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ABSTRACT 
A brain condition called Alzheimer's disease results in neuronal malfunctions. Dementia and brain 
function loss brought on by this illness can worsen memory loss, cognitive decline, and behavioural 
issues in people. Current techniques for diagnosing Alzheimer's using MRI pictures only use specific, 
targeted subsets of data depending on factors like gender, age, and other characteristics. They also 
frequently rely on clinical data to help classify the images. The aim of this research is to propose novel 
technique in MRI brain image segmentation as well as classification utilizing DL technique with 
metaheuristic model in optimization for Alzheimer's disease detection. In this proposed model the 
dataset is collected as well as processed for noise removal and segmentation using fuzzy Gaussian C-
adaptive histogram equalization. then the segmented image has been classified using support vector 
convolutional graph transfer VGG-16 learning and optimized using particle grey wolf firefly optimization. 
The experimental analysis has been carried out for various brain MRI image dataset in terms of Detection 
accuracy, mini mental state examination (MMSE), weighted average recognition rate (WARR), recall, 
AUC. Using T1-weighted brain magnetic resonance imaging, an accurate diagnosis of Alzheimer disease 
was made possible by an autonomous brain segmentation and classification algorithm based on deep 
learning. Proposed technique MMSE 90%, Detection accuracy 98%, WARR 95%, Recall 94%, AUC 90%.  
 
Keywords: MRI brain, image segmentation, classification, deep learning technique, metaheuristic model, 
Alzheimer's disease detection     
 
1. INTRODUCTION 
Mild cognitive impairment (MCI) is thought to be a transitional state between normal cognition as well as 
early stages of dementia. Alzheimer disease (AD) is most frequent cause of dementia. Even though the 
available treatments and preventive measures are only marginally successful, a trustworthy diagnostic 
method for making decisions is crucial in the early stages of AD. In neuroradiology, magnetic resonance 
imaging (MRI) is frequently utilised to identify brain abnormalities such as stroke, vascular disease, 
tumour tissue. Nevertheless, MRI has proven less effective in definitively diagnosing degenerative 
illnesses, such as Alzheimer's disease (AD), mostly due to the disease's diffuse fingerprints in MRI images 
that make it difficult to differentiate between disease and normal ageing [1]. Small datasets have been 
utilized to train ML as well as DL techniques, but this lack of training data frequently results in poor 
generalisation performance on new datasets that were not utilized to train methods. According to 
guidelines of Alzheimer's Association and National Institute on Ageing, MR imaging can be a useful 
imaging modality in the diagnosis process for patients diagnosed with AD and MCI. When it comes to AD 
diagnosis, imaging biomarkers are crucial in both clinical and research settings. Understanding 
pathophysiologic mechanisms behind AD as well as its early diagnosis, particularly in preclinical or 
prodromal stage, has greatly advanced with the discovery of amyloid and the t PET ligand [2]. While t 
and amyloid PET offer greater sensitivity and specificity in AD diagnosis, their application in clinical 
practice is restricted due to their high cost, scarcity, and need for ionising radiation. Significant 
biomarkers that might be utilised for AD diagnosis in a clinical research environment include CSF t and 
amyloid. CSF AD biomarkers are likewise not widely available, yet. On the other hand, MR imaging is 
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often accessible and employed in routine practice to bolster the diagnosis of AD and rule out alternative 
explanations of cognitive impairment, such as vascular dementia, stroke, normal-pressure 
hydrocephalus, inflammatory, and neoplastic disorders [3]. It is vitally crucial to accurately diagnose AD 
in its early stages utilising a widely accessible, non-invasive method. Given that structural MRI is more 
widely available and non-invasive than PET, it is a more viable option for imagingbased supplementary 
diagnosis for AD. Additionally, it is possible to include MRI markers into autonomous end-to-end DL 
methods thanks to well-developed pipelines for preparing MRI data. Automated voice recognition, 
aftershock pattern prediction, severe weather condition prediction are just a few of the real-world 
applications where deep learning has already proven effective [4]. Convolutional neural networks 
(CNNs) are a popular design that works well for image-based deep learning. In clinical settings, CNNs 
have been used to objectively diagnose retinal illnesses, screen for breast cancer, and diagnose skin 
cancer.  
Nevertheless, previous attempts to diagnose AD using MRI have not yet proven to be clinically useful. The 
inability of brain MRI-based algorithms to generalise is a significant problem, particularly if they were 
trained on sparse data. For instance, a classifier based on brain imaging might provide accurate forecasts 
for testing samples obtained from a particular hospital where training dataset was obtained. When 
classifier is directly applied to samples from an unidentified hospital, its performance drastically 
decreases [5]. A major contributing factor to performance discrepancies is the fact that brain imaging 
data vary depending on scanner variables, such as vendor, fled of view, voxel size, applied gradient fields, 
hardware of the head coil, pulse sequence, and scanning parameters. The participants' sex, age, 
race/ethnicity, and educational background also vary. Sturdy techniques must function well on a variety 
of populations. A brain imaging-based classifier trained on data from one site finds it challenging to 
generalise to data from unseen sites/scanners due to these variances in the scans and in the populations 
investigated. This has hindered the practical utility of brain imaging-based classifiers in clinical contexts 
[6].  
Major contribution of this research is as follows:  
In this research, a model is proposed to determine as an output whether an individual has mild, 
moderate, or no AD based on brain MRI sample pictures. To provide a novel method for segmentation 
and classification of MRI brain images that combines a metaheuristic optimisation model with deep 
learning techniques. This model suggests utilising fuzzy Gaussian C-adaptive histogram equalization to 
collect and process the dataset for segmentation and noise removal. Particle Grey Wolf Firefly 
Optimisation was used to optimize the segmented image after it had been classified using support vector 
convolutional graph transfer VGG-16 learning.   
 
