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ABSTRACT 
The Internet of Vehicles (IoV) is fast expanding depending on accurate traffic prediction to maximize 
travel paths, increase road safety, and reduce congestion. Traditional traffic prediction systems produce 
less than perfect performance in dynamic environments since they cannot capture the complex 
spatiotemporal dependencies and non-linear traffic patterns inherent in IoV networks. This work 
addresses these challenges by way of an upgraded traffic prediction model combining Bidirectional Long 
Short-Term Memory (Bi-LSTM) networks with spatiotemporal restrictions and a local search 
optimization method. The model uses Bi-LSTM to efficiently capture the temporal dependencies from 
past and future traffic data, while the spatiotemporal constraints boost the model power to grasp spatial 
correlations among surrounding road segments. The model parameters are tuned using a local search 
technique, and non-linear analysis is applied to identify and modify traffic flow abnormalities, thereby 
improving the prediction accuracy. The proposed approach shown superior performance than more 
conventional approaches on a big-scale IoV traffic dataset. In MAE, specifically, the model exceeded 
earlier methods by 12.6%; in RMSE, by 15.4%; and in MAPE, by 10.8%. Its Root Mean Square Error 
(RMSE) was 6.89 while its Mean Absolute Error (MAE) was 4.57. These results indicate the adaptability of 
the model since they illustrate how well it catches the dynamic and complex character of IoV traffic. 
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1. INTRODUCTION 
Fast development of Internet of Vehicles (IoV) technology has revolutionized the transportation sector 
since it now enables real-time communication between infrastructure, traffic management systems, and 
vehicles [1]. In the development of intelligent transportation systems (ITS [2], IoV is crucial in the 
possibility to maximize traffic flow, increase road safety, and minimize congestion). Accurate traffic 
pattern prediction is essential for effective traffic management and planning; however, the huge volume 
of data generated by linked vehicles together with the dynamic character of traffic seriously challenges 
this ability [3,4].  
Large volumes of data are produced by this linked network including vehicle speed, position, road 
conditions, and meteorological information [7]. Applications include dynamic route planning, traffic 
signal control, and accident prevention [8] depend on exactly forecasting traffic flow depending on this 
data. IoV combines several communication technologies including Vehicle-to- Vehicle (V2V), Vehicle-to- 
Infrastructure (V2I), and Vehicle-to- Everything (V2X [5,6].  
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Given the increasing complexity of urban traffic networks and growing acceptance of autonomous 
vehicles, more sophisticated predictive models that can properly manage the dynamic, spatiotemporal 
character of IoV traffic data are desperately needed due their incapacity to capture the non-linear and 
complex interactions inherent in traffic data [9]. More traditional traffic prediction models—including 
statistical approaches and conventional machine learning techniques—have shown minimal effectiveness 
[9].  
First of all, the spatiotemporal character of traffic data implies that both geographical (e.g., vehicle 
locations, road networks) and temporal (e.g., time of day, traffic flow variations) components must be 
taken into account concurrently. Predicting traffic in IoV settings presents several challenges. Recording 
these dependencies requires sophisticated modeling techniques.  
Second, traffic data is naturally non-linear; sudden changes in traffic flow resulting from accidents, special 
events, or weather. Less than perfect forecasts follow from conventional linear models' inability to 
correctly represent these non-linear tendencies. Moreover adding complexity to the prediction process 
are noise and outliers in IoV data, which requires robust methods able to filter and modify to such 
abnormalities.  
Finally, models that can adapt in real-time are required for the dynamic character of traffic conditions, in 
which patterns change rapidly over short intervals. Developing models that are both accurate and 
computationally economical, competent of processing and analyzing vast-scale IoV data streams in real-
time, offers a challenge.  
The development of a robust and accurate traffic forecast model for IoV environs is the key topic this 
work addresses. Among other currently used methods, conventional machine learning algorithms and 
heuristic approaches can overlook the complex, non-linear patterns observed in traffic data. These limits 
lead to mistakes in traffic prediction, therefore weakening traffic control systems. 
The objectives of this research are threefold: 
1. To capture the dynamic and non-linear character of traffic data by means of a new IoV traffic 

prediction model integrating bidirectional memory, spatiotemporal constraints, and local search 
approaches.  

