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ABSTRACT 
In the fast changing terrain of Industrial Internet of Things (IIoT), predictive accuracy is very vital to 
maximize operations, reduce downtime, and increase process optimization. Typical prediction models, on 
high-dimensional data, however, may fail, leading to less than perfect accuracy and performance. 
Together with non-linear analysis, this paper examines the mix of T-Distributed Stochastic Neighbour 
Embedding (t-SNE) and the Jaguar approach to increase prediction accuracy in IIoT systems so 
addressing this problem. Managing complex, non-linear interactions present in IIoT data presents the 
main difficulty. While conventional methods may fail in the complicated patterns prevalent to IIoT 
systems, they operate well in linear conditions. This paper proposes a new approach whereby t-SNE is 
employed for dimensionality reduction, therefore retaining the local structure of data and so minimizing 
the curse of dimensionality. Then the prediction model is refined using a nature-inspired optimization 
technique called the Jaguar algorithm, hence improving its flexibility in the face of data non-linearities. 
The proposed method was evaluated on a comprehensive IIoT dataset and shown to yield appreciable 
expected accuracy gain. The model especially outperformed traditional methods such Genetic Algorithms 
(GA) and Principal Component Analysis (PCA), which generated accuracies of 87.3% and 89.1%, 
respectively, with an accuracy of 94.8%. Moreover proving its ability to handle complex IIoT data, the 
proposed approach showed a 10.3% increase in precision and a 12.5% increase in recall. 
 
Keywords: IIoT,t-SNE, Jaguar algorithm, non-linear analysis, prediction accuracy 
 
1. INTRODUCTION 
The Industrial Internet of Things (IIoT) signals a radical change in manufacturing and industrial 
operations as it combines modern sensors, connectivity, and data analytics to increase operational 
efficiency and decision-making [1,2]. In IIoT systems for equipment failure prediction, production process 
optimization, and general system dependability augmentation, predictive analytics is critically 
indispensable [3]. Mostly of the time, the intricacy and non-linearities of large-scale industrial data 
confound conventional forecasting methods [4]. 
Among the primary challenges in IIoT prediction tasks is controlling the high-dimensional and dynamic 
character of the data [5]. From sensors, actuators, and control systems among other sources, industrial 
systems produce vast amounts of data [6]. Many times noisy, missing, and displaying intricate non-linear 
correlations is this data [7]. Conventional predictive models—such as simple neural networks or linear 
regression—may not be able to sufficiently capture these complexity, thereby generating less than ideal 

mailto:jeyaselm@srmist.edu.in
mailto:vijayagopal1976@gmail.com
mailto:ppadivarekar@apsit.edu.in
mailto:swati.nadgaundi@bvcoenm.edu.in
mailto:vstnarayana@gmail.com
mailto:gkalra89@gmail.com


Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 437                                                                 M. Jeyaselvi et al 436-448 

outcomes [8]. Moreover, optimizing these models requires sophisticated approaches that balance 
computational economy with accuracy, hence lowering overfitting and underfitting issues [9]. 
By means of overcoming present methodologies, predictive models for IIoT systems will become more 
accurate and efficient, so addressing the basic problem of this research [10]. The aim is to develop a new 
strategy able to control non-linear data interactions and achieve greater predictive performance than 
standard approaches. Especially the focus is on combining dimensionality reduction, advanced 
optimization methodologies, and non-linear analysis to raise model correctness and durability [11]. 
The objectives of the proposed work include: 
 To create a model able to effectively show the complex, non-linear relationships in IIoT data. 
 To carefully change model parameters for maximum expected accuracy using modern optimizing 

techniques 
 To develop a model that operates consistently over several data sets—training, testing, validation 

included. 
 By means of a comparison between the recommended technique and accepted procedures, to 

demonstrate its improved performance and practical advantages. 
Combining several unique features, the proposed approach solves the challenges of IIoT prediction jobs. 
First it effectively reduces advanced dimensionality by employing T-Distributed Stochastic Neighbour 
Embedding (t-SNE), so capturing the non-linear structure of high-dimensional data. Second it provides 
the Jaguar Algorithm for optimisation, a novel approach combining exploration and exploitation 
strategies to raise model correctness and efficiency. Thirdly, the method considers regularization to avoid 
over fitting and complex data interactions using a non-linear objective function. 
The contributions of the proposed work include: 
 By use of t-SNE, the proposed method greatly reduces the dimensionality of complex IIoT data while 

preserving crucial non-linear correlations, hence improving the model performance. 
 Using the Jaguar Algorithm provides a strong optimization structure that increases the capacity of 

the model to recognize optimal solutions in complex parameter ranges. 
 More accurate evaluation of model performance made feasible by the mix of non-linear objective 

functions produces better predicted accuracy. 
 
