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Abstract

The main concern is the uncertainty in the real-world solid transporta-
tion problem. This study examines a supply, demand, and conveyance
capacity-based multi-choice solid stochastic multi-objective transporta-
tion problem (MCSS-MOTP). Due to uncertainty, the concrete objective
function coefficients of the proposed model are of multivariate type. Fur-
thermore, the parameters of the constraints are treated as independent
multivariate random variables with normal distribution. First, a New-
ton divided difference method-based interpolation polynomial is described
that extends an interpolation polynomial using practical properties at
non-negative integer nodes to deal with any multiple-choice parameter.
Second, the probabilistic constraints are converted into precise ones uti-
lizing a stochastic programming approach. In the end, ranking procedure
was used to compare the existing approach with the old models. The
proposed model’s applicability was confirmed using a numerical example.

Keywords- Solid transportation problem; Newton divided difference; Stochas-
tic programming; multi-choice random parameter; Ranking of solutions
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1 Introduction

The first and most significant use of the linear programming problem is in
transportation [20]. It has numerous applications in inventory control, supply
management, logistics systems, and production planning, among others. By
taking into account the standard transportation problem’s parameters are cost,
supply, and demand. However, given the level of market competition today,
it’s possible that the criteria aren’t presented precisely. The price of the prod-
uct may change occasionally or it may depend on how the product is made.
Additionally, because information on the shipping goods is unavailable, supply
and demand may be ambiguous in nature. For these reasons and to deal with
ambiguous information, Zadeh[16]developed the idea of ambiguity.

In numerous fields including Economics, Psychology, Philosophy, Mathemat-
ics, and Statistics, decision-making is crucial. The necessity of transportation
as a component of distribution networks must be acknowledged. The main ob-
jective of the transportation problem (TP) is to reduce the price of transferring
goods between consumers and producers so that manufacturers may more eas-
ily satisfy consumers’ demands. The TP’s parameters are price, supply, and
demand. We may transfer goods from sources to destinations using different
modes of transportation even though there are many modes of transportation
accessible for shipments of commodities in a transportation system if we want
to save money or meet deadlines. The fundamental TP was first expressed by
Hitchcock [13] and later, according to the literature, it was widely discussed by
many authors.

When there are random parameters involved in an optimization problem,
stochastic programming (SP) techniques are applied. This indicates that some
of the parameters in the model coefficients have known probability distributions
that indicate they are known with uncertainty. Typically, SP arises frequently
in a wide range of real-world management science, engineering, and technology
challenges that contain some stochastic factors, i.e., uncertain input data, and
models built on unreliable information. Because of the rapid advancement of
computers and contemporary optimization techniques over the past five decades,
there have been an increasing number of stochastic optimization applications to
various challenging real-world decision-making situations. SP models have been
effectively used to a number of applications, including supply chain manage-
ment, environmental planning, telecommunications, transportation, and plan-
ning for energy and financial resources.

A mathematical method called stochastic programming is used to resolve
optimization problem with uncertainty. Stochastic programming considers the
randomness or variability of these values as opposed to conventional optimiza-
tion techniques, which assume deterministic values for variables. By taking into
account a variety of potential outcomes and the corresponding probabilities, it
enables decision-makers to make educated decisions. For instance, stochastic
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programming in finance can be used to choose the best investment portfolio by
taking into account various market conditions and their probabilities. It can
be used in supply chain management to optimize inventory levels by taking un-
certain demand and supply disruptions into account. A potent tool for making
decisions in complicated and uncertain contexts is stochastic programming.

The solid transportation problem (STP), also known as three-dimensional
TP or three-dimensional TP, is a developed version of the well-known TP that
was first modelled by Schell [11]and developed by Haley [15]. The objective
of STP is to transport homogeneous goods from their origin to their final des-
tination using different modes of transportation to minimize the total cost of
transportation. A three-dimensional TP’s parameters include the product’s
availability at source points, the product’s needs at destination points, and the
carrying capacity of different modes of transportation (such as trucks, cargo
planes, goods trains, ships, etc.) used to move the product from sources to
destinations. Due to the inclusion of multiple variables, such as equipment fail-
ure and labor concerns for manufacturing, market mode, road condition, and
weather conditions for transportation, the problem’s parameters are not deter-
ministic in real life. Random variables are occasionally used to describe these
uncertainties, particularly stochastic ones. When formulating a real-world STP,
we must take into account the optimization of a number of goals, including
minimizing transportation time, minimizing loss during transit, and minimiz-
ing transportation cost. This knowledge prompts us to take into account a
stochastic multi-objective STP. The STP is a significant study area from both
a theoretical and a practical standpoint. In this field of study, numerous re-
searchers have made substantial contributions. Supply, demand, transportation
capacity, direct costs, and fixed charges are all unknown variables in the fixed
charge STP that Zhang et al.[9] discussed.

