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ABSTRACT 
Managing and processing enormous volumes of data depends on cloud computing, which has evolved into 
a fundamental instrument. Effective cloud offloading methods determine both reduced latency and 
optimization of computer resources. Deep SMote, a modified Synthetic Minority over-sampling technique, 
and the Ant Lion Optimizer (ALO) are rising as possible methods for raising cloud offloading efficiency. 
Particularly in dynamic environments with imbalanced datasets, conventional cloud offloading methods 
can find it difficult to balance compute load with mizing latency. Current approaches cannot sufficiently 
solve the challenges given by high-dimensional data and the complex complexity of offloading decisions. 
This paper proposes a combination approach to increase cloud offloading efficacy by use of the Ant Lion 
Optimizer and Deep SMote. Deep Smote generates synthetic samples for balancing unbalanced datasets, 
therefore improving the quality of the input data for optimization. Inspired by nature, the Ant Lion 
Optimizer develops a metaheuristic leading to optimal offloading methods. Techniques of non-linear 
analysis enable fit to complex data patterns and aid to enhance the optimization process. The proposed 
approach clearly surpasses accepted knowledge. Numerical studies show a 23% drop in latency and an 
increase in offloading efficiency by 19% compared to baseline techniques. Moreover, using the approach 
increases general system throughput by 15%. These results show how well DeepSMote and ALO coupled 
with non-linear analysis tackle cloud offloading issues. 
 
Keywords: Cloud offloading, DeepS MOTE, Ant Lion Optimizer, non-linear analysis, optimization. 
 
INTRODUCTION 
In cloud computing, work offloading and effective use of resources define most of the improvement in 
system speed and user experience [1]. Commonly difficult in cloud systems is managing several virtual 
machines (VMs) housing different applications and services [2]. Effective offloading methods can 
significantly raise system performance including latency, efficiency, throughput, and processing load [3]. 
Regarding the explosion of data and applications, traditional methods struggle to satisfy the rising needs 
and complexity of cloud systems [4]. 
Dealing with the dynamic and diverse character of cloud environments provides the main challenge in 
cloud offloading [5]. Dealing with the distribution of computational tasks becomes progressively more 
challenging as the VMs increase [6]. Sometimes insufficient standard optimization techniques are used to 
handle unbalanced data, non-linear relationships, and the great complexity of optimization areas [7]. 
Moreover, the inclusion of modern algorithms into present systems poses significant difficulties to 
maintain performance and efficiency [8]. 
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The basic problem of inefficiencies in current cloud offloading systems resulting to low efficiency, high 
latency, and too heavy computational burden is aimed to be solved by this work [9]. Although present 
methods such as DRLCOSCM and HCEA-DVFS provide some solutions, they do not fully manage the 
complexity of modern cloud systems [10]. They especially find it challenging to mix real-time computing 
activities in real-time with evolving loads, therefore causing resource waste and performance loss [11]. 
The primary objectives of this research are: 
1. To design a superior cloud offloading scheme optimizing computing load, reducing latency, and 

raising efficiency. 
2. To increase performance criteria by applying creative data balancing techniques and metaheuristic 

optimization strategies. 
3. To record complex interactions and enhance optimization results using non-linear analysis. 
This study is novel in that it combines the Ant Lion Optimizer (ALO) with augmented non-linear analysis 
DeepSMote. DeepSMote handles data imbalance; ALO provides a metaheuristic approach to maximize 
methods of work offloading. Non-linear analysis enables even more improvement of existing methods by 
simulating complex, non-linear interactions between variables. This combination of methods is fresh 
since it provides a whole solution for the limitations of present techniques. 
Contributions: 
1. The work offers a novel optimization structure combining ALO, Deep SMote, and non-linear analysis. 

This hybrid approach exceeds the limits of traditional methods by effectively balancing data, 
allocating resources, and modeling complex interactions. 

2. Key performance measures—including latency, efficiency, throughput, and computational load—
show clear improvements in the recommended strategy. Empirical investigations show, compared to 
present methods, up to 20% drop in latency and 10% increase in efficiency. 

3. The method improves general system performance, efficiently manages several loads, and 
demonstrates tremendous flexibility in dynamic cloud systems. 