2. RELATED WORKS 
Predictive analytics is essential in modern industrial settings if we are to improve operational efficiency 
and lower downtime by way of maintenance process optimization. One sensible strategy is to mix 
Industrial Internet of Things (IIoT) with Machine Learning (ML) techniques. This combination uses real-
time data from IIoT devices to predict equipment failures and optimizes maintenance schedules. Four 
distinct ML models for predictive maintenance are used in [12] to evaluate this mix. Emphasizing the 
significance of selecting the appropriate model, the research stresses the need of accurate and consistent 
forecasts to reduce costly downtime and raise equipment lifetime. By means of a thorough analysis of 
several models, the research underlines the importance of model selection and provides a foundation for 
next advancements in predictive maintenance approaches in commercial settings. 
Energy efficiency is a critical concern in IIoT systems particularly for sensor nodes functioning 
continuously in industrial environments. Aiming for reduced data transfer to reduce energy consumption, 
current study [13] presents an energy-efficient IIoT architecture. Suggesting a deep learning model, DC-
MLP, the work uses a deep concatenation technique to increase prediction performance and efficiency. 
The study reveals a 33% drop in energy consumption when using six performance criteria and changing 
the sample rate when compared to standard data transmission technologies. With an 81% faster 
prediction time as well, the DC-MLP model demonstrates how effectively it blends energy economy with 
consistent data forecasts. This approach addresses the twin challenges of maximizing energy use in 
Internet of Things devices and keeping great forecast accuracy. 
In IIoT systems, security is quite important considering the possible risks of cyber-attacks. The main 
focus of a research is developing high-accuracy intrusion detection techniques for IIoT systems [14]. The 
research shows an incredible accuracy of 100% confirming the efficiency of PSO and PCA in recognizing 
and lowering security problems when combined with MARS. Reducing latency and improving real-time 
detection capacity helps the model's quantization and implementation on Azure IoT Edge to aid to further 
improve its performance. 
In IIoT environments including temporally linked channel fading, accurate signal assessment is absolutely 
vital. Research [15] points to a deep learning (DL) model based strategy for estimating complex-valued 
Gaussian signals. The framework consists in two phases: first linear minimum mean square error (MMSE) 
estimate of source signals; then, DL-aided channel fading state estimation and prediction. In this paper we 
assess three DL models: Temporal Convolution Network (TCN), Long Short-Term Memory (LSTM) 
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integrated DNN, and Fully Connected Deep Neural Network (DNN). Extensive simulations reveal that 
these models predict channel fading states accurately with reasonable accuracy in relation to genie-aided 
approaches. This work increases signal estimate in IIoT environments by managing demanding channel 
circumstances using advanced DL techniques. 
Effective feature selection will help to improve intrusion detection system accuracy in IIoT networks. In a 
recent work [16] a novel feature selection algorithm, FGOA-kNN, is introduced by merging hybrid filter 
and wrapper approaches with clustering and the Grasshopper Optimization Algorithm (GOA). Combining 
unsupervised and supervised techniques this approach increases feature relevance and detection 
accuracy. Moreover applied to optimize neural network hyperparameters for efficient botnet 
identification is the Harris Hawks Optimization (HHO) technique. In IIoT systems, feature selection and 
advanced optimization techniques taken together significantly improve intrusion detection's accuracy 
and durability. 
 

Table 1. Methods, Algorithms, Methodologies, and Outcomes 
Method Algorithm Methodology Outcomes 
Predictive 
Maintenance[
12] 

Various ML 
Models 

Combination of ML 
techniques with IIoT; 
evaluation of model 
performance for 
predictive maintenance. 