An urgent situation in the transportation sector that needs immediate at-
tention and a solution is referred to as a ”solid transportation problem.” When
there is a lack of dependable and effective transportation infrastructure, it can
cause delays, traffic, or poor connectivity. For instance, if a city’s public trans-
portation infrastructure is out of date and unable to handle the rising demand,
the city may have a serious transportation issue. As a result, travellers may ex-
perience crowded buses, protracted waits, and frustration. To ensure a smooth
and efficient movement of people and commodities, solving solid transportation
issues needs thoughtful planning, investment in infrastructure development, and
competent management.

The majority of real-world, practical decision-making issues are modelled us-
ing multiple choices. The use of multi-choice optimization techniques has grown
in importance in a variety of fields, including technology, business, transporta-
tion, and military applications. The price indices the objective function’s Cijk

might stand in for the price of moving a unit of production from source i to
destination j by conveyance k . Due to rising fuel prices and other important
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factors, let us present a multiple-choice version of the cost coefficient of the ob-
jective function for the transportation problem. Supply and demand parameters
should also be multi-choice in order to account for market price fluctuations for
all items. Multiple choice programming, which Healy [25] initially invented, is
a method for solving linear programming problems with zero-one variables.

Mathematicians and computer scientists utilize Newton’s divided difference
interpolation as a numerical technique to approximate a function from a collec-
tion of data points. Its foundation is the idea of divided differences, which entails
figuring out the variations between related data points. This method enables
the construction of a polynomial function that traverses each of the provided
data points. Newton’s Divided Difference a multi-choice fractional stochastic
transport problem can be solved using interpolation by transforming it into a
deterministic model [14]. A method for solving MCFS-MOTPs by interpolating
multi-choice parameters, transforming probabilistic constraints, linearizing the
problem, and solving using fuzzy goal programming and ϵ-constraint method [4].
A method for solving MOSSTP under uncertainty by formulating it as a chance-
constrained programming problem and using global criterion method and fuzzy
goal programming approach to find good solutions in a reasonable amount of
time [17]. A new approach for analysing STP by combining multi-choice pro-
gramming and stochastic programming, and using a transformation technique
to find an optimal solution [18]. A weighted goal programming approach for
multi-objective transportation problems that can obtain compromise solutions
according to the decision-maker’s priorities [2]. A weighted goal programming
approach for multi-objective transportation problems that finds compromise
solutions according to the decision-maker’s priorities, illustrated with a numer-
ical example [21]. A method for solving multi-choice stochastic transportation
problems by using Lagrange’s interpolating polynomial to select an appropriate
choice and transforming stochastic supply constraints into deterministic con-
straints [24].

A new transformation technique for solving multi-choice stochastic trans-
portation problems with exponential distribution by introducing binary vari-
ables for each aspiration level of each cost coefficient, transforming probabilistic
constraints into deterministic constraints, and formulating a non-linear deter-
ministic model [8]. A method for solving multi-choice transportation problems
by using Lagrange’s interpolating polynomial and chance technique to select
an appropriate choice and formulate a non-linear mathematical model [7, 23].
A mathematical model for a transportation problem with nonlinear cost and
multi-choice demand is proposed by developing a general transformation tech-
nique and formulating a multi-objective decision making model [19]. A solu-
tion procedure for multi-choice stochastic transportation problem with extreme
value distribution by transforming probabilistic constraints into deterministic
constraints, handling multi-choice type cost coefficients using binary variables
[6].
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Table 1:Comparison of the approach to the present models

Reference S D C MO MC Methodology
Joshi[21] ✓ ✓ ✓ GP using WS

Agrawal[14] ✓ ✓ ✓ NDD
Das[17] ✓ ✓ ✓ ✓ WD
Roy[18] ✓ ✓ ✓ CD
Sayed[4] ✓ ✓ ✓ ✓ NDD
Roy[22] ✓ ✓ ✓ WD