2. To increase adaptability of the prediction model so allowing the model to control noise, outliers, and 
sudden traffic pattern changes by means of non-linear analysis.  

3. The proposed model will be compared with present methods including NSGA, FL, and GRU showing 
its perfection in terms of prediction accuracy, error reducing, and computational efficiency. 

The novelty of this work is the combination of numerous approaches to address the inherent challenges 
of IoV traffic prediction. The proposed paradigm offers several really significant novel concepts: 
1. Using a Bi-LSTM network helps the model to simultaneously examine past and future traffic data by 

capturing temporal correlations in both directions, hence increasing the accuracy of traffic estimates.  
2. Geographical and temporal dependencies are introduced into the model to ensure preservation of 

the interrelationships between numerous traffic parameters. This approach allows exact traffic flow 
over many places and times to be modeled.  

3. A local search algorithm increases the model flexibility and helps it fine-tune forecasts in real-time 
by means of exploring nearby solutions and parameter adjustment dependent on local traffic 
conditions.  

4. The model uses non-linear transformation techniques to solve the intrinsic non-linearity of traffic 
data. Residual analysis and model modification enable to correctly depict complex traffic patterns 
lost by conventional models. 

The key contributions of this research are: 
1. Combining bidirectional memory, spatiotemporal constraints, local search, and non-linear analysis, a 

new IoV traffic prediction model offers a whole solution to the traffic prediction challenges in 
dynamic environments.  

2. Extensive experiments show clear improvements in prediction accuracy, error reduction, and 
computing economy, thereby proving the model superiority over present methods (NSGA, FL, GRU).  

3. Introduction of a framework for IoV traffic prediction that can be tuned for real-time applications in 
intelligent transportation systems, therefore supporting the creation of more efficient and safer 
urban traffic management solutions. 

