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Abstract

We establish a novel family of Kumaraswamy-X probability distri-
butions in the present investigation. We discussed the Kumaraswamy-
Exponential univariate probability distribution. The new distribution
with three parameters possesses density function with unimodal and re-
verse J-shape and hazard rate function of bathtub shaped. We study
various statistical properties for it and derive the expressions for its den-
sity function, distribution function, survival and hazard rate function,
Probability weighted Moments, lth moment, moment generating func-
tion, quantile function and Shannon entropy. For the derived distribution
order statistics is also discussed. The parameters are estimated using
the maximum likelihood estimation approach, and the performance of the
estimators was evaluated using a Monte Carlo simulation. Through ex-
tensive Monte Carlo simulations and comparative analyses, we assess the
performance of the Kumaraswamy-X distribution against other common
probability distributions used in engineering contexts. When we apply
it to real datasets, it offers a more suitable fit than other existing dis-
tributions. We explore the characteristics and potential applications of
the Kumaraswamy-X distribution in the context of engineering problems
through a comprehensive simulation-based investigation.

Keywords: T-X family of distributions, Probability weighted Moments, Shan-
non entropy, Order Statistics, Monte Carlo simulation, Maximum likelihood
estimation.
AMS 2000 Subject Code: 62F10, 62F03.
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1 Introduction

In probability distribution theory, the selection of a specific probability dis-
tribution for modeling real-world phenomena depends on the flexibility of the
distribution. It is practice to apply probability distributions that better match
the set of data that is available, instead of transforming the current data col-
lected. Because of this, there have been numerous recent attempts to guarantee
that the classical probability distributions are updated and developed, since
this could boost their adaptability and improve their ability to predict real-
world data sets. The Kumaraswamy-X probability distribution, an extension of
the well-known Kumaraswamy distribution, has application in modeling a wide
range of lifetime problems. This study explores the characteristics and potential
applications of the Kumaraswamy-X distribution in the context of engineering
problems through a comprehensive simulation-based investigation.

The concept of creating customised distributions is still a hot topic in the lit-
erature today. Several approaches could be used to extend an existing standard
distribution. For instance, generalization, which entails leveraging the widely
available generalized family of distributions, can boost a distribution’s adapt-
ability. To generalize the distribution an additional shape parameter(s) may be
added to the family of distributions. These extra shape parameter(s) are re-
sponsible for altering the tail weight of the resulting compound distribution and
introducing skewness. The extension of classical distributions is a long-standing
practice and an important issue in statistics, just like many other real-world
issues.

The distributions could be used in different domains, like engineering, eco-
nomics, industrial and physical fields, among a great number of others. To
increase the flexibility of traditional distributions, statisticians developed meth-
ods for creating new probability distribution families. In many relevant fields,
these improvements give practitioners more flexible model options for results
that fit them better and are ultimately more accurate. For instance, some
of the well-known families are the beta-G family (B-G) by Eugene et al. [8],
Kumaraswamy-G family (Kw-G) by Cordeiro and de Castro [6], McDonald-G
family (Mc-G) by Alexander et al. [2], T-X family introduced by Alzaatreh et
al. [4], gamma-X family by Alzaatreh et al. [3], Exponentiated T-X family by
Alzaghal et al. [5], Logistic-X family by Tahir et al. [15], new Weibull-X family
by Ahmad et al. [1] and some new member of T-X family by Jamal and Nasir
[10] among others. A new family of Distribution with application on two real
datasets on survival problem by Modi et al. [12]. Power Exponentiated Family
of Distributions proposed by Modi [11]. In this article, we have proposed a
new lifetime family of distributions which can be used to fit data in different
fields. The paper is organized as follows. In Section 2, we define T-X family
of distributions. Kumaraswamy distribution and Exponential distribution in
Section 3 and Section 4 respectively. In Section 5, we provide the proba-
bility density function (pdf) and the cumulative distribution function (cdf) of
the Kumaraswamy-Exponential distribution. In Section 6, we examine the
survival function and hazard rate function for the new distribution. Formulas
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for moments, moment generating function and probability weighted moments
of the Kumaraswamy-Exponential distribution (KED) are given in Section 7,
Section 8 & Section 9 respectively. Mean, median and mode are discussed in
Section 10 and quantile function in Section 11. The Simulation study and
Shannon entropy in Section 12 & Section 13 respectively. The distribution
of the order statistics for the new distribution are discussed in Section 14. In
Section 15, we estimate its parameters using the method of maximum likeli-
hood estimation. In Section 16, we show the application of Kumaraswamy-
Exponential distribution on two real datasets and compare it with some well
known distributions. We need the following Lemmas to complete the deriva-
tions:

Lemma 1.1. From Gradshteyn and Ryzhik [9], Equation (1.110), Page 25. If
q is a positive real non integer and |z| ≤ 1, then by binomial series expansion
we have:

(1− z)
Υ−1

=

∞∑
p=0

(−1)
p

(
Υ− 1

p

)
zp.

Lemma 1.2. From Prudnikov et al. [14], Equation (18), Page 241, the integral
expression is defined as follows:∫

zζ ln z dz = zζ+1

[
ln z

ζ + 1
− 1

(ζ + 1)
2

]
.

Lemma 1.3. From Gradshteyn and Ryzhik [9], Equation (3.383.1), Page 347.
For ReΩ > 0 , Reς > 0

κ∫
0

xΩ−1 (κ− x)
ς−1

eβx dx = B (ς,Ω)κς+Ω−1
1F1 (Ω; ς +Ω;βκ) .

Lemma 1.4. From Gradshteyn and Ryzhik [9], Equation (2.729.1), Page 239,
the integral expression is defined as follows:∫

xξ ln (a+ bx) dx

=
1

ξ + 1

[
xξ+1 − (−a)

ξ+1

bξ+1

]
ln (a+ bx) +

1

ξ + 1

ξ+1∑
k=1

(−1)
k
xξ−k+2ak−1

(ξ − k + 2) bk−1
.

2 T-X family of distributions

The cumulative distribution function (cdf) of the T-X family introduced by
Alzaatreh et al. [4], is given by U{W (Q(x))}. Let T be a continuous random
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variable (r.v.) with pdf u(t) defined on [0, 1], can be defined as:

GX(x) =

W (QX(x))∫
0

u(t) dt,

where Q is the cdf of X, U(t) is the cdf of a r.v. T and W is a non-decreasing
function having the support of U as its range defined on [0, 1]. Thus, we have:

GX(x) = U [− log (1−QX(x))] x > 0, (2.1)

gX(x) =
qX(x)

(1−QX(x))
u [− log (1−QX(x))] . (2.2)

Thus substituting the different cdf Q(x)and pdf q(x), we can obtain a number
of distributions.

3 Kumaraswamy distribution

A continuous random variable X is said to have Kumaraswamy distribution, if
its pdf fX(x) and cdf FX(x) are, respectively, given by:

f(x) = κbxκ−1 (1− xκ)
b−1

, 0 ≤ x ≤ 1, b > 0, κ > 0 (3.1)

and
F (x) = 1− (1− xκ)

b
. (3.2)

4 Exponential distribution

A continuous random variable X is said to have Exponential distribution, if its
pdf fX(x) and cdf FX(x) are, respectively, given by:

f(x) = ηe−ηx, x ≥ 0, η > 0, (4.1)

and
F (x) = 1− e−ηx. (4.2)

5 Kumaraswamy - Exponential distribution

Using Kumaraswamy distribution in T-X family, we obtain the Kumaraswamy-
X family of distributions:

GX(x) = 1− [1− (− log (1−Q (x)))
κ
]
b
.

Using cdf given in equation (4.2), we obtain cdf of Kumaraswamy - Exponential
distribution as:

GX(x) = 1− [1− (ηx)
κ
]
b
. (5.1)
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Using Kumaraswamy distribution in T-X family density given in equation (2.2),
we obtain the pdf of Kumaraswamy-X family of distributions:

gX(x) =
q (x)

1−Q (x)
κb (− log (1−Q (x)))

κ−1
[1− (− log (1−Q (x)))

κ
]
b−1

.

Using pdf in equation (4.1) and cdf in equation (4.2), we obtain pdf of Ku-
maraswamy - Exponential distribution

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

, (5.2)

Using Lemma 1, in the above expression then we have

gX(x) = ηκκbxκ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
x > 0, b > 0, η > 0, κ > 0.

(5.3)

Figure 1: Density function (Left) and distribution function (Right) graphs of
Kumaraswamy - Exponential distribution for different values of its parameters
η, b, κ.