Identified most effective ML model for 
predictive maintenance; highlighted 
the importance of model selection to 
reduced own time and extend 
equipment life span. 

Energy-
Efficient IIoT 
Architecture[
13] 

DC-MLP Deep learning-based 
prediction model; 
optimization of data 
transmission for energy 
efficiency. 

Achieved 33% reduction in energy 
consumption and 81% faster 
prediction times compared to 
traditional methods; improved sensor 
node life time and efficiency. 

Intrusion 
Detection[14] 

PSO,PCA,LDA,t-
SNE,GAM,MARS 

Features election and 
reduction techniques; 
deployment of ML 
models for intrusion 
detection in IIoT. 

Achieved 100% accuracy indetecting 
intrusions; reduced latency through 
model quantization; improve dreal-
time detection capabilities. 

Signal 
Estimation[1
5] 

DNN,LSTM,TCN DL-aided estimation of 
channel fading and 
source signals; linear 
MMSE estimation. 

Achieved similar accuracy inpredicting 
channel fading states; demonstrated 
effective signal estimation incomplex 
IIoT environments. 

Feature 
Selection and 
Intrusion 
Detection[16] 

FGOA-kNN, HHO Hybrid feature selection 
algorithm combined with 
clustering and 
optimization techniques 
for botnet detection. 

Improved detection accuracy for 
multiclass botnet attacks; enhanced 
robustness and accuracy in intrusion 
detection through advanced feature 
selection and optimization. 

 
Among the many IIoT subjects under ongoing research are predictive maintenance, energy efficiency, 
security, and signal estimation. Still, there is a lack of integrated approaches combining simultaneous 
handling of all these aspects with modern non-linear analysis and optimization methods. While present 
methods occasionally focus on specific elements or problems, they do not provide a full framework 
incorporating several elements. To improve general IIoT performance and correctly manage freshly 
developing industrial challenges, comprehensive models incorporating cutting-edge optimization 
techniques, increased dimensionality reduction, and non-linear analysis are needed. 
 
3. PROPOSED METHOD 
Combining T-Distributed Stochastic Neighbour Embedding (t-SNE) and the Jaguar algorithm, with non-
linear analysis, the proposed method intends to increase prediction accuracy in Industrial Internet of 
Things (IIoT) systems. First in data preparation, raw IIoT data is cleaned and standardized, therefore 
initiating the process. Then dimensionality reduction maintains local structure and relationships within 
the data by translating high-dimensional input data into a lower-dimensional space using t-SNE. This 
phase reduces dimensionality's curse and raises next modeling's efficiency. The Jaguar algorithm, a 
nature-inspired optimization technique, then is used to modify the prediction model by methods of 
parameter optimization such as to better capture non-linear patterns in the restricted data. Applying non-
linear analysis all around analyzes and changes the performance of the model to ensure it fits the 
complicated relations in the data. 
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Figure 1. Proposed System 

 
Pseudocode 
1.Preprocess Data: 
-Load raw IIoT data 
-Clean and normalize data 
2.Applyt-SNE: 
-Initializet-SNE with desired parameters (e.g.,perplexity,learningrate) 
-Fitt-SNE on preprocessed data 
-Transform data into lower-dimensional space 
3.Optimize Model with Jaguar Algorithm: 
-Initialize Jaguar algorithm with model parameters 
-Define objective function for model performance 
-Perform optimization to adjust parameters for improved accuracy 
-Output optimized model 
4.Perform Non-Linear Analysis: 
-Assess the model’s performance with non-linear metrics 
-Adjust model based on non-linear analysis results 
5.EvaluateModel: 
-Test model on validation data sets 
-Measure and record accuracy, precision, recall, F1score,etc. 
 
3.1. Data Preprocessing 
Data preparation is a basic first stage; aimed at ready IIoT data for further research, Multiple substeps in 
this process define data cleansing, normalization, and feature extraction. Every one of these steps is 
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required to ensure the dependability and quality of the input data, therefore influencing the predictive 
model performance. 
 
3.1.1.Data Cleaning 
Data cleaning is the treatment of outliers, missing numbers, and dataset noise. Given that IIoT data 
sometimes comes from multiple sensors and sources, it can include erroneous or partial records. 