 
2. RELATED WORKS 
The QoS-SLA-Aware Adaptive Genetic Algorithm (QoS-SLA-AGA) addresses the optimizing of application 
execution time problem in heterogeneous edge-cloud computing systems. It deals with multi-request 
unloading with an attention toward dynamic elements such truck speed and request overlaps. This 
approach combines an adaptive penalty function to control Service Level Agreement (SLA) constraints 
like latency, processing time, deadlines, CPU, and memory requirements. Particle Swarm Optimization 
(PSO), random offloading, All Edge Computing (AEC), and All Cloud Computing (ACC) all baseline 
strategies are ranked numerically by QoS-SLA-AGA as outperforming. It performs remarkably with 
reduced SLA breaches and up to 9.41 times faster execution. Underlined in this work is the requirement 
of adding SLA limitations into optimization strategies to guarantee better application performance and 
compliance with service agreements [11]. 
This paper proposes a new hybrid integer multi-objective dynamic decision-making approach enhanced 
with the gravity reference point method. This approach chooses the proper computation ratio between 
cloud and edge servers. More rapidly convergence speed and accuracy of the whale optimization method 
depends on using the gravitational potential reference point and crowding degrees. This hybrid model 
eliminates the limitations of traditional whale algorithms, which rely on random randomness and varied 
foraging tactics. All of which demonstrate substantial rise include time delay, energy efficiency, 
dependability, quality of service, distributor throughput, asset availability, guarantee ratio. The approach 
underlines improvements in balancing computational loads and optimizing resource consumption in the 
cloud-edge paradigm, therefore addressing both efficiency and dependability problems [12][13]. 
Deep Reinforcement Learning-based Computation Offloading and Service Caching Mechanism 
(DRLCOSCM) DRLCOSCM solves the Mixed Integer Non-Linear Programming (MINLP) problem using an 
Asynchronous Advantage Actor-Critic (A3C)-based method, concentrated on improving offloading 
decisions, service caching, and resource allocation techniques tomize costs and fulfill latency 
requirements. This approach addresses challenging optimization problems in cloud-edge systems by 
offering efficient solutions for cost and delay minimization. Simulation studies showing DRLCOSCM 
greater performance over conventional methods emphasize the efficiency of deep reinforcement learning 
in managing difficult, multifarious optimization challenges in edge-cloud systems [14]. 
We solve the NP-hard job scheduling problem in edge-cloud systems by use of a genetic algorithm (GA). 
The proposed GA-based scheduling system maximizes both task completion rate and resource utilization. 
It offers a skew mutation operator to manage resource heterogeneity brought about by population 
growth. Extensive investigations show that the GA-based approach performs better than thirteen classical 
and modern scheduling techniques in task completion rate. This work emphasizes the way evolutionary 
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algorithms handle difficult scheduling problems and improve performance criteria in heterogeneous 
edge-cloud systems [15]. 
Combining diversification and intensification methods with Dynamic Voltage Frequency Scaling (DVFS) 
the hybrid chaotic evolutionary algorithm (HCEA) maximizes computational efficiency and energy use. 
HCEA improves search capability and avoids early convergence by means of Archimedes Optimization 
Algorithm-based diversification and Genetic Algorithm-based chaotic intensification. The HCEA-DVFS 
variation even reduces energy usage by dynamically varying frequency levels and reallocating deep 
neural network (DNN) layers. Experimental results reveal that HCEA-DVFS uses far less energy than other 
approaches including PSO-GA and Greedy. This work underlines the benefits of merging chaos-based 
algorithms with energy-efficient techniques to maximize performance in deep learning applications [16]. 

Table 1: Comparison 
Method Algorithm Methodology Outcomes 
QoS-SLA-Aware 
Adaptive Genetic 
Algorithm (QoS-SLA-
AGA) 

Genetic Algorithm 
(GA) 

Integrates an adaptive 
penalty function for SLA 
constraints, considering 
latency, processing time, 
and resource requirements. 

Requests executed 1.04 
to 9.41 times faster; 
fewer SLA violations 
(up to 80.42% 
reduction). 

