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ABSTRACT 
In order to diagnose and treat fetal brain disorders early, sophisticated and precise diagnostic 
technologies are required. The detection of minor fetal brain abnormalities (FBA) is still a challenging 
undertaking, even with medical imaging advancements. False positives or negatives could result from 
current model inability to handle patterns. Improved accuracy and reliability in fetal brain abnormalities 
classification is the objective of this work, which aims to address this issue. Initially, the input MRI 
(Magnetic Resonance Imaging) fetal brain images are collected from Kaggle. In pre-processing, the input 
images are segmented using Edge Stop Functional Iterative Region Growing (ESFIRG) algorithm by 
iteratively grouping pixels based on predefined criteria while considering edge information and 
effectively separate regions in an image. After, Augmentation is applied to increase the images from 172 
to 3440 for further classification. Furthermore, the attributes like Mean Pixel Intensity, Median Pixel 
Intensity, Pixel Intensity Deviation, Label, and Class Name are extracted. From the extracted attributes the 
important attributes are selected by using Color Gray Coherent - Minimum Redundancy Maximum 
Relevance (CGC-MRMR) algorithm for reduce the complexity and increase accuracy of the classification 
process. Concerning the incorporation of PEL into the detection of fetal brain normal and abnormalities, 
there is a knowledge vacuum in the current literature. In most cases, researchers either stick to tried-and-
true techniques or fail to fully utilize deep learning. This research fills that need by presenting a new PEL-
DCNN method, which overcomes all the problems with the existing approaches. By combining the 
strengths of PEL for feature extraction and DCNN for accurate classification, the work intends to 
overcome the current shortcomings in fetal brain abnormality identification. Finally, the FBAs are 
classified by the help of Position Encoded Layer based Deep Convolutional Neural Network (PEL-DCNN) 
which is classify the presence of the normal or abnormal of predicting in the FBA. A DCNN is used to 
classify the retrieved features robustly. By combining PEL and DCNN, this method improves the model 
capacity to detect intricate patterns in brain images. With an F1-score of 93.75%, it accomplishes a recall 
of 92.31%, specificity of 97.09%, sensitivity of 92.31%, precision of 95.24%, and accuracy of 96.32%. 
These findings demonstrate that the effectiveness of the proposed method in tackling the difficulties of 
fetal brain abnormalities diagnosis. 
 
Keywords: Fetal Brain Abnormalities (FBA), Edge Stop Functional Iterative Region Growing (ESFIRG), 
Color-Gray coherent Minimum redundancy Maximum Relevance (CGC-MRMR), Position Encoded Layer 
based Deep Convolutional Neural Network. 
 
1. INTRODUCTION 
Fetal brain abnormalities pose significant challenges in prenatal diagnosis and management, often 
impacting long-term neurodevelopment outcomes. Advances in medical imaging, particularly MRI, have 
enhanced our ability to visualize and diagnose these conditions. However, detecting subtle brain 
abnormalities remains complex due to limitations in current imaging technologies and diagnostic models. 
False positives and negatives in fetal brain abnormality (FBA) can lead to misdiagnoses, influencing 
clinical decisions and patient counseling. 
This research is mainly focused on FBAs images, which is collected from kaggle. High resolution MRI 
scans, typically in DICOM format, providing clear and detailed views of fetal brain structure. This data set 
includes the 12 categories of normal images and eight categories of abnormal images.  FBAs dataset 
comprises the important abnormalities like Arnold-Chiari Malformation, Corpus callosum, etc. are in 
Figure 1.  The images cover multiple planes, including axial, sagittal, and coronal views. The dataset 
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includes images from different gestational ages, allowing for the examination of brain development over 
time. This includes early to late gestational periods, typically from 14 to 38 weeks.  

      
a.                       c.          e.                  g. 

           
b.    d.  f.  h. 

Figure 1. a. Arnold-Chiari Malformation - 32 Weeks, b. Corpus Callosum - 19 Weeks, c. Polymicrogyria - 
36 Weeks, d. Porencephaly - 24 Weeks, e. Septi Pellucidi - 24 Weeks, f. Severe Ventriculomegaly - 19 

Weeks, g. Tuberous sclerosis - 25 Weeks, h. Tumor - 32 Weeks 
 
To address these issues, sophisticated diagnostic approaches are required to improve the accuracy and 
reliability of FBA classification. Recent developments in artificial intelligence and deep learning, including 
convolutional neural networks, offer promising solutions by enhancing pattern recognition and reducing 
diagnostic errors. This study aims to explore and refine methods for classifying FBAs, leveraging 
advanced imaging techniques and machine learning algorithms to overcome existing limitations and 
improve diagnostic outcomes. 
This study introduces a combination of Position Encoded Layer (PEL) and a Deep Convolutional Neural 
Network (DCNN) to classify the images. Prior classification, it includes preprocessing (reshaping and gray 
scale conversion), segmentation using Edge Stop Function Iterative Region Growing (ESFIRG), data 
augmentation and feature selection using Color-Gray Coherent-Minimum Redundancy Maximum 
Relevance (CGC-MRMR) 
 