 
2. RELATED WORKS 
Cyber-physical systems (CPSs) have as its fundamental characteristic the blend of cyber-communication 
infrastructure with physical components including control systems, sensors, actuators, and the 
surroundings. Real-time communication and cooperation among different parts of intelligent 
transportation systems (ITS) depend on these technologies nowadays. Particularly in disciplines where 
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traditional analytical or statistical methods were originally applied, current advancements in Deep 
Learning (DL) have tremendously accelerated ITS evolution. Apart from sophisticated driverless car 
technologies, the application of DL techniques has enhanced traffic control, safety, maintenance expenses, 
and performance for public transportation and ride-sharing. Most recent research attempts to highlight 
the development driven by DL in this field and provide comprehensive understanding of DL model use in 
ITS. By means of real-world traffic data training for DL models, researchers aim to better predict and 
detect potential traffic occurrences, thereby improving the overall traffic forecasting accuracy [11].  
Research stressing the effectiveness of multiple deep learning methods for traffic prediction expose even 
more the opportunities of DL methods in ITS. Notable is the Attention-based hybrid Convolutional Neural 
Network with Long Short-Term Memory (AHCNLS), designed to generate real-time traffic prediction by 
analyzing the spatial and temporal relationships between GPS trajectories and contextual components. 
This method has been evaluated using publicly available datasets showing advantages over other 
methods and underlining the excellence of deep learning models in traffic identification and prediction 
over state-of- the-art shallow models [12].  
Since it lets Road Side Units (RSU) and cars transmit traffic data in real-time, therefore enhancing driving 
conditions and road safety, the Internet of Vehicles (IoV) has gained a lot of interest. Combining IoV with 
Information-Centric Networking (ICN) offers a new approach to networking architecture that transcends 
a standard Internet Protocol (IP) host-centric paradigm to a content-centric one. This shift especially 
supports efficient content delivery and retrieval in circumstances requiring real-time traffic applications. 
Mobile Edge Computing (MEC) enhances this even more and allows network edge delivery of real-time 
traffic prediction and safety applications by cutting content retrieval latency. A proposed Mobile Edge-
based Emergency Messages Dissemination Scheme (MEMDS) effectively uses DL-based Artificial Neural 
Networks (ANN) to predict and detect the severity of traffic events, so showing considerable 
improvements in data delivery ratios, average delay, hop count, and content retrieval latency, when 
compared to other approaches including DCN and flooding [12].  
Another area of current research is the challenge of ensuring dependability in IoV environments, 
particularly in view of hostile attacks. Attackers' vehicles can create bogus Basic Safety Messages (BSMs) 
or Event Report Messages (ERMs), therefore fooling other vehicles and compromising traffic control 
systems. To counteract these risks, traffic data-based detection techniques including vehicle consensus 
have been developed. By means of Gradient Boosting Decision Trees (GBDT) for anomaly detection and 
data clustering techniques, these systems identify benign from threatening objects. By demonstrating 
improved performance in recognizing erroneous BSM and ERM than in current baselines, extensive 
simulations have proven the efficiency of these techniques [13].  
Furthermore of great relevance for research is efficient feature selection in IoV. Strict feature selection is 
critically essential to build effective vehicle collision detection systems from the massive datasets 
produced in IoV environments—containing occasionally hundreds of thousands or even millions of 
features. Conventional methods such Pearson correlation coefficient (PCC) have limits, particularly in 
extracting relevant features because of weak non-linear connections. To overcome this we propose a 
multi-objective, filter-based hybrid non-dominated sorted genetic algorithm III with gain ratio and bi-
directional wrapper. This approach generates really good automotive collision detection classifiers by 
selecting the most relevant subset of features. Comparative study shows that this method offers a more 
efficient solution for IoV environments than current hybrid-, wrapper-, and filter-based feature selection 
methods inside the NSGA family [14].  
Moreover displaying enormous possibilities for optimizing vehicle traffic inside IoV systems is federated 
learning (FL). From initiatives based on FL, Reroute recommendations, promote public transportation, 
and provide drivers smart health advice help to solve difficult transportation difficulties. These include 
accurate vehicle position monitoring, real-time car count, vacancy data, cluster-based communication 
models aimed to stop information loss or delay. Future ITS developments depend mostly on FL since their 
acceptance enhances route planning and so improves IoV systems [15].  
Finally, short-term traffic flow prediction remains a top priority for research particularly in China 
towards Industry 4.0 and the development of autonomous cars. Traffic flow forecast accuracy has 
potential to be raised by deep learning models like GRU (Gated Recurrent Unit). By integrating GRU with 
fine-grained traffic flow statistics algorithms, researchers have developed models able to correctly 
estimate traffic situation and maximize urban traffic conditions. Several simulation models have shown 
the efficiency of these models, therefore demonstrating their capacity to tackle the difficulties with 
modern transportation systems [16]. 
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Table 1: Summary of Methods, Algorithms, Methodologies, and Outcomes 
Method Algorithm Methodology Outcomes 
[11] Cyber-Physical 
Systems (CPS) in ITS 

Deep Learning 
(DL) 

Combination of CPS and DL 
techniques for ITS 

Enhanced traffic management, 
improved safety, reduced 
maintenance costs, optimized 
performance for public 
transport 

[12] IoV Traffic 
Prediction with 
AHCNLS 

Attention-
based Hybrid 
CNN-LSTM 

Real-time traffic prediction 
considering spatial and 
temporal connections 
between GPS trajectories 

Improved traffic prediction 
accuracy, advantages over 
competing methods 

[13] Mobile Edge-
based Emergency 
Messaging (MEMDS) 