Hybrid Integer Multi-
Objective Dynamic 
Decision-Making 
Approach 

Whale 
Optimization 
Algorithm (WOA) 

Uses gravity reference 
points and crowding 
degrees to enhance foraging 
behavior and convergence 
speed. 

Time latency improved 
by 76.45%; energy 
efficiency increased by 
63.12%. 

Deep Reinforcement 
Learning-Based 
Computation Offloading 
and Service Caching 
Mechanism (DRLCOSCM) 

Asynchronous 
Advantage Actor-
Critic (A3C) 

Formulates optimization as 
an MINLP problem; solves 
with A3C algorithm for 
offloading, caching, and 
resource allocation. 

Superior performance 
in cost and 
delaymization 
compared to traditional 
methods. 

Genetic Algorithm for 
Task Scheduling in Edge-
Clouds 

Genetic Algorithm 
(GA) 

Optimizes task scheduling 
using skew mutation 
operator to handle resource 
heterogeneity. 

Outperforms thirteen 
other algorithms in task 
completion rate. 

Hybrid Chaotic 
Evolutionary Algorithm 
(HCEA) and HCEA-DVFS 

Chaotic 
Evolutionary 
Algorithm (CEA) 

Combines diversification 
(Archimedes Optimization) 
and intensification (Genetic 
Algorithm) with DVFS. 

Energy consumption 
reduced by up to 
19.38% compared to 
other methods. 

 
Current methods may overlook the dynamic character of cloud-edge environments and the interplay 
among overlapping multi-requests. They also sometimes overlook preemptive application characteristics, 
therefore wasting energy and resources. Integrated solutions assuring both high performance and energy 
economy not only maximize work offloading but also dynamically adjust to match heterogeneous 
situations and changing loads. Solving these gaps will provide more robust and powerful cloud-edge 
computing platforms. 
 
3. PROPOSED METHOD 
In this section, combining DeepSMote with the Ant Lion Optimizer (ALO) with non-linear analysis 
techniques helps to increase cloud offloading efficiency. The process is carried out in the next phases as in 
figure 1: 
 

 
(a) 

1.Data Preparation 
with DeepSMOTE

1.Optimization with 
Ant Lion Optimizer

Non-Linear Analysis
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(b) 

Figure 1. Proposed Framework 
 

1. Data Preparation with DeepSMOTE: Deep SMote data preparation begins, one could say, with 
pretreatment of the dataset required for offloading choices. This approach generates synthetic 
samples for minority classes in an imbalanced dataset, therefore improving the dataset 
representativeness and guaranteeing a balanced training set for optimization. 

2. Optimization with Ant Lion Optimizer: Preprocessing produces, for the Ant Lion Optimizer, a 
balanced dataset. The ALO is investigated and applied for best offloading methods in the solution 
space. The optimizer models predatory activities of ant lions to maximize trade-offs between 
computation load and latency. 
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3. Non-Linear Analysis: Still additional improvement in the optimization process is achieved using 
non-linear analysis techniques. By use of non-linear models, data pattern analysis and optimization 
result optimization assist one to change and improve the optimization outcomes. 

 
Pseudocode 
Function Cloud Off loading Enhancement(Data, Parameters): 
    # Step 1: Data Preparation 
    Balanced Data = DeepSMOTE(Data) 
    # Step 2: Initialize Ant Lion Optimizer 
    Initialize ALO with Parameters 
    # Step 3: Optimization Process 
    For each iteration in ALO: 
        Generate potential offloading strategies 
        Evaluate strategies using Balanced Data 
        Update best strategy based on performance metrics 
    # Step 4: Non-Linear Analysis 
    Analysis Results = Non Linear Analysis(Best Strategy) 
    # Step 5: Evaluation and Adjustment 
    Evaluate performance of Best Strategy 
    If necessary, adjust strategy to improve metrics 
    Return Best Strategy, Performance Metrics 
 
3.1. Data Preparation with DeepSMOTE 
DeepSMote is a synthetic sample producing advanced technique to handle skewed datasets. It expands 
the traditional SMote (Synthetic Minority over-sampling Technique) method using deep learning, 
therefore enhancing the synthetic data quality. 
1. Data Analysis and Preprocessing:  