2. RELATED WORKS 
Finding and categorizing anomalies in the developing brain of a foetus is an important topic of study in 
medical imaging [1]. There is a growing demand for complex computational models to improve detection 
efficiency and accuracy with the development of cutting-edge imaging technologies [2,3]. Timely 
intervention is crucial for the detection and treatment of fetal brain abnormalities because, if left 
unchecked, they can cause serious developmental delays or disabilities [4]. 
The intrinsic complexity of fetal brain architecture poses hurdles to achieving high detection accuracy, 
despite major improvements in medical imaging [5-7]. Better, more flexible models are clearly required, 
as traditional approaches frequently fail to detect minor anomalies [8][9]. Although deep learning models 
have demonstrated some success, they still have a way to go before they can fully account for the ever-
changing patterns of the developing foetus brain [10,11]. 
When looking for abnormalities in the developing brains of fetuses, previous research has mostly used 
conventional image processing methods. Although these methods have shown some success, researchers 
are now looking into more advanced approaches because they cannot adjust to the complex patterns in 
developing fetal brain structures [12].The use of deep learning methods to analyze medical images has 
been on the rise recently. Several studies have used CNNs to detect abnormalities in the developing brain 
of a fetus. The ever-changing character of fetal brain development, however, may prove too much for the 
current models to handle [13]. 
In order to make models more flexible for use in medical imaging, some researchers have looked at using 
adaptive learning techniques. Nevertheless, the difficulties presented by fetal brain anomalies and the 
necessity of gradual adaptation have received comparatively little focus [14].There has been a handful of 
research looking into using deep learning models in conjunction with more conventional machine 
learning techniques to track the health of fetuses. Still, we don't fully grasp how deep neural networks 
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and progressive learning methods like PEL operate together to detect abnormalities in the developing 
brain of a foetus [15]. 
Current approaches have limits when it comes to accurately diagnosing small prenatal brain 
abnormalities, as shown in existing research. The necessity for models that can gradually adjust to 
evolving patterns while maintaining accuracy is what drives this study [16] [17]. 
Although there is a wealth of information available in the current literature regarding deep learning in 
medical imaging and fetal brain abnormality detection, this study intends to add to that body of 
knowledge by presenting and investigating the possibilities of combining Position Encoded Layer with a 
Deep Convolutional Neural Network to tackle the specific difficulties of fetal brain imaging. 
 
3. PROPOSED METHOD 
This study progresses through three stages. Initially, the preprocessing involves segmentation, Data 
Augmentation, and Feature selection. To overcome the complexities of fetal brain abnormality diagnosis 
in medical imaging, the proposed method combines PEL with a DCNN. In the second stage, by combining 
the best features of PEL and DCNN, this novel method seeks to improve the model accuracy and 
adaptability. Finally, the performance of the FBA classification model is evaluated utilizing metrics 
Including Accuracy, Precision, Recall, and F1-score as in Figure 1. 
 Fetal Brain images: The input fetal brain MRI images are taken from kaggle which consists of 100 

normal images and 72 abnormal images. During 14-38 weeks, normal case images are observed and 
collected 12 categories of normal case. The abnormal case images are 100 which comprise 8 
categories of abnormal case such as Arnold-Chiari Malformation, Carpus Callosum, Polymicrogyria, 
Porencephaly, Septi Pellucidi, Severe Ventriculomegaly, Tuberous sclerosis, Tumor. Thence, the class 
name is determined by the total of 0-19 categories of normal and abnormal categories.  

 Preprocessing: The images are likely resized or reshaped to a standardized format, and their color 
information is converted to grayscale. Grayscale images contain intensity values representing the 
brightness of each pixel, simplifying the input data for subsequent processing. 

 ESFIRG Segmentation: This segmentation method involves an iterative region growing process 
guided by an edge stop function. This helps identify and separate different regions or objects within 
the images. 

 Data Augmentation: Data augmentation involves creating new training examples by applying 
various transformations to the original images. This helps improve the model's robustness and 
generalization by exposing it to a wider range of variations in the input data. 

 Feature Selection - CGC-MRMR: This feature selection technique involves selecting a subset of 
features that are both relevant to the task and have minimum redundancy. It appears to consider 
color and gray features in a coherent manner, possibly enhancing the discriminative power of the 
selected features. 