ANN + MEMDS Edge computing for real-time 
traffic prediction and 
emergency message 
dissemination 

Significant improvements in 
data delivery ratio, average 
delay, hop count, and content 
retrieval latency 

[14] Traffic Anomaly 
Detection using 
GBDT 

Gradient 
Boosting 
Decision Tree 

Anomaly detection using time 
series data and vehicle 
consensus mechanism 

Superior detection of false BSM 
and ERM compared to existing 
baselines 

[15] Feature 
Selection in IoV 

NSGA-III with 
Gain Ratio & 
Wrapper 

Multi-objective filter-based 
hybrid approach for selecting 
significant features in vehicle 
collision detection 

Higher accuracy in vehicle 
collision detection, improved 
feature selection efficiency 

[16] FL-based 
Vehicle Traffic 
Optimization 

Federated 
Learning (FL) 

FL for vehicle route 
optimization, real-time 
location tracking, and 
communication efficiency 

Enhanced route optimization, 
real-time traffic management, 
reduced communication delays 

[17] GRU-based 
Short-term Traffic 
Flow Prediction 

Gated 
Recurrent Unit 
(GRU) 

Short-term traffic prediction 
in the IoV environment using 
deep learning 

Improved prediction accuracy, 
better traffic flow statistics in 
various scenarios 

 
Even with the advancements in ITS and IoV through deep learning and other advanced algorithms, 
achieving optimum real-time traffic prediction, safety, and management across numerous environments 
remains challenging. Many times, present methods either have poor sensitivity in managing non-linear 
connections in feature selection or fail to include complete real-time data processing. Moreover not fully 
addressed is the scalability of these systems in ever more complex metropolitan settings, which 
emphasizes the need of more durable, flexible, and scalable solutions. 
 
3. PROPOSED METHOD 
Combining non-linear analysis, local search optimization, bidirectional long-term memory (Bi-LSTM) 
network with spatiotemporal limitations, the proposed method forecasts IoV traffic as in figure 1. Using 
its capacity to process data in both forward and backward directions, so exploiting past and future 
information for enhanced accuracy, the Bi-LSTM network is used to capture temporal dependencies 
starting with standardizing input attributes and noise-removing traffic data preprocessing. 
Spatiotemporal limitations help to enhance the model understanding of spatial correlations between 
adjacent road segments. These limitations are implemented using a spatiotemporal adjacency matrix, 
therefore encoding the interactions among various traffic network sites. To maximize the model 
performance one employs a local search method. This approach locally to optmize prediction errors, so 
iteratively altering the model parameters. Non-linear analysis then helps to find and modify traffic 
pattern anomalies so that the model remains robust under several conditions. 
 

 
Figure 1. Proposed Framework 
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Pseudocode: 
Initialize Bi-LSTM model 
Preprocess traffic data 
Construct spatiotemporal adjacency matrix 
for each epoch do 
    Train Bi-LSTM using preprocessed data 
    Apply spatiotemporal constraints 
    Perform local search to optimize parameters 
    Apply non-linear analysis to adapt to anomalies 
end for 
Generate predictions 
Evaluate model performance  
 
3.1. Model Initialization 
The phase of model initialization is essential in the proposed IoV traffic prediction system since the Bi-
LSTM network is built alongside the spatiotemporal constraints guiding the model understanding of the 
basic traffic patterns. 
 
3.1.1. Initialization of the Bi-LSTM Network 
The ability of the Bi-LSTM (Bidirectional Long Short-Term Memory) network to record past as well as 
future relationships in sequential data determines accurate traffic prediction. Usually running from past 
to future, a traditional LSTM network just addresses data in one direction. Conversely in a bi-LSTM, two 
LSTM networks run concurrently—one forward and one rearward. This allows the model consider future 
and historical traffic data concurrently. 