Analyzing the original dataset  1 2, ,..., nX x x x  with 
d

ix  helps one to identify the minority and 

majority classes in preprocessing and data analysis. Assuming dis the feature dimension shows the 
original data with. Less cases than the majority class define the minority class samples. 
2. Generating Synthetic Samples:  
Using a deep learning model generally a neural network, DeepSMote learns the data distribution of the 
minority class. The intention is to generate synthetic samples more like real minority class samples than 
exactly reproductions. One gets at this by applying these rules: 
 Model Training: The model captures complex patterns inside the minority class data by means of 

minority class sample training for a neural network model learning to translate the input features xi 
to a higher-dimensional feature space. 

 Sample Generation: After training, the model generates synthetic examples xnewby interpolating 
among present minority class data. Here let assume two minority class samples xi and xj. Synthetic 
sample xnewcreated looks like this: 

( )new i j ix x x x     

where  
λ -random number, introducing variability in the synthetic samples. 
3. Augmenting the Dataset:  
Deep SMote creates synthetic samples for inclusion into the original dataset. This addition increases the 
representation of the minority class so balancing the dataset. Let Xb represent the equally spaced dataset: 

1 2{ , ,..., }b o new new newkX X x x x   

where  
k- number of synthetic samples generated. 
The balanced dataset Xb then helps training and evaluation of machine learning models. One expects to 
improve the model performance on minority class projections by addressing class imbalance. Using deep 
learning, DeepSMote creates outstanding synthetic samples to enhance traditional SMote. Increasing the 
representation of minority class examples balances the dataset therefore improving the performance of 
subsequent machine learning models. 
 
Pseudocode 1: Data Preparation with DeepSMOTE  
Function DeepSMOTE(Data, MinorityClass, MajorityClass, NumberOfSyntheticSamples): 
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    # Step 1: Data Analysis and Preprocessing 
    Identify MinorityClassSamples from Data 
    Identify MajorityClassSamples from Data 
    # Step 2: Model Training 
    Initialize Deep Learning Model 
    Train Model using MinorityClassSamples 
    # Step 3: Generate Synthetic Samples 
    SyntheticSamples = [] 
    For each sample in MinorityClassSamples: 
        # Generate synthetic samples for each minority class sample 
        For i in range(NumberOfSyntheticSamples per sample): 
            # Randomly select another minority class sample 
            NeighborSample = RandomlySelect(MinorityClassSamples excluding current sample) 
            # Interpolate between the current sample and the neighbor 
            Lambda = RandomFloat(0, 1) 
            SyntheticSample = sample + Lambda * (NeighborSample - sample) 
            # Append the synthetic sample to the list 
            Append SyntheticSample to SyntheticSamples 
    # Step 4: Augment the Dataset 
    BalancedDataset = Data 
    Add SyntheticSamples to BalancedDataset 
    Return BalancedDataset 
 
Optimization with Ant Lion Optimizer (ALO) 
Inspired by the predatory behavior of ant lions—which catch ants by laying traps in the sand—this 
metaheuristic Ant Lion Optimizer (ALO) searches and uses the search space efficiently in order to address 
optimization difficulties. ALO runs here optimizing methods of cloud offloading: 

The approach begins with a population of possible answers—that of ants  1 2, ,..., nP p p p initally. 

Every ant location inside the search area corresponds to a feasible offloading method. Assume the 
population of ants, where pi denotes the i-th ant's position in the decision space. Every ant position is 
evaluated in compliance with a fitness criteria representing the quality of the offloading approach. The 
fitness function f(pi) is intended to assess among performance factors latency and efficiency.  

( ) Latency( ) Cost( )i i if p p p   

where Latency( )ip and Cost( )ip  - performance metrics related to the offloading strategy. 

Ant lions are selected from the best ants—that which mirror good solutions. These ant lions catch other 
ants by restricting the search area. Every ant lion lj creates a trap based on the suitable location found: 

Trap
jl bestp  

where bestp - position of the ant with the best fitness value. 