2. RELATED WORKS 
Deep Learning (DL) techniques are among the latest advancements in ML that have been introduced. To 
prevent bottlenecks during diagnostic support, work [7] suggested using autoencoders with Softmax 
output layers in their medical applications. Convolutional networks are widely used because they are the 
most suited kind for processing pictures and signals, as demonstrated by the research done by [8] and 
others. Author [9] suggested that to enhance performance of a traditional ML classifier, limited 
Boltzmann machines should be used as an initial step. The study examines the effectiveness of health 
recommendation systems that utilise deep learning-based collaborative filtering approaches. The task 
involves comparing several models to identify the most efficient method for providing personalised 
health recommendations. The study assesses parameters including as accuracy, precision, recall, and F1-
score. The results demonstrate that deep learning models surpass standard collaborative filtering 
methods, providing improved accuracy and more pertinent health recommendations. The results 
emphasise the capacity of deep learning to greatly enhance user experience in health recommendation 
systems by offering more personalised and precise guidance derived from individual health data and 
inclinations [10, 11, 12]. Other approaches, like the one from [13], were able to acquire information from 
a vast portion of brain despite computing cost by using grey matter volumes rather than MRI images for 
diagnosis of AD. Information from a variety of medical imaging modalities, such as integrated data from 
horizontal MRI images as well as their matching positron-emission tomography (PET) images, was 
recovered in this work and in several other proposals. In addition to being used to diagnose AD, DL has 
also been used in conjunction with MRI images for other neuroscience-related purposes, as 
demonstrated in [14], where a technique for identifying activity variations in different brain regions 
during rest was suggested. The features in [15] were extracted using a three-dimensional discrete 
wavelet transformation (3D DWT). A 1D DWT was applied to each dimension in order to achieve this. 
Subsequently, volumetric feature extraction was carried out by first obtaining energy, variance, Shannon 
entropy of each brain image's 80 sub-band. The triplet was then fed into a principal component analysis 
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(PCA) module to reduce its dimensionality. After that, an SVM was employed to complete the 
classification. The study [16] employed a Support Vector Machine (SVM) for classification as well as 
independent component analysis (ICA) for feature attraction and picture decomposition. They used the 
shape of a brain to build a tree, and the feature vectors were the branches that corresponded to the 
desired classification. In [17], an entirely different approach was taken, utilising a Genetic Algorithm (GA) 
to investigate possible feature combinations and then voxel selection and Voxel-Based Morphometry 
(VBM) for extraction. The Extreme Learning Machine (ELM) was assembled by this group [18]. According 
to work  
[19], sequential learning is a more effective method. It used a radial basis function network  
(PBL-McRBFN) in conjunction with a projection-based metacognitive learning method. Because of their 
procedure, the training samples could be utilised only once while they were available and then thrown 
away right away. In [20], features were extracted using voxelbased morphometry as well as deformation-
based morphometry. The classification was then accomplished using a lattice computing method that 
included a meta representation with interval numbers, extraction, dimensionality reduction, k closest 
neighbours (k-NN). Because they erroneously assume feature independence, classifiers based on the 
Naive Bayes theorem belong to the standard family of probabilistic classifiers. It has been demonstrated 
that the researchers' Bayesian network decision model [21] works better than other well-known 
classifiers. Despite the fact that [22] presented a multifold Bayesian Kernalization technique that can 
more accurately distinguish AD from NC, they discovered inadequate outcomes in the identification of 
MCI-converter. Principal component analysis (PCA) was utilised in Work [23] to minimise the feature 
space after digital wavelet transform was performed to extract features. The author [24] suggested 
applying deformation-based morphometry (DBM) approaches and suggested five features: the 
displacement field's magnitude, the Jacobian map, modulated GM (MGM), trace of the Jacobian matrix 
(TJM), and geodesic anisotropy (GEODAN). They also recommended using WTT, Bhattacharyya distance 
(BD), and  
Pearson's correlation (PEC) to gauge importance of voxel sites. A method to identify Alzheimer's illness 
was claimed by Work [25]. He used a five-stage machine learning pipeline technique for the detection, 
with a sub-stage for each step. This pipeline was subjected to several classifier applications. His 
conclusion was that the performance measures of the random forest classifier were superior. Author [26] 
compared the performance of imputation and non-imputation approaches using the Random-Forest 
classifier. They found that 87% accuracy is obtained by the imputation approach and 83% accuracy is 
obtained by the non-imputation method. Additionally, it categorised the subjects as either non-demented 
or demented. A multi-atlas method for detecting Alzheimer's disease was proposed in Work [27]. It 
employed PCA and cast-off SVM for classification to classify the distinct features extracted from each 
atlas template as well as combined characteristics of 2 atlases. They were 94% accurate in the AD vs. CN 
test, 76.5% accurate in the CN vs. MCI test, 75.5% accurate in MCI vs. AD test. They noticed that 
compared to the single-atlas strategy, the multi-atlas approach produced better outcomes. In his study, 
author [28] claimed that early detection can stop spread of illness. He used structural MRI to pull brain 
scans from repository. He proposed projecting data onto the available linear space using kernels. After 
that, he used a Support Vector Machine (SVM) to categorise the information. For his categorisation, he 
achieved a good accuracy of 93.85% with high sensitivity and specificity. Their suggested strategy aims 
to promptly identify these cardiac anomalies in order to prevent potentially lethal outcomes. The 
subsequent stage involves assessing whether or not the user is susceptible to acquiring cardiovascular 
disease [29].    
 

