482-487). IEEE.

[9] Li, T., Magurawalage, C. S., Wang, K., Xu, K., Yang, K., & Wang, H. (2017, June). On efficient offloading
control in cloud radio access network with mobile edge computing. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS) (pp. 2258-2263). IEEE.

[10] Choudhry, M. D., Jeevanandham, S., Sundarrajan, M., Jothi, A., Prashanthini, K., & Saravanan, V.
(2024). Future Technologies for Industry 5.0 and Society 5.0. Automated Secure Computing for
Next‐Generation Systems, 403-414.

[11] Materwala, H., Ismail, L., & Hassanein, H. S. (2023). QoS-SLA-aware adaptive genetic algorithm for
multi-request offloading in integrated edge-cloud computing in Internet of vehicles. Vehicular
Communications, 43, 100654.

[12] Khaleel, M. I. (2024). Failure-aware resource provisioning for hybrid computation offloading in
cloud-assisted edge computing using gravity reference approach. Swarm and Evolutionary
Computation, 91, 101704.

[13] Saif, F. A., Latip, R., Hanapi, Z. M., Alrshah, M. A., & Kamarudin, S. (2023). Workload Allocation
Toward Energy Consumption-Delay Trade-Off in Cloud-Fog Computing Using Multi-Objective NPSO
Algorithm. IE Access, 11, 45393-45404.

[14] Zhou, H., Wang, Z., Zheng, H., He, S., & Dong, M. (2023). Costmization-oriented computation
offloading and service caching in mobile cloud-edge computing: An A3C-based approach. IE
Transactions on Network Science and Engineering, 10(3), 1326-1338.

[15] Chen, M., Qi, P., Chu, Y., Wang, B., Wang, F., & Cao, J. (2024). Genetic Algorithm with Skew Mutation
for Heterogeneous Resource-aware Task Offloading in Edge-Cloud Computing. Heliyon.

[16] Li, Z., Yu, H., Fan, G., Zhang, J., & Xu, J. (2024). Energy-efficient offloading for DNN-based applications
in edge-cloud computing: A hybrid chaotic evolutionary approach. Journal of Parallel and Distributed
Computing, 187, 104850.