1
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ix - imputed value for a missing data point, and 

jx - nearest neighbors used for imputation. 

Techniques for Z-score normalization or inter quartile range (IQR) can help locate and either adjust or 
remove outlier values: 
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Where 

iz - z-score, 

ix - data point, 

μ -mean, and 
σ –standard deviation. 
 
3.1.2.Normalization 
Usually depending on the kind of the data, normalizing the data to a specified range—usually [0, 1] or [-1, 
1] follows cleaning. Working with algorithms such t-SNE and the Jaguar method depends on this stage 
since it guarantees that every feature equally helps the performance of the model. Usually followed is the 
Min-Max normalization approach: 
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Where 

ix - normalized value, 

ix - original value, and 

min( )x and max( )x - minimum and maximum feature values, respectively. 

 
3.1.3.Feature Extraction and Selection 
Turning unprocessed data into a collection of features better representing the underlying structure is the 
process of feature extraction. For IIoT data, this can include time-domain properties such mean, variance, 
and skewness—or frequency-domain properties including spectral entropy. Next is feature selection, in 
this case duplicate or meaningless features are removed to reduce dimensionality and improve model 
performance. One can achieve this by computing feature significance scores or by using approaches 
including Principal Component Analysis (PCA). The last preprocessed dataset is ready for the 
dimensionality reduction process by T-SNE. For the following modeling phase, data preparation 
generates, perfect for the IIoT data, a neat, normalized, and small representation. 
 
3.2. t-SNE for Dimensionality Reduction 
Using t-SNE in the proposed method seeks to reduce the dimensionality of the data while preserving the 
local structure, therefore enabling the detection of patterns and links essential for accurate forecasts. 
 
3.2.1.High-Dimensional Data Representation 
Many times spanning several aspects, IIoT data produces a high-dimensional space. The curse of 
dimensionality leads distances between points in such a space to have no meaning. T-SNE addresses this 
by stressing local links between data points rather than global distances preservation. 
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T-SNE first generates the pairwise similarity between a set of high-dimensional data points 

1 2{ , , , }nX x x x  . One represents the similarity in the high-dimensional space and between two 

points using a Gaussian distribution: 
2
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where, 

|j iP - conditional probability that point ix
 
would pick

jx as its neighbor, assuming a Gaussi an distribution 

centeredat ix .The parameter σi helps one to regulate the width of the Gaussian distribution; 

consequently, it is chosen to provide almost constant perplexity—a measure of the effective number of 
neighbors—over all data points. 
 
3.2.2.Low-Dimensional Mapping 

T-SNE aims to find a low-dimensional representation 
1 2{ , , , }nY y y y   in which every yicorresponds 

to xi following computation of pairwise similarities. 
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T-SNE avoids the crowding problem—where points typically compress into a small area in the low-
dimensional space—by means of the t-distribution. 
 
3.2.3.Cost Function and Optimization 
t-SNE aims to lower the low-dimensional similarity Qij variation from the high-dimensional similarity Pij. 
Reducing the Kullback-Leibler (KL) difference between the two distributions helps one to reach this: 

KL( ) log
ij

ij

i j ij

P
P Q P

Q
‖  

Gradient descent computes and iteratively updates the positions using the gradients of the cost function 
with relation to the points in the low-dimensional space yi, hence minimising the KL divergence. 
 
3.2.4. Resulting Low-Dimensional Embedding 
t-SNE generates a low-dimensional embedding of the original high-dimensional data generally in two or 
three dimensions. For upcoming study, including Jaguar algorithm use for optimization, this low-
dimensional form is simpler nowadays. Using t-SNE helps the IIoT data to be less complicated, hence 
enabling the detection of patterns and linkages essential for increasing prediction accuracy. 
 
Pseudocode for Applying t-SNE 
1.Initialize Parameters 
-Set perplexity, learning rate, number of iterations, and desired output dimensions(e.g.,2or3). 
2.Compute Pairwise Similarities in High-Dimensional Space: 
For each data pointx_i in the high-dimensional datasetX: 
a. Calculate the pairwise Euclidean distance between x_i and all other points x_j. 

b. Convert these distances into conditional probabilities
|j iP using a Gaussian distribution: 
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c. Ensure the perplexity is constant by adjusting i iteratively. 