3. Background on AD detection using brain MRI image segmentation and classification 
AD detection system, a complex and all-encompassing structure intended to enable the effective 
identification of AD, is depicted in Figure 1. This system leverages the synergistic integration of critical 
elements, such as deep learning models, assessment, data management strategies, preprocessing 
techniques, and brain scans. When combined, these components give the system a strong base that 
guarantees its efficiency, dependability, and accuracy.  
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Figure 1. The Architecture of AD detection system 

 
Because deep learning approaches may produce strong results over a large amount of data, they have 
attracted interest in classification of AD and in segmentation of brain's structure. Thus, DL techniques are 
currently preferred over state-of-the-art ML techniques. Our aim is to provide an overview of the most 
recent deep learning-based brain MRI segmentation methods for the quantitative assessment of brain 
MRI in relation to AD diagnosis. An integrated approach promotes early identification and individualized 
treatment plans while working to increase the precision and dependability of AD categorization. This 
study aims to assess how well the suggested method performs in AD categorization as well as 
investigates how it might improve AD diagnosis. By comparing the outcomes with other cutting-edge 
segmentation techniques, parameters including accuracy, sensitivity, and specificity are assessed. 
Through the use of cutting-edge computational approaches, this research seeks to improve illness 
diagnostics and progress the diagnosis of AD. First, we train entire network on training set, then we use 
validation set to fine-tune it during model training and optimisation phase. Appropriate optimisation 
procedures, such as stochastic gradient descent, in conjunction with well chosen learning rates, batch 
sizes, training iterations, are utilized to improve method performance and generalization. To further 
improve the model's overall performance, more optimisation techniques like learning rate decay, weight 
decay, and early halting are used.  
 

4. Proposed MRI image analysis in Alzheimer's disease detection 
Procedure of acquiring data to compile dataset needed for diagnosis is the initial step, as seen in Fig. 2. 
Preprocessing the dataset is the second step, which aims to improve its quality and the classification 
task's performance. The dividing stage is the third phase. Subsets of the dataset for testing, validation, 
and training can be separated. The final step is a learning system that uses appropriate and targeted 
methods to divide up the features, extract knowledge from the data, adjust the settings, and categorise 
the illness into a certain class.  
 

 
Figure 2. Proposed MRI image analysis in AD detection 
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The pre-processing steps required to improve MRI data standardisation are as follows: first, all MRI data 
were spatially normalised using Statistical Parametric Mapping12 (SPM12), ensuring that every image 
voxel matched with same anatomical position. Subsequently, extension of SPM12, the Computational 
Anatomy Toolbox12 (CAT12), was used to exclude the skull and cervical regions from the image. CAT12 
employed the voxel-based morphometric (VBM) technique to generate a grey matter template. 
Furthermore, the MRI pictures were divided into three segments: CSF, WM, and GM (grey matter). For 
the GM ICBM-152 standard template, GM pictures were chosen as well as registered using the nonlinear 
affine transition. Each 3D GM was averaged, scaled, and concatenated into a stack of 96 × 96 × 96 voxels 
with voxel-sizes of 1.5 mm (axial), 1.5 mm (coronal), and 1.5 mm (sagittal). Stack was smoothed using 
the Gaussian kernel, yielding a full width at half maximum (FWHM) of roughly 7 mm. Our study trained 
using 62 × 96 × 96 slices from the middle of the stack, which contain the thalamus, hippocampus, and 
other key brain tissue related to memory.  
Pre-processing: Each pre-processed T1-weighted volume had a voxel size of 1mm × 1mm × 1mm and a 
data matrix size of 176 × 208 × 176. We chose the 106th, or middle axial slice, from these volumes to use 
as the input for our models. It has been demonstrated that this axial location correlates to the anatomical 
slice, which, because of its high individual content-based picture retrieval performance, has a larger 
degree of disease linked information. The mean average precision values for the axial plane are used to 
evaluate the performance results when the disease label was utilised as the criterion of interest. This 
result was taken to mean that they had a greater level of disease-related knowledge, which qualified 
them for a single-slice categorisation approach. It should be mentioned, nevertheless, that the dataset or 
atlas that is utilised has a significant impact on how many slices are chosen. The process we used to 
choose our single slice contender was the same. The MRI slices in the dataset are normalised in the 
interval [0,1] before being fed into the network, providing an unvaried contrast and intensity range.  
 
5. Fuzzy  Gaussian C-adaptive histogram equalization (FGCAHE) based segmentation 
The goal of cluster reduction in FCM is to merge smaller colonies into larger colonies by utilising their 
shared characteristics. Because K-Means has assisted in part of the FCM clustering process, this strategy 
reduces the weight of search process on FCM as well as reduces number of repetitions. The way FCM 
groups data is by calculating weight from every individual data point to centroid. Objective function of C-
means, such as one in formula (1), is minimised to produce fuzzy C-means.  

𝐽𝑚                          (1) 
Uij denotes degree of membership of each data point, and for each x, which is a collection of data points, c 
is cluster centre point and m is a greater real value of ∑x_i-c_i ∑^2, which is distance between data points 
as well as cluster centre point determined by Euclidean formula.  
The FCM membership function can be expressed as eqn (2).  

1 
 𝑢𝑖𝑗 =                                                            (2)  

𝑚−1 
One significant drawback is that it lacks spatial context information, making it 
vulnerable to noise and image artefacts. Each class in FCM is assigned a 
set of pixels using fuzzy membership functions. For example, X = {x1, x2..., xN} represents a picture of N 
pixels that needs to be split up into c clusters. It is customary to pass number of clusters as an input 
parameter. The process of fuzzy partitioning a given data set involves minimising objective function for a 
predetermined number of clusters, while adhering to restriction that total membership grades of data 
within a cluster must equal 1. where n is number of data points; m is fuzzier value; c is number of cluster 
centroids or data subsets; V is matrix of cluster centroids, while U is fuzzy partition matrix. Fuzzy 
membership value of pixel k in cluster i is denoted by Uik. Following restrictions are satisfied by this 
membership value by eqn (3)  
0 ≤ 𝑈𝑎 ≤ 1. for 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑘 ≤ 𝑛.  