Proposed Approach ✓ ✓ ✓ ✓ ✓ NDD

S∗= Supply, D∗= Demand,C∗= Conveyance,
MO∗=Multi-Objective, MC∗= Multi-Choice,

GP∗= Goal programming,WS∗= Weighted Sum,WD∗= Weibull
Distribution,CD∗= Cauchy’ Distribution,NDD∗= Newton’s divided

difference,

A solution procedure for multi-objective stochastic unbalanced transporta-
tion problem by changing the problem into deterministic scenario using fuzzy
theory [5]. A solution procedure for multi-choice stochastic transportation prob-
lem with Weibull distribution by transforming probabilistic constraints into de-
terministic [10]. A solution procedure for multi-objective capacitated trans-
portation problem with uncertain input information by transforming the uncer-
tain information into deterministic form and solving the resultant MOCTP for
the compromise solution [25]. A method for solving linear programming prob-
lems with multi-choice parameters by interpolating technique [1]. A multi-choice
stochastic transportation problem with extreme value distribution is solved by
transforming probabilistic constraints into deterministic constraints [6]. A two-
phase solution procedure for multi-objective capacitated transportation problem
with uncertain input information is proposed [3]. A solution methodology for
multi-choice stochastic transportation problem with Weibull distribution and
multi-choice cost coefficients is proposed [22].

The paper is organized as follows. Section 1 presents a review of the rele-
vant literature and introduction. Basic definitions that are related to this article
presents in section 2. This paper’s notation is covered in section 3. Section 4
presents the exhaustive problem statement. Section 5 illustrates the process for
solving the given problem. Section 6 proposes a new solution method for the
problem. Section 7 evaluates the performance of the proposed solution method
on a set of numerical examples. Section 8 discusses the theoretical and prac-
tical implications of the proposed method. Section 9 concludes the paper and
suggests directions for future research.
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Figure 1: Pareto optimal solution

2 Basic definitions

2.1 Feasible solution:

A feasible solution to an optimization problem is a set of values for the decision
variables that satisfies all of the constraints of the problem.

2.2 Pareto optimal solution:

A set of ”non-inferior” solutions in the objective space that specify a limit
beyond which none of the objectives can be improved without compromising at
least one of the other objectives is known as a pareto optimum solution.

2.3 Compromise solution:

A compromise solution is a balanced outcome that takes into account multiple
conflicting factors or goals. It involves finding a middle ground that satisfies dif-
ferent objectives without fully favouring one over the others. It’s like reaching a
fair agreement that considers everyone’s preferences. Decision-makers prioritize
the compromise option over all other solutions when taking into account all the
criteria in the multi-objective.

2.4 Ideal solution:

When a problem involves minimization, the ideal solution is one in which each
objective function achieves its optimal minimum.
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2.5 Anti-ideal solution:

When a problem involves minimization, the anti-ideal solution is one in which
each objective function achieves its maximum value.

3 Notations

• R: number of objective functions

• m: number of supply sources

• n: number of demand destinations

• l: number of conveyances

• xijk: amount of shipment from ith supply source to jth demand destination
using kth transportation mode

• Zr: rth objective functions

• crijk: unit cost in the rth objective function

• ai: amount of supply at the ith supply source

• bj: amount of demand at the jthdemand destination

• ek: amount of conveyance capacity of the kth transportation mode

• ϕ: the cumulative distribution functions

• θi: probability for ai

• δj: probability forbj

• σk: probability for ek

• gθi : the value of standard normal variable for ai

• gδj : the value of standard normal variable for bj

• gσk
: the value of standard normal variable for ek

• E(Fai
(wai

)): the mean of supply of interpolating polynomial Fai
(wai

)

• E(Fbj (wbj )): the mean of demand of interpolating polynomial Fbj (wbj )

• E(Fek(wek)): the mean of conveyance of interpolating polynomial Fek(wek)

• V (Fai
(wai

)): the variance of supply of interpolating polynomial Fai
(wai

)

• V (Fbj (wbj )): the variance of demand of interpolating polynomial Fbj (wbj )

• V (Fek(wek)): the variance of conveyance of interpolating polynomial Fek(wek)
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4 Problem Statement:

A transportation company must convey its products from numerous production
facilities to numerous retail locations. There are m production houses, n retail
stores, and l vehicles, assuming that a homogeneous product is conveyed from
the ith production house to the jth retail store by the kth vehicle. Let xijk

serve as a representation of the product’s unit quantity. The parameters for
supplies, demand, and conveyance capacity are thought of as multi-choice ran-
dom parameters since the values of the parameters are not always set due to the
environment’s uncertainty and variety of possibilities. As a result, the defined
problem’s constraints are probabilistic with regard to their degree of want. The
mathematical formulation of the aforementioned problem is as follows because
the objective function is in linear form and the transportation cost is considered
to be of the multi-choice variety:

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

(c1ijk, c
2
ijk, . . . , c

R
ijk)xijk, (1)

Subject to:

P{
n∑

j=1

l∑
k=1

xijk ≤ (a1i , a
2
i , . . . , a

u
i )} ≥ 1− θi, i = 1, 2, . . . ,m (2)

P{
m∑
i=1

l∑
k=1

xijk ≥ (b1j , b
2
j , . . . , b

v
j )} ≥ 1− δj , j = 1, 2, . . . , n (3)

P{
m∑
i=1

n∑
j=1

xijk ≤ (e1k, e
2
k, . . . , e

q
k)} ≥ 1− σk, k = 1, 2, . . . , l (4)

xijk ≥ 0,∀ i, j and k (5)

Where the multi-choice random parameters for the total availability ai at
the ith manufacturing house, regarded as an independent random variable, are
(a1i , a

2
i , . . . , a

u
i ).The multi-choice random parameters (b1j , b

2
j , . . . , b

v
j ) for the over-

all quantity bj of the product at the j
th retail outlets are regarded as independent

random variables. The multi-choice random parameters for the total capacity
ek of the conveyance at the kth vehicle, which is regarded as an independent
random variable, are (e1k, e

2
k, . . . , e

q
k). The probability of meeting the constraints

is represented by the values θi, δj and σk.
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5 Solutions Methodology

5.1 Newton’s divided difference interpolating polynomial
for multi-choice parameters

The Newton’s divided Difference Interpolation numerical approximation tech-
nique is used to convert the multi-choice parameter into the best option. In-
troduce an integer variable so that the interpolating polynomial can be defined
for each option of a multi-choice parameter. The integer variables wt

cijk
, (t =

0, 1, . . . , s − 1) are used since there are s possible cost options in the problem
above.

For each alternative, the integer variables wp
ai
(p = 0, 1, . . . , u − 1), wh

bj
(h =

0, 1, . . . , v − 1) and wg
ek
(g = 0, 1, . . . , q − 1) are introduced since supplies, de-

mands, and conveyance capacity are multi-choice random parameters. Each
multi-choice parameter has a different divided difference that is determined
based on the alternatives. Using Table 2, which lists various divided difference
orders, Newton’s divided difference (NDD) interpolation polynomial is created
for the cost parameter in equation (6).

Table 2:Divided difference (DD)

wt
cij1 Fcijk(w

t
cijk

First DD Second DD Third DD

0 c1ijk
f [w0

cijk
, w1

cijk
]

1 c2ijk f [w0
cijk

, w1
cijk

, w1
cijk

]

f [w1
cijk

, w2
cijk

] f [w0
cijk

, w1
cijk

, w2
cijk

, w3
cijk

]

2 c3ijk f [w1
cijk

, w2
cijk

, w3
cijk

]

f [w2
cijk

, w3
cijk

]

3 c4ijk

Fcijk(wcijk) = f [w0
cijk

] + (wcijk − w0
cijk

)f [w0
cijk

, w1
cijk

] + (wcijk − w0
cijk

)

(wcijk − w1
cijk

)f [w0
cijk

, w1
cijk

, w2
cijk

]

+(wcijk − w0
cijk

)(wcijk − w1
cijk

), . . . , (wcijk − ws−1
cijk

)

f [w0
cijk

, w1
cijk

, . . . , ws−1
cijk

] (6)

Fcijk = c1ijk + (wcijk − w0
cijk

)(c2ijk − c1ijk) + (wcijk − w0
cijk

)(wcijk − w1
cijk

)

(
c3ijk − 2c2ijk + c1ijk
(w2

cijk
− w0

cijk
)

+ · · ·+
s∑

t=1

ctijk
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
(7)

Similarly, by replacing the multiple choice parameters in the program with
its interpolated polynomials for supply, demand, and transportation capacity,
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represented by Fai(wai), Fbj (wbj ) and Fek(wek) Respectively, the mathematical
model can be formulated as follows.

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk, (8)

Subject to:

P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi, i = 1, 2, . . . ,m (9)

P{
m∑
i=1

l∑
k=1

xijk ≥ Fbj (wbj )} ≥ 1− δj , j = 1, 2, . . . , n (10)

P{
m∑
i=1

n∑
j=1

xijk ≤ Fek(wek)} ≥ 1− σk, k = 1, 2, . . . , l (11)

xijk ≥ 0, ∀ i, j and k (12)

5.2 The transformation of probabilistic constraints

The multi-choice parameters were transformed into their interpolating polyno-
mials so that the resulting probabilistic constraints would be transformed into
their deterministic form. To transform its deterministic restrictions into proba-
bilistic ones, we consider the supply’s constraints.