Let 
1 2[ , , , ]Tx x x X represent the sequence of input traffic data at time steps 1,2, ,t T  , where xt 

is the traffic feature vector at time t. The Bi-LSTM computes the hidden states andt th h
 

for the forward 

and backward LSTM respectively: 

forward 1LSTM ( , )t t th x h 
 

 

backward 1LSTM ( , )t t th x h 
 

 

The hidden state htis formed by concatenation of these two states at every time step:  

[ ; ]t t th h h
 

 

This combined hidden state htcaptures both forward and backward information, making it more robust 
for traffic prediction. 
 
3.1.2. Spatiotemporal Constraints 
Bi-LSTM model addresses spatial linkages between distinct road segments as well as their time 
correlations is the spatiotemporal limitations. Reflecting these limits, a spatiotemporal adjacency matrix 

A codes the relationships between road segments in both space and time.  

Consider a matrix [ ]ijaA  be an N N matrix where N is the number of road segments. Each element 

aij indicates the degree of the relationship between road segments i and j. One can create the adjacency 
matrix by means of geographic proximity, road network architecture, or historical traffic correlation.  
The Bi-LSTM model combines these constraints by changing the hidden states in response to interactions 
with different segments:  

,

1

N

t ij t j

j

h a h


   

where, 

'th  - - updated hidden hidden state at t for road segment i by means of the hidden states of surrounding 

segments jweighted by the suitable adjacency values aij.  
 
3.1.3. Initialization Process 
Usually using Xavier or He initialization, the Bi-LSTM parameters—including weights and biases—are 
randomly generated at initializing. Adjacent matrix A is computed precomputed depending on spatial and 
temporal characteristics of traffic networks. The model is then set to start training in its full. The Bi-LSTM 
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network deals with the temporal sequence of traffic data while the spatiotemporal restrictions change the 
model learning to ensure that the spatial links are preserved and suitably taught. This baseline helps the 
model be ready for more exact and effective training phase learning.  
 
3.1.3.1. Training with Local Search 
The Training with Local Search phase is to increase the accuracy and resilience of the IoV traffic forecast 
model by so increasing its parameters by way of an iterative optimization process. Concurrently training 
the Bi-LSTM network in this phase employs a local search method to to optmize prediction errors by 
modulating the model parameters. 
 
Training the Bi-LSTM Network 

The Bi-LSTM network learns to link input traffic data sequences 
1 2[ , , , ]Tx x x X to output 

predictions 
1 2[ , , , ]Ty y y Y , during the training phase where yt stands for the anticipated traffic 

condition at time t. By means of backpropagation to minimize a loss function measuring the error 
between the expected and actual traffic conditions, thereby adjusting the network parameters including 
weights W and biases b. The most widely used loss function for regression uses including traffic 
prediction is the Mean Squared Error (MSE):  

 2

1

1
MSE ( )

T

t t

t

y y
T 

   

where  


ty  - predicted traffic condition at t, and  

yt - actual observed traffic condition. 
 
Local Search Optimization 
While backpropagation changes the parameters globally to optimize the loss, the local search 
optimization step is used to investigate the local parameter space surrounding the existing solution, so 
additional refining of these parameters. This step ensures that the model converges to a better local 
minimum, thereby maybe avoiding issues including getting caught in bad local minimum. The local search 
technique uses: 
 Parameter Perturbation: For each parameter θi (where θ- parameters set of W and b, a small 

perturbation Δθi is applied to generate a new candidate parameter i i i      . 

 Objective Function Evaluation: The objective function, typically the loss function (MSE in this 
case), is evaluated for the perturbed parameters: 

 2

1

1
MSE ( ( ))

T

t t i

t

y y
T





   

where  ( )t iy    - prediction made using the perturbed parameter θi′. 

 Acceptance Criterion: If the perturbed parameter set θi′ results in a lower MSE than the original 
parameter set θi, the update is accepted, and θi is replaced by θi′. Otherwise, the original parameter is 
retained. 

if MSE MSE

otherwise

i

i

i






 
 


 

 Iterative Refinement: This process is iterated for a fixed number of steps or until convergence, 
where further perturbations no longer yield significant improvements in the loss. 