6 Hazard Rate Function and Survival Function

To study the life phenomena we can use hazard rate function as an important
characteristic. Using the pdf defined in equation (5.2), we define h(x) as:

h (x) =
ηκκbxκ−1

1− (ηx)
κ , (6.1)

also, its survival function obtained as:

S (x) = [1− (ηx)
κ
]
b
. (6.2)
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Figure 2: Hazard rate function (Left) and survival function (Right) graphs of
Kumaraswamy - Exponential distribution for different values of its parameters
η, b, κ.

7 Moments

The lth moment of a random variable X with pdf defined in equation (5.2), can
be calculated as:

µ
′

l = E(xl) = ηκκb

1∫
0

xl+κ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
dx,

= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

1∫
0

xl+vκ+κ−1dx.

On integration, we obtain

µ
′

l = κb
∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ 1

l + vκ+ κ
. (7.1)
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8 Moment Generating Function

The mgf for the pdf defined in equation (5.2), is given by:

MX (t) = E(etx) =

∞∫
0

etxf(x)dx

= ηκκb

1∫
0

etx.xκ−1
∞∑
v=0

(−1)
v

(
b− 1
v

)
(ηx)

vκ
dx

= κb
∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

1∫
0

etxxvκ+κ−1dx

Using Lemma 3, in the above expression then we have

E
(
etx
)
= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
×

ηvκ+κB (1, κ+ vκ) (1)
κ+vκ

.1F1 (κ+ vκ; 1 + κ+ vκ; t.1)

E
(
etx
)
= κb

∞∑
v=0

(−1)
v

(
b− 1
v

)
ηvκ+κ

(κ+ vκ)
.1F1 (κ+ vκ; 1 + κ+ vκ; t) (8.1)

9 Probability Weighted Moments

For the pdf of the proposed distribution, corresponding pth probability weighted
moment is given by:

ρ = E
(
xp (G (x))

ϕ
)
=

1∫
0

xp (G (x))
ϕ
.g (x) dx,

= κbηκ
1∫

0

xp+κ−1
(
1− [1− (ηx)

κ
]
b
)ϕ

. [1− (ηx)
κ
]
b−1

dx,

using Lemma 1, in the above expression then we have

= ηκκb
∞∑
t=0

(−1)
t

(
ϕ
t

) 1∫
0

xp+κ−1 [1− (ηx)
κ
]
bt+b−1

dx,

again we apply Lemma 1, then we obtained

= κb
∞∑
t=0

∞∑
u=0

(−1)
t+u

(
ϕ
t

)(
bt+ b− 1

u

)
ηκ+κu

1∫
0

xp+κ+κu−1dx.
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ρ = κb
∞∑
t=0

∞∑
u=0

(−1)
t+u

(
ϕ
t

)(
bt+ b− 1

u

)
ηκ+κu

p+ κ+ κu
. (9.1)

10 Mean, Median and Mode

The mean of a probability distribution is defined as:

E(x) =

∞∫
0

x.g (x) dx

E (x) = κb

∞∑
d=0

(−1)
d

(
b− 1
d

)
ηdκ+κ 1

1 + dκ+ κ
. (10.1)

The median of the proposed distribution is given by

GX(M) =
1

2
and M =

1

η

[
1− {0.5}1/b

]1/κ
. (10.2)

The mode of the proposed distribution given in equation (5.2), can be obtained
as

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

g′(x) = g (x) .

[
κ− 1

x
− ηκκxκ−1 (b− 1)

1− (ηx)
κ

]
(10.3)

Thus g(x) has mode at x = 1
η

[
κ−1
bκ−1

]1/κ
with g(0) = 0, g(∞) = ∞. Clearly

g′(x) > 0, ∀b, κ, η this shows that g(x) is a growing function of x.

11 Quantile Function

Using equation (5.1) the quantile function of proposed distribution is given by:

Q (x) =
1

η

[
1− {1− U}1/b

]1/κ
. (11.1)

where for interval [0,1], U follows the Uniform distribution.