Consider the constraint (9) for every, i = 1, 2, . . . ,m

P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi

or

1− P{
n∑

j=1

l∑
k=1

xijk ≤ Fai(wai)} ≥ 1− θi

Applying Chance constrained technique, this implies

P{Fai
(wai

)− E(Fai
(wai

))√
V (Fai

(wai
))

≤
∑n

j=1

∑l
k=1 xijk − E(Fai(wai))√
V (Fai

(wai
))

} ≤ θi

P{ξai
≤

∑n
j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai
(wai

))
} ≤ θi

ϕ{
∑n

j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai(wai))
} ≤ ϕ(−gθi)

10
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{
∑n

j=1

∑l
k=1 xijk − E(Fai

(wai
))√

V (Fai
(wai

))
} ≤ −gθi

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
)) (13)

The mean and variance of the interpolating polynomial Fai
(wai

) are, respec-
tively, denoted by E(Fai

)(wai
) and V (Fai

)(wai
) accordingly. Additionally, let

ϕ be the standard normal distribution’s cumulative distribution function and
gθi stand for the standard normal variable’s value. Equation (13) thus expresses
the deterministic constraint of the probabilistic constraint (9).

The analogous deterministic constraint for every j = 1, 2, . . . , n and k =
1, 2, . . . , l is as follows. In a similar manner, using the same method to the de-
mand and conveyance capacity constraints

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj )) (14)

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek)) (15)

where, E(Fbj (wbj ), E(Fek(wek) and V (Fbj (wbj ), V (Fek(wek) denotes the mean
and the variance of interpolating polynomial Fbj (wbj ) and Fek(wek) respectively
gδj and gσk

denotes the value of standard normal variable. We compute the ran-
dom interpolating polynomial’s mean and variance as

E(Fai
(wai

)) = E{a1i + (wai
− w0

ai
)(a2i − a1i ) + (wai

− w0
ai
)(wai

− w1
ai
)
a3
i−2a2

i+a1
i

w2
ai

−w0
ai

+ · · ·+
s∑

t=1

ati
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
}

= {E(a1i )+(wai
−w0

ai
)(E(a2i )−E(a1i ))+(wai

−w0
ai
)(wai

−w1
ai
)
E(a3

i )−2E(a2
i )+E(a1

i )
w2

ai
−w0

ai

+. . .+
∑s

t=1
E(at

i)
s−1
t̸=p+1,p=0(w

t−1
cijk

−wp
cijk

)
} (16)

V(Fai
(wai

)) = V {a1i + (wai
− w0

ai
)(a2i − a1i ) + (wai

− w0
ai
)(wai

− w1
ai
)
a3
i−2a2

i+a1
i

w2
ai

−w0
ai

+ · · ·+
s∑

t=1

ati
s−1
t̸=p+1,p=0(w

t−1
cijk − wp

cijk)
}

= {V (a1i )+(wai−w0
ai
)(V (a2i )−V (a1i ))+(wai−w0

ai
)(wai−w1

ai
)
V (a3

i )−2V (a2
i )+V (a1

i )
w2

ai
−w0

ai

+. . .+
∑s

t=1
V (at

i)
s−1
t̸=p+1,p=0(w

t−1
cijk

−wp
cijk

)
} (17)

The Fai
(wai

) mean and variance are shown in equations (16) and (17). Equa-
tions (16) and (17) can also be used to calculate the mean and variance of the
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interpolating polynomial for demand and conveyance capacity.

The deterministic model is implemented with chance constraints and New-
ton’s Divided Difference Interpolation.

Min Zr =
m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk, r = 1, 2 . . . , R

Subject to:
n∑

j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

The multi-choice solid stochastic multi-objective transportation problem (MCSS-
MOTP) can be applied to a variety of real-world problems, such as:

• Supply chain management: The MCSS-MOTP can be used to optimize
the transportation of goods and materials in a supply chain, where the
cost coefficients are uncertain and the objective is to minimize the total
transportation cost and satisfy the demand at each destination with a
specified probability.

• Project management: The MCSS-MOTP can be used to optimize the al-
location of resources in a project, where the cost coefficients are uncertain
and the objective is to minimize the total cost and complete the project
on time with a specified probability.

• Financial planning: The MCSS-MOTP can be used to optimize the allo-
cation of funds in a financial portfolio, where the return on investment
is uncertain and the objective is to maximize the expected return and
minimize the risk with a specified probability.

• Energy management: The MCSS-MOTP can be used to optimize the gen-
eration and distribution of energy in a power grid, where the cost of energy
is uncertain and the objective is to minimize the total cost and meet the
demand at each node with a specified probability.