 
Combined Training and Optimization 
Over the training phase, the Bi-LSTM network parameters are changed locally using the local search 
method as well as globally via backpropagation. The integrated approach ensures not only a more 
comprehensive optimization but also highly optimized to minimize prediction errors in some domains of 
the parameter space. The resulting model is one that has been carefully tuned to match the generalizing 
capacities achieved by backpropagation with the precision and robustness supplied by local search 
optimization. The model capacity to properly forecast complex IoV traffic patterns is much enhanced by 
this double optimization strategy. 
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Pseudocode: Training with Local Search 
# Initialize Bi-LSTM network parameters (weights W and biases b) 
Initialize Bi-LSTM(θ)  # θ = {W, b} 
# Define hyperparameters 
learning_rate = α 
local_search_iterations = L 
perturbation_size = Δθ 
# Preprocess input traffic data 
X, Y = preprocess_traffic_data() 
# Define loss function (Mean Squared Error) 
function MSE(Y, Y_hat): 
    return (1/T) * sum((Y - Y_hat)^2) 
# Training loop 
for each epoch in epochs: 
    # Forward pass through Bi-LSTM to get predictions 
    Y_hat = Bi-LSTM(X, θ) 
    # Compute loss 
    loss = MSE(Y, Y_hat) 
    # Backpropagation to compute gradients 
    gradients = compute_gradients(loss, θ) 
    # Update parameters globally using gradient descent 
    θ = θ - α * gradients 
    # Local Search Optimization 
    for each iteration in L: 
        # Perturb each parameter in θ locally 
        for each parameter θ_i in θ: 
            # Generate a small random perturbation Δθ_i 
            θ'_i = θ_i + Δθ_i 
            # Compute new predictions with perturbed parameters 
            Y_hat' = Bi-LSTM(X, θ') 
            # Evaluate the objective function with perturbed parameters 
            loss' = MSE(Y, Y_hat') 
            # Acceptance criterion: update parameter if loss improves 
            if loss' < loss: 
                θ_i = θ'_i 
                loss = loss' 
            else: 
                θ'_i = θ_i  # Retain the original parameter if no improvement 
    # Continue training until convergence or max epochs 
    if convergence_criteria_met(loss): 
        break 
# Final trained model with optimized parameters θ 
return θ 
 
3.2. Non-Linear Analysis 
The non-linear analysis phase in the proposed IoV traffic prediction model will help to handle the natural 
complexity and irregularities in traffic patterns. Traffic data shows non-linear characteristics most of 
which include The model uses non-linear analysis—that is, the identification and adaptation to these non-
linearities—to capture these intricate dynamics and hence increase prediction accuracy. Unexpected 
changes in vehicle flow, different road conditions, and erratic events affect this process.  
For reasons including traffic flow can be slightly non-linear. 
 Sudden changes in traffic conditions: like accidents, roadblocks, or abrupt weather changes. 
 Non-linear correlations between different traffic features: such as the interaction between 

speed, density, and flow on different road segments. 
Usually, non-linear systems are stated by equations that depart from simple linear relationships—that is, 
y = mx + b. Instead they could demand logarithms, exponentials, or higher order terms. First seeing the 
traffic forecast problem as a non-linear regression problem helps us to model these non-linearities. Stated 
as such, let the output traffic conditions Y and the input traffic features X: 
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( )f Y X ò  

where  
f(X) - non-linear function, and  
ϵ - error term. 
 
3.2.1. Non-Linear Feature Transformation 
One approach to capture non-linear interactions is to convert the input features X into a higher-
dimensional space in which the relationships get more linear. Often used non-linear basis functions in this 
regard are a poisson transformation could, given degree d, modify the feature xi as follows:  

2 3( ) [ , , , , ]d

i i i i ix x x x x    

Such modifications enable the model to better show the non-linear interactions among features. 
 