12 Simulation Study

To judge the MLEs estimators performance for a finite sample of size n, here
we carry out a Monte Carlo simulation analysis. To explore the average bi-
ases (ABs), root mean square errors (RMSEs), mean square errors (MSEs) and
maximum likelihood estimates (MLEs), a simulation study based on the Ku-
maraswamy - Exponential distribution is conducted for the distribution param-
eters η, b and κ. Multiple simulations with different sample sizes and parameter
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settings were used to conduct the simulation experiment. We use the quantile
function to produce random samples for the KED. The simulation study was
performed for sample sizes n = 50, 100, ..., 1500 each repeated 1500 times, for
the following parameter values η = 2.2, b = 3.9, κ = 4.8.
The MLEs of the KE model are calculated using the optim ( ) R-function
with method = “SANN ”. For every set of simulated data, say, (estimates) for
i = 1, 2, . . . , 1500, the AB, MSE, and RMSE of the parameters were computed
for η = 2.2, b = 3.9, κ = 4.8. For different sample sizes, the AB, MLE and
RMSE of the parameters, η, b and κ are shown. These results lead us to the
conclusion that the MLEs are best to estimate the model parameters, with more
stability and closer to the genuine values. Table 1 and Fig. 3 demonstrate that
the RMSE, AB, and MSE drop as sample size grows as would be predicted. The
MLEs of the model’s parameters are also quite near to their actual values. Thus
even small samples can be fitted with derived distribution with better precision.

Table 1: Results obtained for Monte Carlo simulation of MLE, AB and RMSE
for the KE Distribution.

Para. n MLE AB RMSE

η

50 0.7829606 -1.4170393 1.518000
100 0.8087420 -1.3912579 1.555102
300 1.0488439 -1.1511561 1.544286
600 1.5011235 -0.6988764 1.269147
900 1.8463882 -0.3536118 0.973826
1200 2.0019255 -0.1980744 0.792184
1500 2.1223060 -0.0776939 0.615142

b

50 1.009512 -2.8904885 3.968965
100 3.642784 -0.2572159 5.646243
300 5.213961 1.3139606 5.896080
600 5.129874 1.2298743 4.692855
900 4.670879 0.7708793 3.495491
1200 4.528949 0.6289491 2.829144
1500 4.269290 0.3692901 2.041111

κ

50 13.287630 8.48763013 10.84302
100 11.627627 6.82762727 9.0838924
300 7.172703 2.37270337 3.9406621
600 5.465790 0.66579011 2.0529831
900 4.919511 0.11951053 1.2649680
1200 4.738959 -0.06104107 0.9195160
1500 4.633040 -0.16696001 0.7118000

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

346 Modi et al 338-357



10

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
40

80
12

0

Plot of MSE vs n

n

M
S

E

*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+

+

+

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
2

4
6

8

Plot of bias vs n

n

bi
as

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ +

+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
2

4
6

8

Plot of RMSE vs n

n

R
M

S
E

*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ +

+ + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

0 500 1000 1500

0
4

8
12

Plot of MLE vs n

n
M

LE

*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

+
+

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +

o

*
+

η =2.2 
b=3.9
κ =4.8

Figure 3: Plots for MLE, bias, MSE, and RMSE for Kumaraswamy - Exponen-
tial distribution for parameter values η = 2.2, b = 3.9, κ = 4.8.

13 Shannon Entropy

The entropy of a random variable is a measure of deviation of the uncertainty.
The Shannon entropy defined as:

E [− ln gX(x)] = −
∞∫
0

ln gX(x).gX(x)dx

Using pdf defined in equation (5.2), we get

E [− ln gX(x)] =

− ηκκb

1∫
0

ln
[
ηκκbxκ−1 [1− (ηx)

κ
]
b−1
]
xκ−1 [1− (ηx)

κ
]
b−1

dx

= −ηκκb ln (ηκκb)

1∫
0

xκ−1 [1− (ηx)
κ
]
b−1

dx− ηκκb (κ− 1)×

1∫
0

ln (x) .xκ−1 [1− (ηx)
κ
]
b−1

dx− ηκκb (b− 1)×

1∫
0

ln (1− (ηx)
κ
) .xκ−1 [1− (ηx)

κ
]
b−1

dx
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= I1 + I2 + I3. (13.1)

where,

I1 = −ηκκb ln (ηκκb)

1∫
0

xκ−1 [1− (ηx)
κ
]
b−1

dx,

= −κb ln (ηκκb)

∞∑
i=0

(−1)
i

(
b− 1
i

)
ηκ+iκ

1∫
0

xκ+iκ−1dx

I1 = −κb ln (ηκκb)
∞∑
i=0

(−1)
i

(
b− 1
i

)
ηκ+iκ

κ+ iκ
.