The traps the ant lions invented draw ants. The equation below defines this movement and modulates the 
position of every ant: 

( ) (rand 0.5)new

i i best ip p p p         

where  
α - scaling factor,  
β - randomness, and  
rand - random number between 0 and 1. 
Position updates calculate the fitness of every ant. New finest solutions direct improvements for ant lions 
and their traps. The process continues until a stopping criterion, such maximum number of iterations, is 
satisfied. The best response found comes from retaken from the optimization process. This method of 
offloading is the best one to optimize effectiveness and reduce delay. 
 
Pseudocode 2: Optimization with Ant Lion Optimizer (ALO): 
Function AntLionOptimizer(PopulationSize, Dimensions, MaxIterations, FitnessFunction): 
    # Step 1: Initialization 
    Initialize Ants with random positions in search space 
    Initialize AntLions as empty 
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    BestSolution = None 
    BestFitness = ∞ 
    # Step 2: Main Optimization Loop 
    For iteration in range(MaxIterations): 
        # Evaluate fitness of each ant 
        For each ant in Ants: 
            Fitness = FitnessFunction(ant.position) 
            If Fitness < BestFitness: 
                BestFitness = Fitness 
                BestSolution = ant.position 
        # Update AntLions with the best ants 
        AntLions = SelectBestAnts(Ants) 
        # Create traps based on AntLions 
        For each antLion in AntLions: 
            Trap = antLion.position 
            # Update positions of ants 
            For each ant in Ants: 
                # Move ant towards the trap 
                RandomFactor = RandomFloat(-0.5, 0.5) 
                ant.position = ant.position + α * (Trap - ant.position) + β * RandomFactor 
                # Ensure ant is within the search space bounds 
                ant.position = ClipPosition(ant.position) 
        # Optional: Update AntLions with new best positions if needed 
        UpdateAntLions(Ants, AntLions) 
    # Step 3: Return Best Solution 
    Return BestSolution, BestFitness 
 
3.3. Non-Linear Analysis on Optimization 
Non-linear analysis enhances the optimizing process by addressing complex, non-linear interactions in 
data that traditional approaches could overlook. By means of non-linear analysis, complicated patterns 
can be identified and decision-making enhanced in optimizing cloud offloading strategies, hence 
improving the results obtained by means of algorithms as the Ant Lion Optimizer (ALO). First, one looks 
at the optimization results in order to identify non-linear connections between variables. Cloud offloading 
performance measurements, for example, might not have a clear linear link with choice criteria. We 
capture these connections using non-linear models, comprising polyn poisson regressions or neural 
networks. Designed for the ALO data, are non-linear models. This implies on the optimization results 
support vector machines (SVMs) with non-linear kernel. The goal is to create a model able to correctly 
predict performance criteria by means of complex interactions among factors. Using the non-linear model 
helps one to polish the optimization process. The settings of the optimization algorithm are updated or 
the search for better solutions guided by the model predicts. This may call for revisiting candidate 
responses or looking in new directions of the search. Performance criteria confirm the better results of 
optimization. Should necessary, the non-linear model or the optimization strategy is modified to improve. 
 
Pseudocode 
Function Non Linear Analysis On Optimization(Optimization Results, Fitness Function, Non Linear Model, 
Max Refinements): 
    # Step 1: Identify Non-Linear Relationships 
    Extract Features and PerformanceMetrics from OptimizationResults 
    # Step 2: Model Fitting 
    Train NonLinearModel using Features and PerformanceMetrics 
    # Step 3: Optimization Refinement 
    BestSolution = None 
    BestFitness = ∞ 
    For refinement in range(MaxRefinements): 
        # Predict performance of candidate solutions 
        For each candidate in OptimizationResults: 
            PredictedPerformance = NonLinearModel.Predict(candidate.features) 
            # Evaluate if prediction improves performance 
            If PredictedPerformance < BestFitness: 
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                BestFitness = PredictedPerformance 
                BestSolution = candidate 
        # Update OptimizationResults based on the refined model 
        OptimizationResults = UpdateResultsWithRefinedModel(BestSolution, FitnessFunction) 
    # Step 4: Return Refined Best Solution 
    Return BestSolution, BestFitness 
 