 Model Architecture: Position Encoded Layer (PEL) and Deep Convolutional Neural Network 
(DCNN): The model architecture includes a combination of a PEL and a DCNN. DCNNs are well-
suited for image-related tasks, and the addition of a Position Encoded Layer suggests the 
incorporation of positional information, which can be crucial for certain image recognition tasks. 
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Figure 2. Proposed Model 

 
Initialization of the model makes use of PEL as a technique for feature extraction. In contrast to more 
conventional approaches, PEL allows the model to learn and adapt over time to changing patterns in the 
anatomy of the developing foetus brain. The model is able to acquire variable details—essential for 
accurate anomaly detection—through this adaptive feature extraction process. 
For reliable classification, the features obtained using PEL are then input into a DCNN. A DCNN can 
analyze images of the developing brain by taking advantage of the hierarchical representation of features. 
This allows the model to identify intricate linkages and patterns. When combined with other deep 
learning components, abnormality categorization becomes more accurate and dependable. 
The proposed approach revolves around the PEL and DCNN. DCNN improves the model ability to carry 
out complex classification tasks, whereas PEL guarantees the model resilience to progressive changes in 
fetal brain architecture. By offering a more varied and dynamic solution to fetal brain anomaly 
identification, this hybrid technique hopes to overcome the limits seen in conventional methodologies. To 
train the model, we use the Adam optimizer to fine-tune the learning process across a predetermined 
number of epochs with a predetermined batch size.  
 
3.1. Data Preprocessing 
The obtained images of the fetal brain go through a number of preprocessing methods in the first stage of 
data preparation to make sure they are in the best possible state for further analysis without attracting 
too much attention. 
Reshaping involves changing the dimensions of the original image (I) to a new shape. This is often done to 
ensure that all images in the dataset have the same dimensions, facilitating uniform processing. 
Grayscale conversion transforms a color image (I) into a grayscale image (Ig) by combining the intensity 
values of its red (R), green (G), and blue (B) channels. The coefficients (0.299, 0.587, and 0.114) are 
standard weights for human perception. 
Ig=0.299⋅R+0.587⋅G+0.114⋅B    (1) 
 
3.2. Segmentation using ESFIRG 
The segmentation using Edge Stop Function Iterative Region Growing (ESFIRG) likely involves a multi-
step process to partition an image into meaningful regions. The key components of this process are edge 
detection, region growing, and an iterative refinement based on an edge stop function.  
Edge-stop function evaluates the edge strength at each pixel, pixels with low edge strength are included in 
the growing region, while pixels with high edge strength. Another component of region growth is 
involved to grow region by incorporating neighboring pixels that meet the criteria defined by edge-stop 
function.  
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Edge Detection identifies boundaries between different regions in the image. Employ an edge detection 
algorithm (such as Sobel, Canny, or Prewitt) to highlight significant changes in intensity or color. Edges 
are areas where pixel values change abruptly. 
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Region Growing: Group pixels into regions based on similarity criteria. It starts with seed pixels and 
iteratively adds neighboring pixels that meet certain similarity conditions. 

1 2

2

1 2Similarity( , ) ( ) Thresholdp pp p I I  
    (3)

 

Where Ip1 and Ip2 are intensity values of pixels p1 and p2, respectively. 
Edge Stop Function prevents oversegmentation by stopping the growth of regions at strong edges. It 
incorporates an edge stop function that assigns lower weights to pixels near edges. 

Edge Magnitude( )
Weight( ) 1

Max Edge Magnitude

p
p  

    (4)

 

Iterative Refinement enhances segmentation accuracy by refining regions in multiple iterations. After an 
initial segmentation, iteratively refine regions based on feedback from the edge stop function and 
possibly other criteria. 

  }  {New Region Region p Weight p Threshold  ∣
   (5)

 

Edge Stop Function Iterative Region Growing (ESFIRG) Algorithm: 
Input:I : Original image; T : Threshold for region growing; Te : Threshold for the edge stop function 
a) Apply an edge detection algorithm (Canny) to the original image I to obtain the edge magnitude. 
b) Select initial seed points in the image. These could be manually chosen or determined based on 

certain criteria. 
c) For each seed point: 
i) Initialize a seed region 𝑅 0 . This could be a single pixel or a small region in the image. 
ii) Define the edge-stopping function  𝐸 𝑝 , which evaluates the likelihood of including pixel 𝑝 based on 

its edge strength. 
iii) At each iteration 𝑡, Add the seed point to the current region 𝑅 𝑡 . 

iv) Evaluate the neighboring pixels 𝑝 of 𝑅 𝑡 . Let 𝑁 𝑅 𝑡   represent the set of all neighboring pixels not 

currently in 𝑅 𝑡 . 

v) For each neighboring pixel 𝑝 ∈  𝑁 𝑅 𝑡  , check  the edge-stopping function 𝐸 𝑝  

(1) If the pixel's intensity is similar to the region's mean intensity (based on a similarity condition), add 
it to the region. 

d) Calculate an edge stop function for each pixel in the segmented regions based on the edge 
magnitude. 

𝐸 𝑝 < ∈ 
Weight(p)=1−(Max Edge Magnitude / Edge Magnitude) 
Where ∈ is a predefined threshold value. This threshold determines how strong the edge must be to 
prevent inclusion in the region. 
e) For each region: 
i) Refine the region by adding all pixels 𝑝 that meet the edge-stopping condition. 