I2 = −ηκκb (κ− 1)

1∫
0

ln (x) .xκ−1 [1− (ηx)
κ
]
b−1

dx,

putting 1− (ηx)
κ
= t ⇒ −κηκxκ−1dx = dt and x = 1

η (1− t)
1/κ , we get

I2 = −ηκκb (κ− 1)

1∫
1−ηκ

ln

 (1− t)
1/κ

η

 tb−1 dt

ηκκ
,

= −b (κ− 1)

1∫
1−ηκ

[
ln

(
1

η

)
+

1

κ
ln (1− t)

]
tb−1dt,

= −b (κ− 1) ln

(
1

η

) 1∫
1−ηκ

tb−1dt− b
(κ− 1)

κ

1∫
1−ηκ

ln (1− t) .tb−1dt,

by using Lemma 4, we found that

I2 = − (κ− 1) ln

(
1

η

)[
1− (1− ηκ)

b
]
− b

(κ− 1)

κb[(
tb − 1

)
ln (1− t)−

b∑
g=1

tb−g+1

(b− g + 1)

]1
1−ηκ

(13.2)

= − (κ− 1) ln

(
1

η

)[
1− (1− ηκ)

b
]
− (κ− 1)

κ[
−

b∑
g=1

1

(b− g + 1)
−
(
(1− ηκ)

b − 1
)
ln (ηκ) +

b∑
g=1

(1− ηκ)
b−g+1

(b− g + 1)

]
.
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I3 = −ηκκb (b− 1)

1∫
0

ln (1− (ηx)
κ
) .xκ−1 [1− (ηx)

κ
]
b−1

dx,

putting 1− (ηx)
κ
= t ⇒ −κηκxκ−1dx = dt and x = 1

η (1− t)
1/κ , we get

I3 = −b (b− 1)

1∫
1−ηκ

ln (t) .tb−1dt,

by using Lemma 2, we found that

I3 = − (b− 1)

[
tb ln (t)− tb

b

]1
1−ηκ

= (b− 1)

[
1

b
+ (1− ηκ)

b
ln (1− ηκ)− (1− ηκ)

b

b

]
.

putting values of I1, I2 and I3 in equation (13.1) we can obtain required result.

14 Order statistics

In this section, we develop the distribution of the qth order statistic of the
Kumaraswamy-Exponential distribution (KED). Let X(1:n) ≤ . . . ≤ X(r:n) ≤
. . . ≤ X(n:n) represents the ordered sample of n random variables for KED. The

distribution of the qth order statistics Xq:p, q = 1, 2, . . . , p can be defined as:

gq:p(x) = Cq:p [G(x; η, b, κ)]
q−1

g(x; η, b, κ) [1−G(x; η, b, κ)]
p−q

x > 0 (14.1)

where G(.) and g(.) are given by equation (5.1) and equation (5.2) respectively,
thus

Cq:p (x) =
p!

(q)! (p− q)!
.

Thus, Using binomial expansion given in Lemma 1, we get

gq:p(x) = Cq:p

∞∑
k=0

(−1)
k

(
p− q
k

)
[G(x; η, b, κ)]

q+k−1
g(x; η, b, κ),

gq:p(x) = Cq:p

∞∑
k=0

(−1)
k

(
p− q
k

)[
1− [1− (ηx)

κ
]
b
]q+k−1

×

ηκκbxκ−1 [1− (ηx)
κ
]
b−1

,
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now using Lemma 1, we obtained

gq:p(x) = Cq:p

∞∑
k=0

∞∑
u=0

(−1)
k+u

(
p− q
k

)(
q + k − 1

u

)
×

ηκκbxκ−1 [1− (ηx)
κ
]
b+bu−1

. (14.2)

It’s sth moment can be calculated as:

E(xs) = Cq:p

∞∑
w=0

∞∑
u=0

(−1)
w+u

(
p− q
w

)(
q + w − 1

u

)
×

ηκκb.

1∫
0

xκ+s−1 [1− (ηx)
κ
]
b+bu−1

dx,

Again applying Lemma 1, we have

E(xs) = Cq:p

∞∑
w=0

∞∑
u=0

∞∑
r=0

(−1)
w+u+r

(
p− q
w

)(
q + w − 1

u

)
×

(
b+ bu− 1

r

)
ηκ+κrκb.