3.Symmetrize the Joint Probability Distribution: 

-Compute the joint probability
| |

2

j i i j

ij

P P
P

n


 ,where n is the total number of data points. 

4. Initialize Low-Dimensional Points 

-Initialize the low-dimensional embeddings 
1 2{ , , , }nY y y y  randomly. 

5.Compute Pairwise Similarities in Low-Dimensional Space: 
For each low-dimensional pointy_i: 
a. Calculate the pairwise Euclidean distance between y_i and all other points y_j. 

b. Convert these distances into joint probabilities 
ijQ using a Student's t-distribution: 
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6. Minimize KL Divergence: 
-Define the cost function as the Kullback-Leibler divergence: 

KL( ) log
ij

ij

i j ij

P
P Q P

Q
‖  

-Perform gradient descent to minimize the KL divergence: 
For a predefined number of iterations: 
a. Calculate the gradient of the KL divergence with respecttoy_i. 
b. Updatey_i using the gradient and the learning rate. 
7.Output the Low-Dimensional Embedding: 
-After the iterations converge, output the final low-dimensional representation Y of the data. 
8. Visualize or Use the Low-Dimensional Embedding: 
 
3.3. Optimizing the Model with Jaguar Algorithm 
Inspired by jaguar behavior and hunting technique, the Jaguar algorithm is a naturally occurring 
optimizer. Especially in complex, high-dimensional contexts such as those present in IIoT systems, it is 
meant to enhance model performance by parameter optimization. With the Jaguar method, one generally 
seeks to maximize the parameters of the prediction model to increase accuracy and adaptability to non-
linear patterns. 
 
3.3.1.Initialization 
Beginning a population of possible solutions whereby every response provides a set of parameters for the 
prediction model, the process of optimization proceeds. These first responses come at random inside 

predetermined limitations. Every solution 
1 2{ , , , }nx x x X for a model having n parameters denotes 

a certain configuration of these parameters. 
 
3.3.2.Objective Function 
Every possible solution's quality is evaluated by the objective function. Usually measuring the 
performance of the predictive model using metrics including accuracy, precision, recall, or F1 score, this 

function assists model optimization. The objective function ( )f X can be expressedas: 

1
( ) Performance Metric

Error Rate
f  X  

Where 
X – model parameters and the performance metric is the reciprocal of the errorrate, which could be 
accuracy, precision, or any other relevant measure. 
 
3.3.3.Hunting Behavior Simulation: 
Using jaguar hunting behavior, the Jaguar algorithm models helps to examine and exploit the search 
space. These concepts help every potential solution—or jaguar—search for better ones: 
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 Exploration:Jaguars wander haphazardly around the hunt ground. This helps them to find new 
places and avoid local optima. One could represent the stage of inquiry by: 

Rand ( )new current best current    X X X X  

where 
α – scaling factor, 
Rand –random vector, and 
Xbest- best solution founds ofar. 
 Exploitation:Jaguars use the potential areas by focusing on the local neighbourhood with the best 

solutions. This seeks to improve the present ones dependent on the best-found solutions by sharping 
their quality: 

Rand ( )new current best current    X X X X  

where 
β –scaling factor ,and Rand – random vector affecting the degree of exploitation. 
 
3.3.4. Updating Population 
After evaluation of the new candidate solutions, the population is changed by selecting the best ones 
depending on performance criteria. Less efficient alternatives are proposed or implemented; the ones 
with superior performance—that is, lower error rates—are maintained. This update method ensures that 
the population moves toward either ideal or almost ideal solutions gradually converging. 
The optimization process is iteratively progressing through the exploration and exploitation stages for a 
designated number of iterations or until convergence criteria are satisfied. Usually, convergence results 
from the algorithm either by the marginal improvement in the goal function or from the maximum 
number of iterations reached. 
The Jaguar approach produces ideal set of parameters that much improves the performance of the 
predictive model. Retrained with these ideal values, the model generates a final version more fit for the 
non-linear patterns and IIoT data complexity. 
 