𝑅 𝑡 + 1 = 𝑅 𝑡 ∪ {𝑝|𝑝 ∈ 𝑁 𝑅 𝑡  𝑎𝑛𝑑 𝐸 𝑝 < ∈ 

ii) Pixels with weights below a certain threshold (Te) are removed from the region. 
f) Repeat steps 4-6 for a predefined number of iterations or until convergence. 
g) Output: Segmented image with distinct regions. 
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3.3. Data Augmentation 
Data augmentation involves applying various transformations to the original dataset to create new 
training examples, thereby increasing the diversity and robustness of the training set. This process is 
crucial for training deep learning models, as it helps prevent overfitting and improve generalization. In 
this work, the Common transformations include rotation, scaling, flipping, and changes in brightness or 
contrast.  
Rotation: It rotates the image by a certain angle. The rotated coordinates are computed based on the 
rotation matrix. 
Ia(x,y)=I(x′,y′)      (6) 
where (x′,y′) are the rotated coordinates of pixel (x,y). 
Scaling: It scale the image by adjusting the coordinates of each pixel. 
Is(x,y)=I(α⋅x′,β⋅y′)     (7) 
where (α,β) are scaling factors and (x′,y′) are the original coordinates. 
Flipping involves flipping the image horizontally or vertically. 
If(x,y)=I(flip(x′),flip(y′))     (8) 
where flip(⋅) - flips the coordinate. 
Therefore, from the augmentation, the images are increased from 172 to 3440 and resulting in a total 
increase of 3268 images compared to the original count. By this transformation, the 1000 images are 
generated by rotation, 600 images are saved by scaling, 500 images by flipping, 700 images by brightness, 
and 468 images by contrast.  
 
3.4. Feature Selection - CGC-MRMR 
The feature selection method mentioned in context, CGC-MRMR, appears to be a hybrid approach that 
considers both color and grayscale features. It initially extracts both color and grayscale features from the 
preprocessed images. These features could include statistical measures (mean, standard deviation, etc.), 
texture features, or other relevant descriptors. It then Measure the coherence or correlation between the 
color and grayscale features. This step aims to assess how well these two sets of features align or provide 
complementary information. It applies the MRMR criterion to select features that strike a balance 
between being highly relevant to the classification task and minimizing redundancy among selected 
features. The MRMR criterion involves computing the relevance and redundancy of each feature with 
respect to the target variable. 
Convert a color image 𝐼 into grayscale 𝐼𝑔  using a weighted sum of color channels 

𝐼𝑔 𝑥, 𝑦 = 0.299. 𝑅 𝑥, 𝑦 + 0.587. 𝐺 𝑥, 𝑦 + 0.114. 𝐵(𝑥, 𝑦)  (9) 

Where  𝑥, 𝑦 represents the pixel position, and 𝑅, 𝐺 𝑎𝑛𝑑 𝐵  represent the red, green, and blue channels, 
respectively. 
Apply contrast enhancement techniques, such as histogram equalization, to improve feature visibility 

𝐼𝑔
′ = 𝐻𝐸 𝐼𝑔          (10) 

Where 𝐻𝐸 denotes the histogram equalization function applied to the grayscale image𝐼𝑔 , resulting in the 

enhanced grayscale image 𝐼𝑔
′  

Mutual Information (MI) between a Feature Xi and the Target Variable Y:  

   
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Mutual Information (MI) between two Features Xi and Xj: 

   
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Relevance (R) and Redundancy (Red) Scores: 
R(Xi,Y)=I(Xi,Y)      (13) 
Red(Xi,Xj)=I(Xi,Xj)      (14) 
MRMR Score:  

     
1

1
, ,

K

s

j

MRMR Xi R Xi Y Red Xi X j
k 

  
    (15)

 

The k features with the highest MRMR scores are then selected. 
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Finally, it Integrate the coherence information with the MRMR criterion to guide the feature selection 
process. The final set of selected features should include those that are both relevant to the classification 
task and offer complementary information between color and grayscale representations. 
 
3.5. PEL-Deep Convolutional Neural Network (DCNN) for Classification 
Feature extraction and pattern recognition are complex tasks, but a DCNN handles them with ease and 
draws no unneeded attention, making it a paradigm in image classification as in Figure 2. 
 

 
Figure 3. Work flow for PEL-DCNN 

 
DCNNs are complex designs with layers that focus on learning hierarchical features. Before classification, 
standard scalar and label encoder is involved to preprocess the samples for model construction. In order 
to detect regional patterns, the core relies on Input layer, hidden layers which inclusive of two fully 
connected layer (dense layer 1, dense layer 2), and output layer (dense layer 3). In hidden layer, dense 
layer 1 is the first fully connected layer with 128 units and this layer applies a linear transformation to 
the input data followed by the Swish activation functions.  The second dense layer process with 64 units 
followed by the Swish activation function. The dense layer 3 is the output layer and contains the number 
of classes such as 0-19 categories of normal and abnormal cases. This layer produces the final output of 
the model, which represents the number of units in this layer is equal to the number of classes in the 
classification problem and it applies the softmax function to produce probability distribution over these 
classes.  
In this classification, it is a crucial parameter because it determines the structure of the output layer of 
CNN model. In this task, the number of classes typically dictates the number of units (neurons) in the 
output layer, as each unit represents a class. The output layer produces a probability distribution over 
these classes. Here, Label encoder applies to convert the categorical label into numerical labels.  
In novel approach, ‘PELDCNN Classifier’ model is a custom classifier using Tensor FlowAPI. The model 
consists of fully connected layer, possibly with additional convolutional or pooling layer. Compilation 
involves additional parameters required for training, such as the optimizer, loss function, and evaluation 
metrics. Adam optimizer dynamically adjusts the learning rate during training to speed up convergence 
and improve performance. For multi-class classification, Sparse categorical loss function used to measure 
the difference between model prediction and the actual labels. During training, the model computes and 
displays the accuracy metrics, which measures the proportion of correctly classified samples out of the 
total number of samples. Furthermore, the network trains itself to better detect relative positions of 
object or features within an images for classification by adjusting weights during training using PEL.  