1∫
0

xκ+κr+s−1dx,

= Cq:p

∞∑
w=0

∞∑
u=0

∞∑
r=0

(−1)
w+u+r

(
p− q
w

)(
q + w − 1

u

)
×(

b+ bu− 1
r

)
ηκ+κrκb

κ+ κr + s
(14.3)

15 Maximum Likelihood Estimators

Let X is a random variable having the pdf of Kumaraswamy-Exponential dis-
tribution defined as:

gX(x) = ηκκbxκ−1 [1− (ηx)
κ
]
b−1

.

Then its log-likelihood function can be written as:

L(x; η, b, κ) = n lnκ+ nκ ln η + n ln b+ (κ− 1)
n∑

i=1

ln (xi) + (b− 1)

n∑
i=1

ln (1− (ηxi)
κ
) . (15.1)
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Thus the non-linear normal equations are given as follows:

∂L(x; η, b, κ)

∂η
=

nκ

η
− (b− 1)

n∑
i=1

κηκ−1xκ
i

(1− (ηxi)
κ
)
. (15.2)

∂L(x; η, b, κ)

∂κ
= n ln η +

n

κ
+

n∑
i=1

ln (xi)− (b− 1)
n∑

i=1

ηκxκ
i ln (ηxi)

(1− (ηxi)
κ
)
. (15.3)

∂L(x; η, b, κ)

∂b
=

n

b
+

n∑
i=1

ln (1− (ηxi)
κ
). (15.4)

To find the estimate of the unknown parameters by using the maximum likeli-
hood method equate the equation (15.2) - equation (15.4) to zero and we can
obtain solution.

16 Application To Real Life Data

Now we apply the proposed Kumaraswamy-Exponential distribution on two
engineering data sets. We compare its flexibility with some pre-defined distri-
butions. To analyse the present study, we obtain the results using R software.
Following distributions are considered for discussion:
Exponentiated Exponential Distribution

f(j) = rϖ
(
1− e−ϖ.j

)r−1
.e−ϖ.j

Exponentiated Weibull distribution

f(w) = aβσβwβ−1. exp
(
− (σw)

β
)(

1− exp
(
− (σw)

β
))a−1

Beta distribution

f(x) =
Γ (α+ b)

Γ (α) .Γ (b)
xα−1 (1− x)

b−1

Burr-XII exponential distribution

f(l) = cpϖ.
(
eϖl − 1

)c−1
eϖl

(
1 +

(
eϖl − 1

)c)−p−1

Gompertz distribution

f(x) = λ exp

[
αx− λ

α
(eαx − 1)

]
At α = 1% LOS assume the hypothesis as,
H0: The data fit the Kumaraswamy Exponential distribution
H1: The data do not fit the Kumaraswamy Exponential distribution
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Table 2: Table containing estimates and AIC values.

Distributions Estimates p-value D LL AIC

Kumaraswamy
exponential
distribution

η = 0.583923
0.1178 0.26605 -26.13379 58.26758b = 54.427161

κ = 1.596120

Beta distribution
α = 3.11202

0.1521 0.25378 -27.8813 59.7626
b = 21.81905

Exponentiated
Weibull distri-
bution

a = 9.388397
0.5196 0.18229 -32.83807 71.67614β = 0.975218

σ = 24.898336

Exponentiated
exponential
distribution

α = 13.82227
0.6835 0.16024 -3297643 69.95286

θ = 27.75196

Burr-XII expo-
nential distribu-
tion

c = 12.2957340
0.924 0.12272 -37.99018 81.98036p = 0.1133163

τ = 9.6519132

Data Set1: The data from Murthy et al. [13] representing of the breakdown
time of 20 mechanical parts. The records are:
0.085, 0.114, 0.068, 0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.121, 0.115, 0.125,
0.131, 0.081, 0.149, 0.076, 0.160, 0.084, 0.485, 0.067.
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Figure 4: Plots of fitted Kumaraswamy Exponential distribution for breakdown
time data.

Plots of fitted KE distribution for breakdown time data are displayed in Fig-
ure 4. Box plot revels that data is positively skewed. The TTT plot in Figure
4 for data 1 has concave than convex shape which suggests that hazard shape
is upside-down bathtub (unimodal). The empirical visualization suggests that
the KE distribution provides an improved fit for the breakdown time data.