4. RESULTS AND DISCUSSION 
Under latency, efficiency, throughput, and computational load measures on a high-performance 
computing cluster with 32 cores and 128 GB RAM, MATLAB was used to evaluate the proposed method, 
which combines DeepSMote and the Ant Lion Optimizer (ALO) with non-linear analysis, under latency, 
efficiency, throughput, and computational load measurements comparatively to baseline techniques. The 
strategy demonstrated a 19% offloading efficiency and a 23% reduction in latency. Regarding latency 
reduction and efficiency improvement, the suggested approach outperformed current methods 
DRLCOSCM and HCEA-DVFS. HCEA-DVFS specifically generated a 17% latency decrease and a 14% 
efficiency increase; DRLCOSCM acquired a 15% latency reduction and a 12% efficiency increase. Apart 
from better performance indicators, the proposed method showed to be more flexible in dynamic 
environments with unbalanced data. 
 

Table 2: Experimental Setup/Parameters 
Parameter Value 
Number of Ants 50 
Dimensions (Decision Variables) 10 
Maximum Iterations 1000 
Population Size 100 
DeepSMOTE Synthetic Samples 500 
Learning Rate (Deep Learning) 0.01 
Number of Hidden Layers 3 
Activation Function ReLU 
Fitness Function Latency + Cost 
α (Scaling Factor) 1.5 
β (Randomness Factor) 0.1 
Trap Influence Factor 0.5 
Non-Linear Model Type Multi-layer Perceptron (MLP) 
Maximum Refinements 50 
Random Seed 42 

 
Performance Metrics 
 Latency: It calculates the time taken for the offloading process. Examining data and looking at how 

quickly the system can offload tasks is incredibly crucial. Lower latency indicates faster 
performance. 

 Efficiency: Efficiency indicates the relative performance in terms of useful work completed against 
overall work input. It assesses system resource expenditure. Greater efficiency indicates better 
performance. 

 Throughput: Throughput shows the offloaded or processed total data. It reveals whether the system 
can efficiently control vast volumes of data. 

 Computational Load: It calculates the tools required for the offloading tasks, thereby computing 
load. It addresses memory and CPU utilization among other things. Reduced computational load 
refers to a more economical system using resources. 
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Figure 2. Latency (ms) 

 

 
Figure 3. Efficiency (%) 

 

 
Figure 4. Throughput (MB/s) 
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Figure 5. Computational Load (CPU %) 

 
The proposed method routinely beats current approaches (DRLCOSCM and HCEA-DVFS) over many 
criteria as the number of VMs increases. In terms of latency, the suggested solution comes out to be up to 
10% less than HCEA-DVFS and up to 20% less than DRLCOSCM. Faster processing times shown by this 
enable task offloading to be accelerated. Reflecting better resource use, the recommended approach also 
considerably increases efficiency—up to 10% higher than DRLCOSCM and up to 8% higher than HCEA-
DVFS. Emphasizing better data handling capacity, throughput increases by up to 30 MB/s over 
DRLCOSCM and 20 MB/s over HCEA-DVFS. Computational burden is reduced by up to 12% suggesting a 
more resource-efficient approach compared to DRLCOSCM and 8% respectively. Consequently, the 
recommended method exhibits superior performance, thus it is a more effective method to manage 
obligations related to big-scale cloud offloading. 
 
5. CONCLUSION 
Over current approaches including DRLCOSCM and HCEA-DVFS, integrating DeepSMote with the Ant Lion 
Optimizer (ALO) and improved by non-linear analysis demonstrates considerable increases in cloud 
offload efficiency. Extensive testing over many numbers of virtual machines (VMs) reveals that the 
proposed approach routinely beats its predecessors in critical performance criteria. Its up to 10% 
improved efficiency represents better utilization of resources; its down to 20% lower latency implies 
faster work offloading and processing. Moreover showing a more efficient and less resource-intensive 
solution, the recommended method reduces compute load by up to 12% and shows increased throughput 
by up to 30 MB/s. These results show how effectively current techniques such DeepSMote and non-linear 
analysis fit optimization algorithms. The recommended method not only improves efficiency but also fits 
dynamically by means of data balancing, search algorithm optimization, and detection of complex 
linkages. This makes it a strong response for maximizing cloud dumping chores as well as for offering 
faster, more efficient, reasonably priced cloud computing solutions. 
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