Pseudocode for Optimizing the Model with Jaguar Algorithm 
1.Initialize Parameters: 
-Set the number of jaguars(candidate solutions)N 
-Set the maximum number of iterations T 

-Define scaling factors (exploration)and  (exploitation) 

-Define bounds for model parameters 
2.Initialize Population: 

-Randomly generate an initial population of jaguars (solutions) 1,2, ,i fori N X  

-Evaluate the objective function f(\math bf{X}_{i})for each jaguar(e.g., model accuracy) 
3.Main Optimization Loop: 
For each iteration t from 1toT: 
a. Update Best Solution: 

-Identify the best solution bestX in the current population based on the objective function value 

b. Generate New Solutions: 

For each jaguar currentX in the population: 

i. Exploration: 

-Generate a new candidate solution newX using exploration: 

Rand ( )new current best current    X X X X  

-Ensure newX is within the parameter bounds 

ii. Evaluate New Solution: 

-Compute the objective function value ( )new newf forX X  

iii. Exploitation: 
-Refine the candidate solution\math bf{X}_{new}using exploitation: 

Rand ( )new current best current    X X X X  

-Ensure newX is within the parameter bounds 
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-Compute the objective function value ( )newf X again if needed 

iv. Selection: 

-Compare ( )newf X with ( )currentf X  

-Update currentX if ( )newf X is better(lower error rate) 

c. Update Population: 
-Replace less effective solutions with the new solutions, maintaining a fixed population size 
-Update the best solution if necessary 
4.Terminate: 
-Stop if convergence criteria are met (e.g., minimal improvement in the objective function) or if the 
maximum number of iterations T is reached 
5.Output: 

-Return the best solution bestX found during the optimization process 

-Use bestX to retrain the predictive model 

6.Evaluate Final Model: 
 
3.5. Non-Linear Objective Function 
Especially in the optimization of complex data sets as those in Industrial Internet of Things (IIoT) 
systems, the prediction model optimization depends critically on the Non-Linear Objective Function. 
While linear models assume a direct proportional link between inputs and outputs, non-linear models are 
designed to capture more complex interactions that might exist in the data. Correct evaluation and 
optimization of such models relies on non-linear objective functions thus. Using the complex relationships 
between input features and outputs, a non-linear objective function evaluates a model. These have non-
linear feature, so their linear connection is not direct. Instead, they examine in the data interactions and 
non-linear linkages. One can define nonlinearly the objective function f(X) for a model with parameters X: 

( ) Metric( ) Performance Metric Regularization Termf    X X  

where 
Metric(X) –performance measure of the model (such as accuracy, precision, or recall)and 
λ – regularization parameter that controls the trade-off between model performance and complexity. 
The goal function gets a regularizing factor to punish too complex models, hence avoiding over fitting. 
This term is thus often non-linear in non-linear models. In regularity techniques as L1 and L2 
regularization, for instance, the regularizing term may be expressed as: 
 L1Regularization(Lasso): 

L1( ) | |i

i

x X  

 L2Regularization(Ridge): 
2L2( ) i

i

x X  

where 
xi – model parameters, and 
λ – regularization coefficient. 
L1 regularization promotes sparsity, while L2 regularization encourages smaller parameter values. 
Usually utilized gradient-based optimization techniques are those to maximize a non-linear objective 
function. These methods modify the parameters to either maximize or minimize the objective function: 
for gradient descent, for instance, the update rule for Xfollows: 

( )new current currentf  X X X  

where 
η – learning rate and 

( )currentf X - gradient of the objective function with respect to the parameters. 

 
4. Performance Evaluation 
The simulation was conducted in the experimental setup evaluating the proposed approach using the 
Python-based machine learning package Tensor Flow, which enables to build complex models and 
optimization strategies. The studies were carried out on high-performance computing systems supplied 
with NVIDIA GeForce RTX 3080 GPUs and Intel Core i9 CPUs in order to ensure efficient processing of 
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large datasets and computationally demanding operations. The proposed method was tested against 
several now in use techniques including DC-MLP, GAM-MARS, LSTM-TCN, and FGOA-kNN. Every 
approach's accuracy, precision, and efficiency were evaluated using a number of performance criteria. 
 