3.2.2. Non-Linear Function Approximation 
The Bi-LSTM network uses non-linear analysis—that is, the approximation of the non-linear function f(X) 
by means of activation functions among the network layers. Often used activation systems with non-
linearity consist in:  

 Sigmoid:
1

( )
1 x

x
e







 

 Tanh: tanh( )
x x

x x

e e
x

e e









 

 ReLU (Rectified Linear Unit): ReLU( ) max(0, )x x  

By transforming the linear output of every neuron into a non-linear form, hence modeling complex, non-
linear relations and allowing the network to more closely fit non-linear traffic patterns. 
 
3.2.3. Non-Linear Residual Analysis 
Residual analysis, in which the residuals—the deviations between the actual traffic conditions Y and the 

projected conditions Y are investigated to uncover non-linear patterns the model may not have first 
caught—where residuals are computed as:  

R  Y Y  
These residuals then are searched for any structures or trends suggesting non-linear links not justified by 
the model. Should such trends be discovered, additional non-linear characteristics or transformations are 
included into the model to improve capture of these dynamics. 
 
3.2.4. Adaptive Non-Linear Modeling 
To fit non-linearities, the model finally dynamically changes its parameters or adds additional non-linear 
components depending on the residual analysis. This adaptive method ensures that the model maintains 
strength even when traffic conditions change, hence keeping high prediction accuracy as in figure 2. 
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Figure 2. Adaptive Non-Linear Modelling 

 
Pseudocode: Non-Linear Analysis 
# Preprocess and transform traffic data 
X_transformed = apply_non_linear_transformation(X) 
# Define non-linear function approximation (using activation functions) 
function non_linear_function_approximation(X_transformed, θ): 
    # Apply Bi-LSTM network with activation functions 
    Y_hat = Bi-LSTM(X_transformed, θ) 
    return Y_hat 
# Compute the residuals 
function compute_residuals(Y, Y_hat): 
    return Y - Y_hat 
# Analyze residuals for non-linear patterns 
function analyze_residuals(residuals): 
    # Check for patterns in residuals (e.g., using statistical tests or visualization) 
    non_linear_patterns_detected = detect_patterns(residuals) 
    return non_linear_patterns_detected 
# Adaptive Non-Linear Modeling 
function adaptive_non_linear_modeling(X_transformed, Y, θ): 
    # Perform initial prediction 
    Y_hat = non_linear_function_approximation(X_transformed, θ) 
    # Compute residuals 
    residuals = compute_residuals(Y, Y_hat) 
    # Analyze residuals to detect non-linear patterns 
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    patterns_detected = analyze_residuals(residuals) 
    # Adapt the model based on detected patterns 
    if patterns_detected: 
        # Add non-linear features or transformations based on residual analysis 
        X_transformed = enhance_non_linear_features(X_transformed) 
        # Re-train the model with enhanced features 
        Y_hat = non_linear_function_approximation(X_transformed, θ) 
        residuals = compute_residuals(Y, Y_hat) 
    return Y_hat, residuals, θ 
# Non-Linear Analysis Loop 
for each iteration in analysis_iterations: 
    # Apply non-linear analysis 
    Y_hat, residuals, θ = adaptive_non_linear_modeling(X_transformed, Y, θ) 
    # Check convergence criteria 
    if convergence_criteria_met(residuals): 
        break 
# Final model with non-linear adaptations 
return Y_hat, residuals, θ 
# Helper functions 
function apply_non_linear_transformation(X): 
    # Apply polynomial, Gaussian, or other non-linear transformations 
    X_transformed = apply_transformation(X) 
    return X_transformed 
function detect_patterns(residuals): 
    # Implement pattern detection algorithms (e.g., statistical tests, visual analysis) 
    return patterns_detected 
function enhance_non_linear_features(X_transformed): 
    # Add additional non-linear features or transformations based on detected patterns 
    X_transformed_enhanced = add_features(X_transformed) 
    return X_transformed_enhanced 
 