 

 
Figure 4. Our Proposed Architecture for combining Position encoded Layer and Deep Convolutional 

Neural Network 
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Our proposed architecture aims to merge the advantages of both position-encoded layers and deep 
convolutional neural networks (CNNs) to enhance the performance of Fetal brain abnormality 
classification in figure 3. Hybrid layers merging features from both position-encoded layers and 
convolutional layers are feasible. These layers can perform convolutional operations while incorporating 
positional cues through learned parameters or attention mechanisms simultaneously. In this research, 
Position encoding helps the model understand the sequential order of tokens in input sequences. Then 
CNN automatically learn hierarchical features from images and it consists of convolutional layers that 
learn spatial hierarchies of features from input images, followed by pooling layers for dimensionality 
reduction and fully connected layer for classification. 
 
Position Encoded Layer (PEL) 
In feature classification, a novel approach called Position Encoded Layer (PEL) is introduced. This method 
aims to enhance the adaptability and efficiency of feature classification in a dynamic environment without 
arousing attention. Traditional feature classification methods often lack the adaptability needed to 
capture variable patterns in dynamic datasets. PEL addresses this limitation by incorporating adaptability 
through a Position Encoded Layer in DCNN. This layer dynamically adjusts its weights based on the 
positional information of features, allowing the model to learn and evolve with changing patterns in the 
input data. 
The position encoding could be achieved using sinusoidal functions to embed positional information into 
the features.  

 
2

5

, 2 sin

10 m

i

d
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PE pos i

 
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 
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       (16)
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   
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where 
pos is the position,  
i is the dimension, and  
dm is the dimensionality of the model. 
PEL is designed to inject positional information into the feature classification process. By incorporating 
the spatial relationships between features, the PEL allows the model to discern subtle variations and 
adapt to positional changes within the dataset. This is particularly beneficial in scenarios where the 
spatial arrangement of features holds valuable information, such as in medical imaging. 
The adaptive weights in the Position Encoded Layer could be updated during training based on the 
positional information. The weights might be adjusted using a mechanism similar to the attention 
mechanism in transformers, where the relevance of different positions is dynamically learned during 
training. 

Attention(Q,K,V)=softmax

T

k

QK
V

d

 
 
 
      (18)

 

This attention mechanism allows the model to focus on different positions dynamically. 
During training, the PEL dynamically adjusts its weights based on the positional information of features 
within the input data. This adaptive mechanism ensures that the model remains responsive to variations 
in feature patterns, facilitating improved feature classification performance. 
The adaptive features with positional information could then be extracted using the updated weights. The 
extracted features might be computed as a weighted sum of the input features based on the dynamically 
adjusted weights. 
Op =  (W×FP)     (19) 
Op – Output 
 - Softmax 
W – Adaptive Weights 
Fp - Position Encoded Features 
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The adaptive nature of PEL makes it well-suited for scenarios where the input data undergoes 
progressive changes. PEL allows the model to continuously adapt its feature classification strategy, 
improving its ability to capture evolving patterns. 
 
DCNN Layers 
In DCNN, to enhance the accuracy in classifying fetal brain scan, it is essential to understand the role of 
optimization, non-linearity and activation function in the learning process. By repeatedly optimizing the 
network, we can make sure that it learns the specific features of fetal brain scans and becomes better at 
discriminating between them. Swish and other DCNN activation functions introduce non-linearity. This 
adds adaptability, which helps the model to grasp complex feature-relationships. The ability of the model 
to learn complicated patterns is crucial for accurate classification of brain disorders, and the non-linear 
activation functions. 
C(i,j)=σ(∑m∑nI(i+m,j+n)⋅W(m,n)+b)    (20) 
where 
C(i,j) is the output of the convolution,  
I(i+m,j+n) is the input pixel value,  
W(m,n) is the convolutional filter weight,  
b is the bias term, and  
σ is the activation function (e.g., swish). 
In order to reduce computational effort without sacrificing critical information, pooling layers make 
downsampling easier. For example, max pooling keeps the most important data, so the model can 
concentrate on what really important when it comes time to classify. When dealing with massive amounts 
of image data, this downsampling makes the DCNN much more efficient. 
P(i,j)=maxm,nC(i⋅s+m,j⋅s+n)     (21) 
where 
P(i,j) is the output of the pooling layer,  
s is the stride, and  
m,n iterate over the pooling window. 
The DCNN classifier is located in its last layer. It creates a probability distribution for each class and 
combines the learned attributes. 
O=σ(∑iF(i)⋅W(i)+b)      (22) 
where 
O is the output of the neuron,  
F(i) is the input feature,  
W(i) is the weight,  
b is the bias term, and  
σ is the activation function. 
When it comes to fetal brain abnormality detection, the model uses learnt patterns to differentiate 
between normal and abnormal cases. This ensures that clinical interpretations are based on trustworthy 
data. 
P(y=k)=∑j (ezk/ezj)    (23) 
where 
P(y=k) is the probability of class k,  
zk is the unnormalized logit for class k over all classes. 
 