𝑛 
0 < ∑   𝑈𝑑 < 𝑛, for 1 ≤ 𝑖 ≤ 𝑐 

𝑖 =1 
𝑛 

∑   𝑈𝑖𝑡 = 1, for 1 ≤ 𝑘 ≤ 𝑛.  
𝑖 =1 

 𝑛 𝑛 
𝑣𝑖 = ∑   (𝑤𝑁 )′ 𝑥1 / ∑   (𝜔𝑖 )′ 
 𝑖=1 𝑖=1 

∑ 𝑐 𝑘 = 1   ( 
∥ ∥ 𝑥 𝑖 − 𝑐 𝑗 ∥ ∥ 

∥ ∥ 𝑥 𝑖 − 𝑐 𝑘 ∥ ∥ 
) 

2 
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 𝑑4 2(𝑈−11 −1                                        (3)  
 𝜔𝑖𝑘 = (∑𝑐

𝑖=1   (𝑑𝑗𝑘) ) 
The following is the criteria for termination. The formula is U (t+1) ik − U (t) ik< ε, where ε is a small 
value that can be specified during initialisation and is the Euclidean norm. A weighted sum of c Gaussian 
density distributions makes up GMM. The probability of observed data I(k) using the GMM is as follows: 
𝑃(𝐼(𝑘) ∣ Θ𝑖 ) = ∑𝑐

𝑖=1   𝑝𝑖 𝑁(𝐼(𝑘) ∣ 𝜇𝑖 , Σ𝑖 ) 
GMM's parameters, represented by Θ = {Θi,i = 1,...,c}, are often evaluated by using EM algorithm to 
maximise likelihood of observed data, as demonstrated below eqn (4)  
Θ∗ = arg max ∏𝑛

𝑖=1   [∑𝑐
𝑖=1   𝑝𝑖 𝑁(𝐼(𝑘) ∣ 𝜇𝑖 , Σ𝑖 )]                                        (4)  

Let pi(x) represent the prior probability p (y ∈Ωi ∩ Ox). p(I(y)|y ∈Ωi ∩ Ox) has a Gaussian distribution 
N(I(y)|μi(x), Σi(x)) with mean μi(x) and covariance matrix Σi(x), according to the GMM assumption. By 
minimising the following energy function and applying natural logarithm to both sides of the equation, 
we may determine maximum a posteriori probability (MAP) solution to this segmentation issue by eqn 
(5)  
 𝐸𝑥

LGMM = ∑𝑐
𝑖=1   ∫Q. O,   − ln[ 𝑝𝑖 (𝑥)𝑁(𝐼(𝑦) ∣ 𝜇𝑖 (𝑥), Σ𝑖 (𝑥))]𝑑𝑦                                     (5)  

When c i= pi(x)=1 is satisfied and pi(x) is the mixing coefficient. In order to apply bias field correction to 
the segmentation procedure, we consider each tissue type I's true intensity J to be a constant vi. So, the 
following approximations can be used to determine mean of observed data in every Gaussian component 
by eqn (6)  
𝜇𝑖 (𝑥) = 𝑏(𝑥)𝑣𝑖 , 𝑖 = 1, … , 𝑐                                                       (6)  
where bias field at each voxel x is denoted by b(x). The histogram is flattened using the HE method in 
accordance with the contrast and intensity level range of the image. Number of pixels ni with intensity 
level i, as described by Eq. (7), yields picture histogram H(i) for intensity level i, where L is maximum 
range of grey level.  
𝐻(𝑖) = 𝑛𝑖 , for 𝑖 = 0,1,2, … , (𝐿 − 1)                                         (7)  
Histogram is divided based on number of pixels with a specific intensity, using Eq. (7). Equation (7) 
utilises these findings to determine probability px(i) of pixel i, which is subsequently utilised to compute 
cumulative distribution function (PDF) in Equation (8). As distribution of equalisation histogram (Eq. 
(8)), CDF has a value in range of 0–255.  
𝑝𝑥 (𝑖) = 𝑝(𝑥 = 𝑖) = 𝑛𝑖 /𝑛 

𝑖 
𝑐𝑑𝑓𝑥 (𝑖) = ∑   𝑝𝑥 (𝑥 = 𝑗) 

𝑗=0 
𝑐𝑑𝑓(𝑣)−𝑐𝑑𝑓min 𝑕(𝑣) = round ( )                                                (8)  

𝑛−𝑐𝑑𝑓min  
AHE modifies the histogram by utilising a lower threshold value. By minimising edge shadowing and 
avoiding over-enhancement of noise, AHE enhances contrast-based image outcomes. The clip limit from 
Eq. (9) is used to get the limit value.  
𝛽 = 𝑀𝑛 (1 + 100𝛼 (𝑠max − 1))                                               (9)  
where n is 8-bit greyscale value (0–255) and M is the region's area. With a range of 0–100, α is upper 
limit of clip factor that is utilised as a boundary on histogram.  
 