The MCSS-MOTP is a powerful tool that can be used to solve a variety of
real-world problems. However, it is important to note that the problem may be
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difficult to solve, especially if the number of sources, destinations, and proba-
bilistic constraints are large.

Here are some of the challenges in solving the MCSS-MOTP:

• The problem may be computationally expensive to solve, especially if the
number of sources, destinations, and probabilistic constraints are large.

• The problem may be non-convex, which means that there may be multiple
local optima.

• The problem may be NP-hard, which means that it may not be possible to
find an optimal solution in polynomial time.

• Despite these challenges, the MCSS-MOTP is a valuable tool that can be
used to solve a variety of real-world problems.

6 Approaches to solve the MCSS-MOTP

6.1 First approach

In this we have used the weighted sum method to convert multiple objectives
into a single objective. In which the multi-choice cost parameter is reduced to
a single choice using Newton’s divided difference method. The mathematical
formulation is as follows:

Min Z =

R∑
r=1

drZr

Subject to:

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai

(wai
))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Zr = individual objectives that converted into single choice using New-
ton’s divided difference approach
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6.2 Second approach

In this we have used the Joshi’s method to convert multiple objectives into a
single objective in which each multi choice objective converted into single choice
using NDD approach. The mathematical formulation is as follows:

Min µ′ =
R∑

r=1

µ(1− dr)

Subject to:

m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk ≤ Z∗
r +

µ(1− dr)

ZU
r − ZL

r

, r = 1, 2 . . . , R

n∑
j=1

l∑
k=1

xijk ≤ E(Fai
(wai

))− gθi
√
V (Fai(wai))

m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Z∗
r = individual objectives that converted into single choice using New-

ton’s divided difference approach

6.3 Third approach

Again, we convert multichoice into single choice using NDD approach and solved
the converted problem using Nomani’s method. The mathematical formulation
is as follows:

Min µ′ =

R∑
r=1

µ(1− dr)

Subject to:

m∑
i=1

n∑
j=1

l∑
k=1

Fijk(wijk)xijk ≤ Z∗
r + µ(1− dr), r = 1, 2 . . . , R

n∑
j=1

l∑
k=1

xijk ≤ E(Fai(wai))− gθi
√
V (Fai(wai))
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m∑
i=1

l∑
k=1

xijk ≤ E(Fbj (wbj )) + gδj

√
V (Fbj (wbj ))

m∑
i=1

m∑
j=1

xijk ≤ E(Fek(wek))− gσk

√
V (Fek(wek))

xijk ≥ 0,∀ i, j and k

Where Z∗
r = individual objectives that converted into single choice using New-

ton’s divided difference approach
This introduces the need to rank these methods due to the variety of ap-

proaches available for handling multi-objective transportation problems. To
address this, a tool is required to assist in ranking and selecting the most suit-
able method. It is at this point that the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) [12] is useful. TOPSIS helps rank differ-
ent methods based on their optimal solutions’ performances. In this situation,
the criteria are objective functions, and the alternatives are the best solutions.
In essence, TOPSIS helps us determine which method is the most effective in
terms of achieving optimal solutions for the problem at hand.

7 Numerical Example

Let’s consider the attached MCSS-MOTP:

Min Z1 = c1111x111 + c1121x121 + c1211x211 + c1221x221 + c1112x112 + c1122x122+

c1212x212 + c1222x222

Min Z2 = c2111x111 + c2121x121 + c2211x211 + c2221x221 + c2112x112 + c2122x122+

c2212x212 + c2222x222

Subject to:

Supply constraints

P{ x111 + x112 + x121 + x122 ≤ (a11, a
2
1, a

3
1)} ≥ 1− θ1,

P{ x211 + x212 + x221 + x222 ≤ (a12, a
2
2, a

3
2)} ≥ 1− θ2,

Demand constraints

P{ x111 + x112 + x211 + x212 ≤ b11} ≥ 1− δ1,

P{ x121 + x122 + x221 + x222 ≤ b12} ≥ 1− δ2,

Conveyance capacity constraints

P{ x111 + x121 + x211 + x221 ≤ (e11, e
2
1, e

3
1)} ≥ 1− σ1,
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Figure 2: Flow chart for the proposed method
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P{ x111 + x122 + x212 + x222 ≤ (e12, e
2
2, e