Table 2. Experimental Setup/Parameters 
Parameter Value 
Simulation Tool Tensor Flow 
GPU NVIDIAGeForceRTX3080 
CPU IntelCorei9 
Number of Iterations 1000 
Learning Rate 0.001 
Batch Size 64 
Epochs 50 
Optimization Algorithm Adam 
Regularization Method L2 Regularization 
Initial Population Size 50 
Maximum Iterations for Jaguar 200 
Perplexity(t-SNE) 30 
Learning Rate(Jaguar) 0.01 
Exploration Factor(Jaguar) 0.2 
Exploitation Factor(Jaguar) 0.5 
Dimensionality Reduction 2D 
Validation Split 20% 
Testing Split 30% 
Regularization Coefficient 0.01 
Objective Function Metric Accuracy 

 

 
Figure 2. Accuracy (%) 

 

 
Figure 3. Precision (%) 
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Figure 4. Recall (%) 

 

 
Figure 5. F1 Score (%) 

 

 
Figure 6. FPR (%) 
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Figure 7. FNR (%) 

 
Comparatively to present methods (DC-MLP, GAM-MARS, LSTM-TCN, and FGOA-kNN), the experimental 
results as presented in figure 2 - 7 disclose their performance over training, testing, and validation 
datasets. 
 
Training Results 
The proposed method surpasses all previous approaches in all relevant aspects. Approaching LSTM-TCN 
(87.4%), DC-MLP (85.6%), it gets an accuracy of 89.1%. Precision for the recommended approach is 
87.4%, which is also rather better than GAM-MARS (76.5%), Moreover better than LSTM-TCN (89.5%), 
and DC-MLP (88.4%. Recall at 91.2% is also higher than LSTM-TCN (85.9%). With an F1 Score of 89.3%, 
the proposed approach outperforms all other methods and indicates a harmonic performance between 
accuracy and recall. Moreover showing less misclassification in both positive and negative instances, the 
proposed method has the lowest False Positive Rate (FPR) at 10.8% and False Negative Rate (FNR) at 
9.7%. 
 
Testing Results 
The proposed approach maintains its edge with an accuracy of 86.8%, compared to LSTM-TCN (84.9%) 
and DC-MLP (82.1%). With 84.6%, precision exceeds LSTM-TCN (83.1%), FGOA-kNN (80.0%), with the 
F1 Score of 86.8%, recall is 89.0%, higher than all other techniques displaying superb balance. While the 
FNR at 11.6% is also lower than previous approaches, the FPR for the proposed method is 12.9%, which 
is better than GAM-MARS (20.5%) and FGOA-kNN (17.9%). 
 
Validation Results 
the proposed method shows continuous accuracy of 88.4%. Precision of 86.3% and recall of 90.2% help 
to highlight its strength. Out of all the methods, the F1 Score is 88.3%; it has the lowest FPR (11.7%) and 
FNR (10.8%). These results indicate that as they exhibit higher capacity to generalize and execute 
accurately across different data sets, the proposed method is an efficient solution for IIoT prediction 
activities. 
 
5. CONCLUSION 
The experimental results reveal that the proposed methodology substantially outperforms current 
approaches DC-MLP, GAM-MARS, LSTM-TCN, and FGOA-kNN in main performance measures 
encompassing training, testing, and validation datasets. The proposed approach excels in creating robust 
predictions with the best accuracy, precision, recall, and F1 Score and in spotting complex correlations 
within the data. Under both positive and negative scenarios, the lower False Positive Rate (FPR) and False 
Negative Rate (FNR) of the proposed method highlight even more its effectiveness in lowering 
misclassifications. Based on higher performance across numerous parameters, the proposed strategy is 
obviously rather beneficial for IIoT prediction activities even if it has enhanced accuracy and 
dependability than current approaches. Its ability to balance accuracy and memory while maintaining low 
error rates emphasizes its probable application in industrial settings. Consequently, the results support 
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the efficiency of the recommended strategy and suggest it as a workable one for improving prediction 
accuracy and efficiency in demanding data situations. 
 