PEL-DCNN Algorithm 
Step1. Positional Encoding 
 Each input token or element is embedded into continuous vector space  
 Positional encoding is added to each embedded input token to provide positional information  
 The positional encoding can be computed using sinusoidal functions: 

𝑃𝐸(𝑥𝑖 , 𝑖)= 
𝑠𝑖𝑛 (𝑤𝑖)
𝑐𝑜𝑠 (𝑤𝑖)

  

Where 𝑤𝑖=
𝑖

1000
2𝑘

𝑑 
,  𝑘 is the dimension index, 𝑑 is the dimensionality of the embedding. 

 
Step 2: Convolutional operations 
 Apply a series of convolutional filters to the input samples, considering the positional information 

and convolutioal operation for a given input volume 𝑋 and filter  𝑤 is: 
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𝒁𝒊,𝒋,𝒌 = (𝑿 ∗ 𝑾)𝒊,𝒋,𝒌 =  𝑿𝑙+𝑖,𝑚+𝑗 ,𝑛+𝑘  . 𝒘𝑙 .𝑚 .𝑛
𝒍,𝒎,𝒏

 

 
Step3: Positional information integration 
 Integrate positional information into the convolutional layers through learned parameters or 

attention mechanism. Thence, incorporating positional cues within the convolutional filters o 
utilizing attention mechanisms to focus on different parts of the input sequence based on positional 
cues. 

 
Step 4: Pooling Layers 
 Perform down-sampling to reduce the dimensionality of the feature maps while retaining important 

information.  
 
Step 5: Flattening 
 Flatten the output from the last convolutional layer into a one-dimensional vector. 
 
Step 6: Fully Connected Layers (Dense Layers) 
 Perform high level-reasoning and decision making based on the extracted features. The activation 

function used in dense layer can vary based on the problem (e.g., Swish for dense layer, softmax for 
classification) 

 
Step 7: Output Layer 
 Produce the output prediction and apply an softmax activation function for classification 

 
Step 8: Loss Calculation 
 Calculate the loss between the predicted output and actual target values using a sparse categorical 

loss function. 
 
Step 9: Back propagation    
 Update the weights of the network using back propagation to minimize loss function 
 
Step 10: Repeat 
 Iterate over training data multiple times (epochs) to update the weights iteratively. 
 
Step 11: Evaluation 
 Evaluate the performance of the trained model on a separate validation or test dataset using 

Accuracy, Precision, Recall, and F1-score. 
 
Step 12: Prediction 
 Make prediction on new unseen data using trained model. 
 
4. PERFORMANCE ANALYSIS 
In this simulation, we used a dataset of preprocessed images of the fetal brain. We use a PEL-DCNN for 
classification for classification over Dataset from the Kaggle research lab source. Among the DCNN 
constituent parts were a softmax output layer, fully linked layers, max-pooling layers, and convolutional 
layers. We used an Adam optimizer to train the model, adjusting parameters like batch size and number 
of epochs to maximize convergence and minimize computing overhead. A system with specifications that 
included an NVIDIA GPU to speed up the training process was used to conduct the trials. 
 
Performance Metrics 
Accuracy, specificity, sensitivity, recall, and F1-score are some of the common classification metrics used 
to evaluate the proposed PEL-DCNN model. We compared our findings to those of other popular 
approaches, such as Support Vector Machine (SVM) and DNN-SelectKBest, a Deep Neural Network that 
incorporates feature selection. Using a feature selection strategy, DNN-SelectKBest trained an SVM model 
with default hyperparameters as in Table 1. 
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Table 1: Experimental Setup 
Parameter Value 
Training Epochs 10 
Batch Size 32 
Learning Rate 0.001 
Optimizer Adam 
PEL Iterations 5 
α (Adaptation Weight) 0.7 
β (Refinement Weight) 0.5 

 
 Accuracy:A model correctness is the ratio of the number of instances appropriately classified to the 

total number of instances. 
 Specificity:The ratio between the number of true negatives and the number of properly detected 

negatives (typical cases). This metric evaluates the model capability to accurately detect typical 
instances. 

 Sensitivity (Recall):The proportion of true positives (abnormal cases) to the overall number of true 
positives detected. As a measure, it checks how well the model can spot out-of-the-ordinary 
instances. 