3
2)} ≥ 1− σ2,

xijk ≥ 0,∀ i, j and k

where the multi-choice criteria are described as

Table 3:Transportation cost for first objective

b1 b2
c1ij1 a1 15, 18, 20 15, 16, 18, 19

a2 16, 19, 22 25, 27, 28, 30
c1ij2 a1 14, 17, 19, 22 12, 15, 19

a2 11, 18, 20 20, 21, 22, 25

Table 4:Transportation cost for second objective

b1 b2
c2ij1 a1 8, 10, 13 11, 13

a2 9, 12, 15 7, 9, 11, 14
c2ij2 a1 5, 8, 9, 11 9, 11

a2 13, 17 11, 13, 14

Table 5:Supply; mean, variance and significance level

RV E(a1i ) V ar(a1i ) E(a2i ) V ar(a2i ) E(a3i ) V ar(a3i ) SL
a1 11.28 0.194 5.2 0.25 13.673 0.7712 0.89
a2 10.1 0.17 5 0.24 13.647 0.489 0.97

RV ∗=Random Variable,SL∗=Significance Level

Table 6:Demand; mean, variance and significance level

RV E(b1j ) V ar(b1j ) SL

b1 10 3 0.15
b2 9 2 0.2

Table 7:conveyance capacity; mean, variance and significance level

RV E(e1k) V ar(e1k) E(e2k) V ar(e2k) E(e3k) V ar(e3k) SL
e1 11.28 0.18 6.2 0.24 13.07041 0.542 0.97
e2 10.1 0.16 6 0.25 13.673 0.7412 0.96
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Min Z1 = [15 + 3w111 − 0.5w111(w111 − 1)]x111 + [15 + w121 + 0.5w121

(w121 − 1)− 1

3
w121(w121 − 1)(w121 − 2)]x121+

[16 + 3w211]x211 + [25 + 2w221 − 0.5w221(w221 − 1)

+
1

3
w221(w221 − 1)(w221 − 2)]x221 + [14 + 3w112

−0.5w112(w112 − 1) +
1

3
w112(w112 − 1)(w112 − 2)]x112+

[12 + 3w122 − 0.5w122(w122 − 1)]x122 + [11 + 7w212

−5

2
w212(w212 − 1)(w212 − 2)]x212 + [20 + w222

+
1

3
w222(w222 − 1)(w222 − 2)]x222

Min Z2 = [8 + 3v111 − 0.5v111(v111 − 1)]x111 + [11 + 2v121]x121+

[9 + 3v211]x211 + [7 + 2v221 +
1

6
v221(v221 − 1)

(v221 − 2)]x221 + [5 + 3v112 − v112(v112 − 1)

+
1

2
v112(v112 − 1)

(v112 − 2)]x112 + [9 + 2v122]x122+

[13 + 4v212]x212 + [11 + 2v222

−1

2
v222(v222 − 1)(v222 − 2)]x222

Subject to:

Supply constraints

x111 + x112 + x121 + x122 ≤ 11.28− 6.08r1 + 7.277r1(r1 − 1)

+ϕ−1(0.89)
√
(0.194 + 0.444r21 + 0.491r21(r1 − 1)2)

x211 + x212 + x221 + x222 ≤ 10.1− 5.1r2 + 6.874r2(r2 − 1)

+ϕ−1(0.97)
√
(0.17 + 0.41r22 + 0.404r22(r2 − 1)2)

Demand constraints
x111 + x112 + x211 + x212 ≥ 10 + ϕ−1(1− 0.15)

√
3

x121 + x122 + x221 + x222 ≥ 9 + ϕ−1(1− 0.20)
√
2

Conveyance capacity constraints

x111 + x121 + x211 + x221 ≤ 11.28− 5.08r3 + 5.9752r3(r3 − 1)+

ϕ−1(0.97)
√
(0.18 + 0.42r23 + 0.4205r23(r3 − 1)2)
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x112 + x122 + x212 + x222 ≤ 10.1− 4r4 + 5.8865r4(r4 − 1)+

ϕ−1(0.96)
√
(0.16 + 0.41r24 + 0.4753r24(r4 − 1)2)

0≤ w111 ≤ 2; 0 ≤ w121 ≤ 3; 0 ≤ w211 ≤ 2; 0 ≤ w221 ≤ 3;

0 ≤ w112 ≤ 3; 0 ≤ w122 ≤ 2; 0 ≤ w212 ≤ 2; 0 ≤ w222 ≤ 3;

0≤ v111 ≤ 2; 0 ≤ v121 ≤ 1; 0 ≤ v211 ≤ 2; 0 ≤ v221 ≤ 3;

0 ≤ v112 ≤ 3; 0 ≤ v122 ≤ 1; 0 ≤ v212 ≤ 1; 0 ≤ v222 ≤ 2;

0≤ r1 ≤ 2; 0 ≤ r2 ≤ 2; 0 ≤ r3 ≤ 2; 0 ≤ r3 ≤ 2, s = 1, 2, 3, 4
xijk ≥ 0,∀ i, j and k rs, wijk, vijk ∈ Z+

8 Results and Discussion

Using supply as a multi-choice random parameter, demands, and conveyance
as random variables with Normal Distribution, the numerical examples demon-
strate the multi-objective function in solid form with constraints. LINGO 18.0
software was used to generate the solutions.