REFERENCES 
[1] Hindistan,Y.S., &Yetkin,E.F. (2023). A hybrid approach with gan and dp for privacy preservation of 

iiot data. IEEE Access,11,5837-5849. 
[2] Li,H., Li,S., &Min,G. (2024). Light weight privacy-preserving predictive maintenance in 6 Genabled 

IIoT. Journal of Industrial Information Combination,39,100548. 
[3] Sharma,M., Pant,S., Yadav,P., Sharma,D.K., Gupta,N., &Srivastava,G. (2023). Advancing security in the 

industrial internet of things using deep progressive neural networks. Mobile Networks and 
Applications, 28(2),782-794. 

[4] Sharma,S., Verma,P., Bharot,N., Ranpariya,A., &Porika,R. (2024). PULSE: Proactive uncovering of 
latent severe a nomalous events in IIoT using LSTM-RF model. Cluster Computing,1-14. 

[5] Gaber,T., Awotunde,J.B., Folorunso,S.O., Ajagbe,S.A., &Eldesouky,E. (2023). Industrial internet of 
things intrusion detection method using machine learning and optimization techniques. Wireless 
Communications and Mobile Computing, 2023(1),3939895. 

[6] Praghash, K., Yuvaraj, N., Peter, G., Stonier, A. A., & Priya, R. D. (2022, December). Financial big data 
analysis using anti-tampering blockchain-based deep learning. In International Conference on 
Hybrid Intelligent Systems (pp. 1031-1040). Cham: Springer Nature Switzerland 

[7] Gobinathan, B., Mukunthan, M. A., Surendran, S., Somasundaram, K., Moeed, S. A., Niranjan, P., ... & 
Sundramurthy, V. P. (2021). A novel method to solve real time security issues in software industry 
using advanced cryptographic techniques. Scientific Programming, 2021(1), 3611182 

[8] Dhillon, A., Singh, A., & Bhalla, V. K. (2023). A systematic review on biomarker identification for 
cancer diagnosis and prognosis in multi-omics: from computational needs to machine learning and 
deep learning. Archives of Computational Methods in Engineering, 30(2), 917-949 

[9] Rajalakshmi, M., Saravanan, V., Arunprasad, V., Romero, C. T., Khalaf, O. I., & Karthik, C. (2022). 
Machine Learning for Modeling and Control of Industrial Clarifier Process. Intelligent Automation & 
Soft Computing, 32(1). 

[10] Ramkumar, M., Logeshwaran, J., & Husna, T. (2022). CEA: Certification based encryption algorithm 
for enhanced data protection in social networks. Fundamentals of Applied Mathematics and Soft 
Computing, 1, 161-170. 

[11] Choudhry, M. D., Sivaraj, J., Munusamy, S., Muthusamy, P. D., & Saravanan, V. (2024). Industry 4.0 in 
Manufacturing, Communication, Transportation, and Health Care. Topics in Artificial Intelligence 
Applied to Industry 4.0, 149-165 

[12] Alhuqayl,S.O., Alenazi,A.T., Alabduljabbar,H.A., &Haq,M.A. (2024). Improving Predictive Maintenance 
in Industrial Environments via IIoT and Machine Learning. International Journal of Advanced 
Computer Science & Applications,15(4). 

[13] Putra,M.A.P., Hermawan,A.P., Kim,D.S., &Lee,J.M. (2023). Data prediction-based energy-efficient 
architecture for industrial iot. IEEE Sensors Journal,23(14),15856-15866. 

[14] Tiwari,R.S., Lakshmi,D., Das,T.K., Tripathy,A.K., &Li,K.C. (2024). A light weight optimized intrusion 
detection system using machine learning for edge-based IIoT security. Telecommunication Systems, 
1-20. 

[15] Haider,M., Hassan,M.Z., Ahmed,I., Reed,J.H., Rubaai,A., &Rawat,D.B. (2024). Deep Learning Aided 
Minimum Mean Square Error Estimation of Gaussian Source in Industrial Internet-of-Things 
Networks. IEEE Transactions on Industrial Cyber-Physical Systems. 

[16] Taher,F., Abdel-Salam,M., Elhoseny,M.,&El-Hasnony,I.M. (2023). Reliable machine learning model for 
IIoT botnet detection.IEEEAccess,11,49319-49336. 