4. RESULTS AND DISCUSSION 
The experiments for IoV traffic prediction utilizing bidirectional memory, spatiotemporal constraints, 
local search, and non-linear analysis were conducted using the  programming language with TensorFlow 
and Keras as the simulation tools. Performance metrics used for evaluation include Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Prediction Accuracy (PA). The proposed method was 
compared against established approaches such as Non-dominated Sorting Genetic Algorithm (NSGA), 
Fuzzy Logic (FL), and Gated Recurrent Unit (GRU) models.  
 

Table 2: Experimental Setup/Parameters 
Parameter Value 
Simulation Tool TensorFlow, Keras 
Operating System Ubuntu 20.04 LTS 
Batch Size 64 
Epochs 100 
Learning Rate 0.001 
Local Search Iterations 50 
Perturbation Size (Δθ) 0.01 
Activation Function ReLU, Tanh 
Non-linear Transformation Polynomial (degree 3) 
Loss Function Mean Squared Error (MSE) 
Optimizer Adam 
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Figure 3: Results of Training Phase 
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Figure 4. Results of Testing phase 
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Figure 5. Results of Validation Phase 
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When compared between the proposed method and current approaches (NSGA, FL, and GRU), mean 
absolute error (MAE), root mean squared error (RMSE), and prediction accuracy (PA) reveal the 
noteworthy gains gained by the proposed methodology across major performance parameters.  
The proposed method recorded over the training period depicted in figure 3 with an MAE of 0.328, RMSE 
of 0.035, and PA of 96.8%. On the other hand, NSGA, FL, and GRU had MAEs of 0.034, 0.037, and 0.032 
respectively; combined with RMSEs of 0.042, 0.45, and 0.040. Using the proposed method reduces MAE 
and RMSE by showing a more accurate fit to the training data, therefore reducing the mistakes from the 
present methods. The PA of the proposed method surpasses that of NSGA (94.7%), FL (93.2%), and GRU 
(95.4%) with its increased prediction accuracy.  
The proposed approach maintained good performance in the testing phase illustrated in figure 4 with an 
MAE of 0.031, RMSE of 0.038, and PA of 95.6%. For FL, 0.043 (MAE), 0.050 (RMSE), and 91.5% (PA; for 
NSGA, 0.039 (MAE); and for GRU, 0.3636 (MAE); and 94.2% (PA). These results confirm the proposed 
method resilience in managing unseen data by offering lower prediction errors and higher accuracy.  
The proposed method achieved what figure 4 depicts with an MAE of 0.030, RMSE of 0.037, and PA of 
95.9%. With MAEs of 0.038, 0.041, and 0.035, NSGA, FL, and GRU showed higher error rates; RMSEs were 
0.45, 0.48, and 0.042 respectively. Predicting accuracy-wise, the validation results reveal that the 
proposed method frequently beats NSGA, FL, and GRU, so enabling generalizing successfully. 
 
5. CONCLUSION 
The proposed method for IoV traffic prediction shows notable advancement over current methods such 
NSGA, FL, and GRU by combining bidirectional memory, spatiotemporal limitations, local search, and non-
linear analysis. By means of thorough tests, the proposed model frequently outperformed conventional 
methods over significant criteria like MAE, RMSE, and PA. Although the proposed method obtained lower 
MAE and RMSE values in both training and testing phases, indicating a more precise prediction capacity, 
it represents its improved accuracy and gives higher PA. Consistent performance throughout all datasets 
helped the validation procedure considerably increase the generalizing capacity and model durability. 
These results highlight how effectively the proposed approach exactly reflects the complex, non-linear 
dynamics inherent in IoV traffic data. Local search paired with non-linear analysis allows one to generate 
adaptable models, therefore transcending the limitations of standard methods. 
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