6. Support vector convolutional graph transfer VGG-16 learning (SVCGTVgg-16) model in 
classification 
Normalisation of regional volume by intracranial volume is essential in neurodegenerative research to 
minimise interindividual variation. We created a brain-extraction technique, which is another DL-based 
semantic segmentation method, to quantify whole-brain volumes. The raw brain parcellation volumes 
were divided by the total brain volume. Additionally, we combined 82 volumes, age, sex (0 or 1) as input 
variables for classification in order to exclude age-related impacts on brain volumes as well as reflect sex 
matching. It uses a multivariate method of matching sex and age. The dimensionality of the data is 
decreased by transforming every T1-weighted brain MR image into volume of every brain region. 
Boosting strategy is effective for classifiers when the dimensionality of the data is relatively minimal.  
SVMs can be used for both straightforward, linear classification tasks and more difficult, or nonlinear, 
classification problems. In the linear as well as nonlinear cases, SVMs handle both separable and non-
separable issues. Mapping is accomplished by choosing an appropriate kernel function. T = x1, y1, • • •, 
xn, yn is a linearly separable sample set, where xi, yi denote the sample point, xi ∈ R n, and yi∈ {+1, −1}, i 
= 1, 2, • • •, n. Two different kinds of training samples are shown by red and black circles, respectively. 
Currently, there are an endless number of interfaces available that can accurately distinguish between 
the two kinds of samples. Therefore, the best possible classification hyperplane is needed, one that 
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minimises actual risk while meeting the maximum classification interval and guarantees the least 
amount of empirical risk while accurately dividing the two categories of samples. The optimal 
hyperplane, at which the solution is unique, is found using the maximum classification interval in the 
fundamental principle of linear separable SVM.  
The final GCN layers were gradually adjusted while the initial few layers were left unchanged, using a 
layer-by-layer fine-tuning technique. Transfusion (10), a different kind of transfer learning that only 
transfers the initial few GCN layers while training the remainder of the network using random 
initialisation, was also examined. The delegate component of whole convolutional neural network is the 
CONV layer. To this layer, an image (224 224 3) is supplied. This layer's primary goal is to extract 
identification local information from the input channels or grids that are received. It is expected that each 
kernel will carry out a convolution operation in order to extract local features. The dot product between 
weights of neurones and a tiny region in input volume to which they are attached is computed. In the first 
convolutional layer of the designed model, there are 64 kernels overall. In the second, third, fourth, and 
fifth layers, there are 256 kernels total. In the sixth and seventh layers, there are 4096 kernels altogether. 
In addition to multiple kernels, the kernel size in first layer is (11 11) pixels; in second layer, this is 
decreased to (5 5) pixels, and in the remaining layers of CNN, it is further reduced to (3 3) pixels. 
Kernel size of the last convolutional layer is (66) pixels.  
A feature extraction layer, a batch normalisation layer, an activation layer for rectified linear units 
(ReLUs), and a dropout layer are present in every convolutional block. Every convolutional block, other 
from third and fourth convolutional layers, is succeeded by a maxpooling or down-sampling layer. 
Convolution operations are carried out on the images by convolutional or feature extraction layers. They 
involve pixel-wise multiplications, the extraction of the most significant features using a specific number 
of kernel filters, striding, padding. Convolution has the following definition by eqn (10)  
𝐵(𝑖, 𝑗) = ∑𝑚   ∑𝑛    𝐾(𝑚, 𝑛) ⋅ 𝐴(𝑖 − 𝑚, 𝑗 − 𝑛)                            (10)  
Before images are down-sampled, these layers' various kernel filters can identify as well as extract key 
characteristics from original images. Effective back-propagation is supported by the activation function 
provided by the ReLU activation layer, which allows weights to be updated without vanishing gradient 
problems during training. By discarding some weights along with their corresponding neurones, dropout 
layer helps keep the network from overfitting. The meaning of the ReLU activation function is as follows:  
𝑌𝑖 = max(𝑥, 0) and 𝑥 = 𝑤𝑖 𝑥𝑖 + 𝑏𝑓 where w is weight of network in size, x is input image, b is bias term and Y 
is ReLU activation function. After taking a sample of the convolutional block's output features, the max-
pooling layer applies a pooling filter with a predetermined number of stridings. By choosing highest pixel 
values for optimisation, this minimises the features. A maximum pooling example with a stride size of 
[2x2] and a pooling size of [4x4]. By applying a pooling filter to convolved feature from convolutional 
layer as well as highest pixel value, it uses a location-invariant down-sampling technique. Here is how 

downsampling is defined by eqn (11) 𝐼                                                   (11)  
𝑠 

Definition of a graph G: G= (V, E) is a set of nodes, or vertices, denoted by V and edges, represented by E. 
Both directed and undirected edges are possible. A very flexible data structure is a graph. Different real-
life entities, like social media networks, chemicals, even photographs, can be represented by it. In our 
work, we represent the image dataset using a graph data structure, and then we perform various 
operations on it. GNN is a member of a class of DL methods that may perform node-level or edge-level 
prediction tasks when directly applied to graph data. Graph data differs greatly from the traditional data 
that we often feed into NN for the following main reasons: 1. The size of graph data is not finite. The 
number of nodes in a graph dataset might vary in its dimension. However, we need a neural network that 
can handle any number of input dimensions. 2. Isomersofracial graphs Because the graph data structure 
is isomorphic, the image can actually change depending on which order the graph is traversed. Therefore, 
the graph representation cannot be satisfied with a single adjacency matrix.   
Graphs are inherently non-Euclidean. This indicates that there is no fixed distance between any of 
distances in graph and that they are non-Euclidean in nature. The aforementioned factors make it 
challenging to apply traditional ML as well as DL methods to graph data structures. GNNs are a 
component of representation learning, which effectively addresses every one of the problems that the 
graph data structure in deep learning faces. Nodes in a graph neural network can talk to one another and 
exchange information about themselves.  
The graph is based on idea of node embeddings, whereby nodes are mapped to a lowdimensional, d-
dimensional embedding space rather than the actual dimension of the graph in question. Because of this, 
comparable nodes are implanted near to one another. In this manner, a graph NN is utilized to solve pixel 
similarity issue. Think of nodes a and b in our graph. Two feature vectors, Xa and Xb, are associated with 
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these nodes. Following the passage of these feature vectors through encoders, the original features are 
transformed into embeddings, which are then categorised according to how similar the features are.  
An approach that is frequently used to deal with small amounts of training datasets is transfer learning. 
In reality, CNN models can be trained using fine-tuning method using pretrained methods or from 
scratch using random parameter initialisation. We know from domain expertise of medical research that 
both sMRI and MD may detect the shrinkage of hippocampus region of interest (ROI) that coincides with 
the onset of AD. It shows two participants as examples: an AD subject on the right and a normal control 
(NC) subject on the left, using both modalities (sMRI scan in (B) and an MD map in (A). It displays the 
hippocampus region from various angles of projection. Additionally, Axial, Sagittal, Coronal planes, in 
that order, from top to bottom. As the example image shows, the hippocampal atrophy can be 
distinguished between the two modalities by maintaining same form but reversed representation. This 
indicates that signal generated by CSF flows around hippocampal region is seen as a bright region on MD 
maps but as a dark region on sMRI scans.  
 