 Precision:Precision is defined as the percentage of true positives relative to the total number of 
positive predictions. 

 F1-Score:A balanced measure of sensitivity and precision, it is the harmonic mean of recall and 
precision. When there is a disparity in socioeconomic status, it becomes quite helpful. 

 
Table 2: Accuracy of Proposed PEL-DCNN Classification Report 

MODEL Epochs Batch Size Optimizer Accuracy 

PEL-DCNN 10 32 Adam 96.32% 

SVM    94.72% 

DNN SELECT K-BEST 10 32 Adam 92.80% 

 

 
Figure 4. Accuracy 

 
Table 2 and Figure 4 show that the PEL-DCNN model got 96.32% of its examples properly classified. It 
appears that a combination of PEL for feature extraction and a DCNN for classification results in very 
accurate identification of embryonic brain disorders. This model outperforms its competitors thanks to 
PEL flexibility to changing patterns in developing fetal brain regions and the DCNN deep learning 
capabilities. With the use of feature selection and a deep neural network, the SVM model was able to get 
an accuracy of 94.72%. Although it is still very accurate, it is little less so than the PEL-DCNN. The results 
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show that PEL adaptive feature extraction outperforms a conventional DNN with feature selection, which 
could be due to the fact that it provides a more varied representation of images of the fetal brain. The 
DNN-SelectKBest got 92.80% of the time right. While SVMs are popular and effective, the results show 
that a hybrid approach using DCNNs for classification and PELs for feature extraction detects fetal brain 
abnormalities better than SVMs alone. When contrasted with the SVM model, PEL-DCNN superior 
accuracy seems to be the result of its deep learning capabilitie ability to grasp more complex patterns. 
Compared to DNN-SelectKBest and SVM models, the outcomes demonstrate that the proposed PEL-DCNN 
method is more accurate in identifying fetal brain anomalies, demonstrating its efficacy. 
 

Table 3. Results of Specificity 

MODEL Epochs Batch Size Optimizer Specificity 

PEL-DCNN 10 32 Adam 97.09% 

SVM    95.24% 

DNN SELECT K-BEST 10 32 Adam 90.91% 

 

 
Figure 5. Specificity 

 
Table 3 and Figure 5 show that the PEL-DCNN model attained a remarkable specificity of 97.09%. Among 
all real normal examples, this statistic shows how well the model can recognize normal cases (true 
negatives). The PEL-DCNN method appears to be very good in detecting and removing normal fetal brain 
images, with few false positives, according to the high specificity. The specificity was 95.24% for the SVM, 
which used deep neural network feature selection. Even though it still does an excellent job, it isn't quite 
as well as PEL-DCNN. Fetal health diagnosis relies on precise case classification, and the specificity metric 
indicates that the PEL-DCNN model excels at this. The DNN-SelectKBest model attained a 90.91% 
specificity rate. The specificity result shows that PEL-DCNN performs better than SVM in differentiating 
normal fetal brain images from aberrant ones, despite SVM reputation for being versatile in classification 
tasks. There will be fewer false alarms in identifying normal patients with PEL-DCNN due to its increased 
specificity. By demonstrating that the PEL-DCNN model is superior, the specificity results highlight how 
well it can detect normal fetal brain images. Because accurate diagnosis relies on avoiding false positives, 
this is an important consideration in medical imaging jobs. 
 

Table 4. Sensitivity 

MODEL Epochs Batch Size Optimizer Sensitivity 

PEL-DCNN 10 32 Adam 92.31% 

SVM    92.31% 

DNN SELECT K-BEST 10 32 Adam 90.91% 
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Figure 6. Sensitivity 

 
The PEL-DCNN model was able to successfully detect abnormal cases (true positives) out of all real 
abnormal instances, as shown in Figure 6 and Table 4, with a sensitivity of 92.31%. Based on these 
findings, it appears that the PEL-DCNN method has a high sensitivity when it comes to detecting and 
capturing characteristics that point to embryonic brain disorders. With a sensitivity of 92.31%, the SVM 
which uses deep neural networks with feature selection-was just as effective as PEL-DCNN. The fact that 
both models can spot out-of-the-ordinary instances suggests that the feature selection procedure makes a 
significant impact on the sensitivity of the DNN-SelectKBest model. The sensitivity level that the DNN-
SelectKBest model attained was 90.91%. Despite DNN-SelectKBest model pattern recognition prowess, 
PEL-DCNN somewhat higher sensitivity in detecting fetal brain disorders shows that PEL adaptive feature 
extraction and DCNN deep learning skills provide it that edge. Both PEL-DCNN and DNN-SelectKBest 
show great sensitivity in detecting anomalous situations, however PEL-DCNN slightly outperforms SVM, 
according to the sensitivity results. This demonstrates how deep neural networks and Position Encoded 
Layer work well to detect anomalies in the developing brain of a foetus. 
 