Data Set2: This data set referred from Dasgupta [7] for the 50 observations
with opening of 12 mm and sheet thickness of 3.15 mm by the drilling machine.
The records are:
0.32, 0.04, 0.02, 0.24, 0.08, 0.22, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26, 0.24,
0.04, 0.14, 0.08, 0.32, 0.28, 0.14, 0.24, 0.26, 0.24, 0.22, 0.12, 0.18, 0.16, 0.06,
0.24, 0.14, 0.26, 0.16, 0.14, 0.16, 0.24, 0.16, 0.32, 0.18, 0.16, 0.12, 0.06, 0.02,
0.18, 0.22, 0.16, 0.06, 0.04, 0.14, 0.18, 0.16.

From Table 2 and Table 3, the Kumaraswamy-Exponential distribution has
the AIC with lowest value and greater log-likelihood value for three parameter
distribution, thus providing better fit than the Burr-XII exponential distribu-
tion, Exponentiated exponential distribution, Beta distribution, Exponentiated
Weibull distribution and Gompertz distribution. So, since p − value > α, we
suppose that data follows the Kumaraswamy-Exponential distribution and can-
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Table 3: Table containing estimates and AIC values.

Distributions Estimates p-value D LL AIC

Kumaraswamy
exponential
distribution

η = 1.011943
0.613 0.10726 -56.06933 118.13866b = 33.421670

κ = 2.099506

Burr-XII expo-
nential distribu-
tion

c = 1.991607
0.5666 0.1112 -56.12203 118.24406p = 17.947926

τ = 1.161502

Gompertz
distribution

λ = 1.590379
0.6522 0.10397 -57.07532 118.15064

α = 10.274716

Exponentiated
Weibull distri-
bution

a = 0.2970342
0.7083 0.09924 -57.53448 121.06896β = 4.9819583

σ = 3.8439353

not reject the null hypothesis.
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Figure 5: Plots of fitted Kumaraswamy Exponential distribution for drilling
machine data.

Plots of fitted KE distribution for drilling machine data are displayed in
Fig. 5. Box plot revels that data is normal. The TTT plot in Fig. 5 for
data 2 has a concave shape which suggests hrf is increasing. The empirical
visualization suggests that the KE distribution provides an improved fit for the
drilling machine data.

Conclusion

In this manuscript, we establish a new family of Kumaraswamy-X probability
distributions. Particularly, we developed the Kumaraswamy exponential distri-
bution’s cdf and pdf expressions. We have studied characteristic properties for
the proposed distribution. From density graph, we conclude the proposed dis-
tribution has reverse-J shape or unimodal. The graphs for survival and hazard
rate function for new distribution are also given. Further the mean, median
and mode are discussed. The formulae for the lth moment, probability weighted
moments and moment generating function are also derived. We derived the
Shannon entropy formula and the distribution of its qth order statistics for pro-
posed distribution. The MLE technique is used to estimate its parameters. We
measure the accuracy of the estimators for a finite sample of size n using a Monte
Carlo simulation analysis. The distribution is applied on two real datasets and
its efficiency measured with some existing distributions. It is clearly visible from
findings that the Kumaraswamy Exponential distribution exhibits a better fit
for the considered data sets. This study contributes to the expanding body of
knowledge on the Kumaraswamy-X probability distribution by offering insights
into its theoretical foundations and practical applications in engineering prob-
lems. The simulation-based evaluation highlights its potential to enhance the
accuracy and reliability of probabilistic modelling in various engineering disci-
plines, promoting its adoption as a valuable tool in engineering research and
practice.
Furthermore, the simulation study has demonstrated that the Kumaraswamy-X
distribution can provide a suitable alternative to other well-established distri-

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 33, NO. 1, 2024, COPYRIGHT 2024 EUDOXUS PRESS, LLC 

355 Modi et al 338-357



19

butions, offering a fresh perspective and potentially improving the accuracy of
predictive models. Its robust performance in various scenarios, as evidenced by
our study, suggests that it should be considered an essential and important tool
for the scientist and engineers.
Our future work will also focus on the determination of Bayesian estimators of
the proposed distribution. One aspect that will also be the focus of our atten-
tion will be the determination of the performance of estimators using various
estimation methods.
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