 
Figure 3.  scheme of Transfer Learning for parameters optimization 

 
This phenomenon is demonstrated in Figure 3, which shows two subjects: an AD subject on the right and 
a normal control (NC) subject on the left, both using the same modalities—an sMRI scan (B) and an MD 
map (A). Because of this, we may start with learnt methods in source domain of sMRI and move them 
towards the goal domain of MD using a method called cross-modal transfer learning to transfer learning 
between these two types of data by eqn (12)  
{𝑊0 − 𝑊𝜙′                                     (12) 𝑊𝑖+1 − 𝐹(𝑊𝑖 )  
We start training with parameters of 𝑊 ′ 𝜙, where 𝑊 ′ 𝜙 is best trained method on big sMRI dataset, fine-
tune all or partial layers of employed architecture. 𝐹 is method for optimisation. The following is the 
definition of the weights update formula by eqn (13)  
𝑉𝑖+1 + 𝜇𝑉𝑖 − 𝛼∇J(𝑊𝑖 + 𝜇𝑉𝑖 ) 
𝑊𝑖+1 − 𝑊𝑖 + 𝑉𝑖+1                                             (13)  
where v is velocity, y is momentum, c is learning rate, and d is the set of parameters for each layer at 
iteration d. Figure 4 shows how specifications in our CNN architecture are transferred. The optimisation 
process for every convolutional as well as fully connected layer is shown by the arrows.   
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Figure 4. Architecture of VGG-16 

 
(A) An RGB image of a defined size serves as input for first Conv3D. Image is passed through a stack of 
convolutional layers, where number of filters and filter size are indicated. The spatial 3D pooling layer 
comes after the convolution layers. Pooling is done with stride 2 throughout the 2 × 2 × 2-pixel window. 
The image's boundaries and shape are maintained by this layer; 2D feature maps are flattened into a 1D 
feature vector by flattening layer (B), and then they are sent to fully-connected layers (C). Every hidden 
layer has a ReLU function, which makes it possible to solve the vanishing gradient descent issue and 
improve learning. Nonlinear softmax function, which provides probability distribution of classes, is 
present in last layer. Anticipated class will be determined by looking at the class with the highest 
likelihood. Conv: layer of convolution  
VGG-16: A feature extractor based on pretrained VGG-16 method was employed in this investigation. 
Additionally, a bootstrap feature extractor with pretrained weights, VGG-16, was employed to extract 
features from the pre-processed brain sMRI images. VGG-16: In this study, a feature extractor built on top 
of pretrained VGG-16 method was used. Furthermore, features were extracted from pre-processed brain 
sMRI images using the bootstrap feature extractor with pretrained weights, VGG-16. After that, a fresh 
classifier that had been trained from scratch was given the retrieved features. It's crucial to remember 
that VGG-16 method is a pretrained method with a set input configuration, so the greyscale picture 
dataset could not be fed to it directly. RGB photos with three channels are needed as input for VGG-16. In 
contrast, a greyscale image contains a single channel. Repetition of all picture arrays in dataset three 
times repeatedly on a new dimension is obvious approach. Consequently, the identical image would 
show up across all three channels. To achieve this, the colour mode was set to "RGB" in the flow from 
directory method of the Keras library.  
 
7. Particle Grey Wolf Firefly Optimisation (PGWFO) model 
PSO is a population-based algorithm that outperforms a general method in terms of convergence speed. 
It draws inspiration from flocks of birds and schools of fish. The initial placement of particles is random, 
and they are updated iteratively in terms of both position and velocity. The terms "pbest" and "gbest" 
denote the locations of the updated and current particle systems, respectively. By incorporating a "stop" 
condition based on a bisection approach, PSO lowers the number of iterations necessary. The procedure 
is then stopped after approximating the chosen values; each iteration's accuracy is roughly equal to the 
preceding one. The ith particle's revised position is calculated as follows by eqn (14)  
𝑉𝑖𝑗 (𝑠 + 1) = 𝑥 ⋅ 𝑉𝑖𝑗 (𝑠) + 𝑎1 ⋅ 𝑅1. (𝐼𝑖𝑚 (𝑠) − 𝑦𝑖𝑚 (𝑠)) + 𝑎2 ⋅ 𝑅2. (𝑔im(𝑠) − 𝑦𝑖𝑚 (𝑠)) 
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𝑦𝑖𝑚 (𝑠 + 1) = 𝑦𝑖𝑚 (𝑠) + 𝑉𝑖𝑗 (𝑠 + 1) 
𝑥max −𝑥min  
𝑥(𝑠) = 𝑥max = 𝑇, 𝑠                                                (14)  
Maximum iteration time (T), higher limit (xmax), lower limit (xmin) are indicated below. Each solution 
during feature selection is a subset of features. Every set of particles has a certain position, and each set 
is represented as a binary vector. The Mth position rejects the Mth characteristic. The PSO selects 
features by starting with a random solution and working its way up to the optimal global solution, which 
is represented by a fresh subset of features. Every feature has a link to a dataset that takes up space in 
the search. The Mth position determines whether a feature is deemed informative or not; if it is 0, the 
feature is not deemed informative. The Mth feature is not appended to the s if the Mthposition is −1. A 
well-known meta-heuristic algorithm, the GWO simulates the hunting and leadership styles of grey 
wolves. There are four levels in GWO: the alpha (α) level is the first, where the troop leaders (male or 
female) are identified as the α wolves. They also possess the ability to make decisions about where to 
hunt, how long to walk, where to sleep, and other matters. Known as beta (β), the second level assists α 
in making decisions. Third level, also referred to as subordinates, is called delta (δ). Omega (ω) is the 
final level and is referred to as scapegoat. All three of these parameters—α, β, and δ—serve as hunting 
method guides in the GWO algorithm. Equation (15) displays the mathematical description of encircling 
behaviour.  
𝐴⃗ =∣ 𝐵⃗⃗ ⋅ 𝑋ˆ 𝑟 (𝑡𝑟) − 𝑋‾(𝑡𝑟) 
𝑋⃗(𝑡𝑟 + 1) = 𝑋⃗ ′ (𝑡𝑟) − 𝐶⃗ ⋅ 𝐴⃗                                        (15)  
where tr stands for the current iteration, C and -B for coefficient vectors, P X for the prey's position 
vector, X for grey wolf's position vector. The evaluation of C and B is specified in Eqs. (16), where 1 v and 
- 2 v are random vectors in range [0, [1]], and mi is linearly minimised from 2 to 0.  
 𝐶‾ = 2𝑚𝑖 ⋅ 𝑣‾1 − 𝑚𝑖 
𝐵⃗⃗ = 2 ⋅ 𝑣⃗2                                                   (16)  
In general, the hunting process is guided by α. The top three solutions are retained from the search space, 
and the corresponding update strategy is evaluated using the formulas found in Equations (28–30).  
 