Table 5. Precision 

MODEL Epochs Batch Size Optimizer Precision 

PEL-DCNN 10 32 Adam 95.24% 

SVM    92.31% 

DNN SELECT K-BEST 10 32 Adam 83.33% 

 

 
Figure 7. Precision 

 
The PEL-DCNN model got 95.24% of the positive instances (abnormal cases) right out of all the positive 
instances predicted to be positive in Figure 7 and Table 5. This level of accuracy indicates that the PEL-
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DCNN method successfully reduces the number of false positives, which helps to make its abnormality 
classifications more reliable. The SVM successfully classifies positive cases with an accuracy of 92.31%. 
The accuracy is still quite good, demonstrating that using feature selection in a deep neural network to 
detect prenatal brain abnormalities is effective, however it is marginally lower than PEL-DCNN. The DNN-
SelectKBest model was 83.33% accurate. While SVMs are able to detect positive examples, this statistic 
shows that their false positive rate is rather significant. Due to its lesser accuracy, DNN-SelectKBest might 
be more likely to incorrectly label normal instances as aberrant. The precision results show that PEL-
DCNN and SVM are the best at detecting anomalies in the brain of a developing fetus with few false 
positives. When it comes to clinical applications, where avoiding false positives is crucial for valid medical 
diagnoses, PEL-DCNN stands out with its better precision. 
 

Table 6. Recall 

MODEL Epochs 
Batch 
Size 

Optimizer Recall 

PEL-DCNN 10 32 Adam 92.31% 

SVM    92.31% 

DNN SELECT K-BEST 10 32 Adam 90.91% 

 

 
Figure 8. Recall 

 
The recall of the PEL-DCNN model, as shown in Figure 8 and Table 6, is 92.31%. This recall indicates the 
proportion of false positives (abnormal cases) out of all true positives. This finding demonstrates that the 
model can accurately identify embryonic brain abnormalities with a high recall rate, and it also highlights 
that the approach is effective in catching a considerable number of the actual positive instances. With a 
recall rate of 92.31%, the SVM was just as well as PEL-DCNN in spotting out-of-the-ordinary instances. It 
appears that the feature selection in DNN-SelectKBest helps to capture genuine positive cases efficiently, 
since the recall rates are consistent across various models. With a recall of 90.91%, the DNN-
SelectKBestwas able to correctly identify a large%age of real positive events. The DNN-SelectKBest model 
boasts an outstanding recall rate, however it is little lower than PEL-DCNN and SVM. Outperforming DNN-
SelectKBestin capturing true positive occurrences, the recall findings show that PEL-DCNN and SVM 
consistently and highly perform in diagnosing fetal brain abnormalities. The similarity in recall rates 
highlights how well the proposed techniques perform in medical image categorization tasks. 
 

Table 7. F1-Score 
MODEL Epochs Batch Size Optimizer F1-score 

PEL-DCNN 10 32 Adam 93.75 

SVM    92.31 

DNN SELECT K-BEST 10 32 Adam 86.96 
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Figure 9. F1-Score 

 
Figure 9 and Table 7 show that the PEL-DCNN model has an F1-score of 93.75, which means that its recall 
and precision are both well-balanced. This finding indicates that the model may detect embryonic brain 
abnormalities with a high degree of accuracy and a low proportion of false positives. With an F1-score of 
92.31, the SVM demonstrated an excellent trade-off between recall and precision. This finding highlights 
the usefulness of using feature selection in a deep neural network, which helps detect prenatal brain 
abnormalities accurately while minimizing false positives. The DNN-SelectKBest F1-score of 86.96 shows 
that it successfully balanced recall and precision. Even while DNN-SelectKBest does a respectable job, 
PEL-DCNN and SVM seem to have a better handle on catching genuine positives while minimizing false 
positives, according on the slightly lower F1-score. The F1-score results confirm that PEL-DCNN and SVM 
are both good at finding a balance between recall and precision. For prenatal brain anomaly 
identification, PEL-DCNN stands out with its superior F1-score, proving its ability to balance the most 
important features of classification performance. 
 
5. CONCLUSION  
Fetal brain anomaly identification was a very fruitful area for the proposed method, which combines PEL 
for feature extraction with a DCNN for classification. We can see from the experiments that the PEL-DCNN 
model outperforms the alternatives, such DNN-SelectKBest and SVM. All things considered, the model 
high F1-score, recall, specificity, sensitivity, and accuracy demonstrate its capacity to differentiate 
between typical and abnormal images of the fetal brain. Combining DCNN discriminative strength with 
PEL flexibility in capturing varying characteristics makes for a robust model. These results point to the 
possible practical use of the proposed approach in improving the precision and consistency of diagnoses 
of fetal brain abnormalities. An important factor in medical imaging is the chance of false positives and 
false negatives; the high sensitivity and specificity rates show that these are less likely to occur. By 
incorporating state-of-the-art approaches such as PEL for feature extraction, the model demonstrates its 
adaptability to complex patterns in fetal brain images, which helps it outperform standard methods. As a 
whole, the proposed method shows potential for better clinical decision support systems by increasing 
the reliability of fetal health assessment diagnostics. 
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