Table 8:The solutions obtained for both the objectives separately, ignoring
other objectives, are follows:

S.No. Z1(IS) Z2(AIS) Z1(IS) Z2(AIS) X1 X2

1 w111 = 1 v111 = 1
2 w121 = 0 v121 = 0
3 w211 = 0 v211 = 0
4 w221 = 0 v221 = 0
5 w112 = 0 v112 = 0
6 w122 = 0 v122 = 0
7 w212 = 0 v212 = 0
8 287.6861 140.3208 455.6261 270.2812 w222 = 0 v222 = 0
9 x111 = 0 x111 = 0
10 x121 = 6.1587 x121 = 0
11 x211 = 0 x211 = 0
12 x221 = 0 x221 = 11.6163
13 x112 = 0 x112 = 11.8013
14 x122 = 5.4576 x122 = 0
15 x212 = 11.8013 x212 = 0
16 x222 = 0 x222 = 0

IS∗=Ideal Solution, AIS∗= Anti-Ideal Solution
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Table 9:Comparison of proposed method

S.N. W M1 M2 M3 R(M1) R(M2) R(M3)
1 n1 = 0.1 455.626 388.333 393.3888 0.4363 0.5563 0.5674

n2 = 0.9 140.321 155.073 455.626
2 n1 = 0.2 399.566 367.338 374.718 0.5436 0.6001 0.619

n2 = 0.8 148.945 166.524 399.566
3 n1 = 0.3 399.566 350.568 358.668 0.5436 0.6416 0.6621

n2 = 0.7 148.945 175.672 399.566
4 n1 = 0.4 319.222 336.863 344.723 0.7194 0.6762 0.6931

n2 = 0.6 192.769 183.147 319.222
5 n1 = 0.5 313.496 325.454 347.125 0.7185 0.6043 0.7123

n2 = 0.5 197.351 189.370 313.496
6 n1 = 0.6 313.496 322.961 321.683 0.7185 0.7169 0.6492

n2 = 0.4 197.351 210.589 313.496
7 n1 = 0.7 313.496 309.836 312.714 0. 7185 0.7156 0.6931

n2 = 0.3 197.351 207.108 313.496
8 n1 = 0.8 287.686 303.748 306.564 0.5637 0.6709 0.6528

n2 = 0.2 270.281 223.344 287.686
9 n1 = 0.9 288.786 296.569 298.516 0.5597 0.6206 0.6087

n2 = 0.1 271.581 243.632 288.786
10 w.p. 313.496 305.454 347.125 0.7185 0.6043 0.707

197.351 205.695 313.496

W ∗=Weights, M∗=Method, R∗=Ranking, w.p.∗=Without preference
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Figure 3: Graphical representation of a comparison of the consistency of the
method 1,2 and 3.

A graph that shows the comparison between the method 1, 2 and 3. This
graph is showing the rank. We can see that Method 3 is better than method 1
and 2. It’s like a race, and our method is winning by being closer to what we
want. The graph is like a storyteller that tells us method 3 is good at finding the
right answers. Graph is 2 objective of solid stochastic transportation problem.

9 Conclusion

The MCSS-MOTP has been discussed in this research. Solid multi-choice pa-
rameters support the provided model’s objective function. The transporta-
tion problem can be solved most effectively by combining three different ways
(the stochastic approach, normal randomness, and Newton’s divided difference
approach). The constraints parameters are random multi-option parameters.
Supply, demand, and conveyance are considered to be random variables with
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a normal distribution. The deterministic constraints are obtained by apply-
ing the chance constrained programming to the probabilistic constraints. The
multi-choice parameters were reduced to a single choice with the use of Newton’s
Divided Difference Interpolation, ensuring that the resulting solution would be
ideal. LINGO 18.0 software are applied to solve the above MCSS-MOTP. In
this you can work on MCSS-MOTP with fractional objective in future. In the
real world, transportation problems are often characterized by uncertainty. For
example, the demands at the destinations may be uncertain, or the cost of trans-
portation may fluctuate due to changes in fuel prices. Stochastic programming
is a programming approach that can be used to deal with uncertainty in trans-
portation problems.
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