8. RESULTS AND DISCUSSION 
Hardware configuration: The studies were carried out using a GPU-based high-performance computing 
platform with two Nvidia TESLA P-100 graphics cards with 16 GB dedicated memory, an Intel(R) 
Xeon(R) CPU E5-2680 v2 @2.80GHz processor, and 187 Gb of RAM. With a batch size of 64 samples, the 
average computing time for one epoch during training phase is 2.03 seconds. For MRI pretreatment and 
CNN algorithms, Think Server TS560 running Linux (Ubuntu 16.10) was utilised. This system had a high-
performance GPU, NVIDIA Tesla P40, with 3840 CUDA cores, high-frequency Intel Xeon E5-2650 V4 
processor with 128 GB of total memory. Python 2.7.12 was used to implement all of the techniques. Using 
TensorFlow-based deep learning, NN is constructed using Keras package. When analysing imaging data, 
analysts were blinded to identities of all subjects.  
Dataset description: Segmenting and categorising brain tissue types as well as classifying patients with 
AD are done using the data assessment framework of three-dimension (3D) cross-sectional brain MRI. 
Brain MRI segmentation and AD diagnosis are commonly achieved through publicly available datasets 
like the internet brain segmentation repository (IBSR), medical image computing and computer-assisted 
intervention (MICCAI),  
Alzheimer's disease neuroimaging initiative (ADNI), open access series of imaging studies  
(OASIS). Information for OASIS, ADNI, IBSR, MICCAI datasets is displayed in Table 1. Below is a 
description of these datasets, which is followed by a step-by-step examination of brain MRI results.  
 

Table 1. Details of OASIS, ADNI, IBSR, and MICCAI datasets 
Dataset  Class  Subjects  Sex  Age  MMSE  MRI scans  

M  F  Mean  std Mean  std 
OASIS  AD  102  42  61  56.56  5.09  22.25  5.17  103  

HC  315  112  198  46.26  21.12  27.63  1.93  315  
ADNI  AD  190  114  93  72.1  8.6  21.4  2.5  535  

MCI  395  267  143  75.6  5.6  30.5  2.2  1012  
HC  225  110  111  77.9  5.2  31.2  1.5  879  

IBSR  HC  15  16  7  75  -  -  -  16  
MICCAI  HC  32  -  -  -  -  -  -  39  

 
OASIS  
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AD Research Centre at Washington University, which oversees a sizable collection of crosssectional and 
longitudinal brain MRI data from both demented and non-demented people, is the source of the OASIS 
dataset. Cross-sectional category comprises details of 416 patients between ages of 18 and 96, whereas 
the longitudinal dataset includes several scans of each subject across time. The mini-mental state 
examination (MMSE) and clinical dementia rating (CDR) are two tools that can be used to assess AD risk 
factors. With regard to risk factors, the participants are evaluated as having no dementia for CDR 0, very 
mild dementia for CDR  
0.5, mild dementia for CDR 1, and moderate dementia for CDT 2.  
IBSR  
Brain image segmentation methods are tested and developed utilizing IBSR dataset. In addition to MRI 
data, this dataset offers findings from manually guided expert segmentation. Ground truth is made up of 
20 actual T1-weighted (T1-W) MRIs with expert segmentation results that were manually guided. 
Approximately 60 coronal T1-W scans with a 3.1 mm resolution and 18 cortical T1-W slices with a 1.5 
mm resolution are also included in each MRI volume. This dataset's subject volumes measure 256 × 256 
× 128 pixels and have varying voxel spacings, measuring 0.84 × 0.84 × 1.5 mm3, 0.94 × 0.94 × 1.5 mm3, 
and 1.0 × 1.0 × 1.5 mm3. Additionally, 32 noncortical structures are manually segmented by 
Massachusetts General Hospital.  
MICCAI  
The 35 T1-w MRI volumes and the manual segmentation of 134 structures from  
Neuromorphometrics, Inc., Scotts Valley, CA, USA, make up the MICCAI-2012 dataset. Tissue, tumour, and 
structural segmentation are its primary uses. In 2012, this dataset began with 80 fictitious and genuine 
cases. Over time, the training and testing data sets have grown in size. Sub-cortical structure 
segmentation is done utilizing MICCAI 2012 challenge in multi-atlas labelling.  
 
9. Proposed model-based MRI brain image analysis 
 

Table 2. Processing of input image utilizing proposed segmentation and classification methods 
Input MRI image 
dataset  
 Input MRI image  

Pre-processed 
image  Segmented image  Classified image  

OASIS dataset      

IBSR   dataset      

MICCAI dataset      

 
The processing of different input MRI image datasets for diagnosis of AD is displayed in Table 2 above. 
Here, classification output and processed image for a variety of datasets with chosen features are 
displayed. Figure 5 commonly uses a confusion matrix to determine these performance measures. This 
matrix represents both actual and anticipated categories. These performance metrics are frequently 
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calculated using a confusion matrix (see fig. 4). Actual and predicted classes are both covered by this 
matrix. Number of positive classifications that are correctly classified as positive is represented by True 
Positive (TP) values; number of negative classifications that are correctly classified as negative is 
represented by True Negative (TN) values; number of negative classifications that are incorrectly 
classified as positive is represented by False Positive (FP) values; number of positive classifications that 
are incorrectly classified as negative is represented by False Negative (FN) values.  
 

 
Confusion matrix of OASIS dataset  

 
Confusion matrix of IBSR   dataset  

 
Confusion matrix of MICCAI  

Figure 5: Confusion Matrix for Proposed MRI image dataset in Alzheimer's disease detection (a) OASIS 
(b) IBSR   dataset, (c) MICCAI 

 
Comparative analysis based on MRI image in AD detection  

 
Table 3. comparison for MRI image dataset in Alzheimer's disease detection 

Dataset  Techniques  MMSE  Detection 
accuracy  

WARR  Recall  AUC  

OASIS  CNN  70  74  77  72  78  

 RESNET  75  78  81  77  82  

PGWFO_FGCAHE- 
SVCGTVgg-16  

81  85  85  84  86  

IBSR    
Dataset  

CNN  68  80  76  78  74  

RESNET  73  85  80  83  79  

PGWFO_FGCAHE- 
SVCGTVgg-16  

82  90  86  87  85  

MICCAI  
Dataset  

CNN  78  84  84  79  75  

RESNET  83  87  89  88  83  

PGWFO_FGCAHE- 
SVCGTVgg-16  

90  98  95  94  90  
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Table-2 shows analysis for MRI image dataset in AD detection. Here the MRI image dataset in AD 
detection analysed are OASIS, IBSR Dataset and MICCAI DATASET in terms of MMSE, Detection accuracy, 
WARR, Recall, AUC.   
 

 
Figure 6. comparison of MMSE 

 
The analysis for MMSE is displayed in Figure 6. Here, the proposed technique achieved 81% MMSE, 70% 
existing CNN, and 75% RESNET for OASIS dataset; for IBSR Dataset, proposed technique achieved 82% 
MMSE, 68% existing CNN, 73% RESNET; for MICCAI Dataset, proposed technique 90% MMSE, 78% 
existing CNN, and 83% RESNET.  
 

 
Figure 7. comparison of Detection accuracy 

 
Figure 7 shows analysis in Detection accuracy. Here proposed technique Detection accuracy  
85%, existing CNN 74%, RESNET 78% for OASIS dataset; for IBSR Dataset   proposed Detection accuracy 
90%, existing CNN 80%, RESNET 85%; proposed technique Detection accuracy 98%, existing CNN 84%, 
RESNET 87% for MICCAI Dataset.  
 

 
Figure 8. comparison of WARR 

 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                         167                                                  T Sangeetha Devi et al 154-169 

Analysis in WARR is shown in Figure 8. In the OASIS dataset, proposed technique WARR of 85%, existing 
CNN 77%, RESNET 81%; in IBSR   Plant dataset, proposed technique WARR 86%, existing CNN 76%, 
RESNET 80%; in MICCAI dataset, proposed technique WARR 95%, existing CNN 84%, RESNET 89%.  
 

 
Figure 9. comparison of Recall 

 
The recall analysis is displayed in Figure 9. Here, the proposed technique achieved 84% recall, 72% 
existing CNN, and 77% RESNET for OASIS dataset; for IBSR Dataset, proposed technique achieved 87% 
recall, 78% existing CNN, and 83% RESNET; for MICCAI Dataset, proposed technique 94% recall, 79% 
existing CNN, and 88% RESNET.  

 
Figure 10. comparison of AUC 

 
Figure 10 shows analysis in AUC. Here proposed technique AUC 86%, existing CNN 78%, RESNET 82% 
for OASIS dataset; for IBSR   Plant Dataset   proposed technique AUC 85%, existing CNN 74%, RESNET 
79%; proposed technique AUC 90%, existing CNN 75%,  
RESNET 83% for MICCAI Dataset. We were quite concerned about overfitting because of the size of the 
networks and the short amount of data that was used. To avoid overfitting of the network, the dropout 
technique is employed. Additionally, as the studies progressed, we saw that, around epoch 400, the error 
on training data continued to decrease, while the validation loss began to rise to a significant value. Early 
pausing is therefore used in training to prevent overfitting.  
 
DISCUSSION 
In this case, accuracy is defined as the percentage of subjects categorized properly throughout the entire 
population. The percentage of Alzheimer's class participants who were correctly diagnosed out of all the 
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participants is known as sensitivity, also known as recall. The percentage of non-Alzheimer's class 
subjects properly classified out of all non-Alzheimer's class subjects is known as specificity. Models in 
this study aim to achieve the ideal value of 1, which is represented by these measures. TP is when the 
model accurately predicts the  
Alzheimer's subject class. When a model mistakenly assumes that an instance of a non- 
Alzheimer's class is an instance of Alzheimer's class, it produces a FP, also known as a TypeI error. FN, 
also known as Type-II errors, occur when a method predicts an instance of Alzheimer's class mistakenly 
as a non-Alzheimer's class instance. Last but not least, TN happens when method accurately predicts an 
instance of a class other than Alzheimer's. Generally speaking, we compute these metrics using the 
models that have best validation set accuracies.  
 
CONCLUSION 
To optimize the identification of AD, this research aims to present a unique technique for MRI brain 
picture segmentation and classification utilising a metaheuristic model and deep learning technique. The 
dataset was gathered and subjected to fuzzy Gaussian C-adaptive histogram equalization for noise 
removal and dataset segmentation in the suggested model. Subsequently, the picture segmentation 
process was carried out utilising support vector convolutional graph transfer VGG-16 learning for 
classification, and particle grey wolf firefly optimisation for optimisation. We discovered that transfer 
learning methods performed better on this task. After looking into class imbalance as well as data 
leakage issues more, we discovered that they have a tendency to make the classification performance 
bias worse. The experimental findings demonstrate that, in comparison to earlier studies using classical 
horizontal plane MRI, the model performs satisfactorily, particularly when it comes to identifying the 
early stages of AD. Because of low phenotypic manifestation, more significantly, early stages of therapy's 
improved efficacy, these are the hardest stages to detect. People should be made aware of this illness and 
encouraged to have themselves checked up. Our current project is to implement this approach on a 
website for more useful applications. This model can be evaluated on a bigger dataset in the future. For 
training and testing, available dataset for 'Moderate Demented' class contained just 52 and 12 photos, 
respectively.  
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