
Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 4, 2025 

 

                                                                                         500                                        P. Vemulamma et al 500-509 
 

An End-to-End Deep Learning Regressor for Predicting Stress Levels from 

Physiological Signals 

P. Vemulamma1*, Balla Laxmi Prasanna2, Adupa Bharath Chand2, Vemula Harsha Vardhan Reddy 2, 

 M. Rohith2 

1Assistant Professor, 2UG Student, 1,2Department of Computer Science and Engineering, 1,2Vaagdevi 

College of Engineering (UGC – Autonomous), Bollikunta, Warangal, Telangana. 

*Corresponding author: P. Vemulamma (vemulamma@vaagdevi.edu.in) 

ABSTRACT 

Stress monitoring via physiological signals has the potential to transform healthcare by enabling 

objective, continuous assessment, yet existing workflows remain fragmented relying on episodic 

questionnaires, manual scoring, and separate scripts for machine-learning. To address, we developed    

a desktop application with a Tkinter graphical user interface that guides users through data ingestion, 

preprocessing, model training, evaluation, and on-demand prediction without requiring code-level 

interaction. Upon uploading a CSV of physiological measurements, the system displays schema 

information, summary statistics, missing-value counts, and applies z-score normalization to all feature 

columns. A correlation heatmap facilitates exploration of inter-feature relationships. Two regression 

pipelines were implemented: a non-parametric K-Nearest Neighbors (KNN) regressor and a hybrid 

Multi-Layer Perceptron (MLP)–driven Linear Regression model. Models persisted as serialized 

artifacts to avoid redundant retraining. On a held-out 20 % test set, the KNN regressor achieved a Mean 

Absolute Error (MAE) of 0.4867, Mean Squared Error (MSE) of 0.3717, Root Mean Squared Error 

(RMSE) of 0.6097, and R² of 0.9241. The hybrid pipeline improved accuracy—MAE = 0.3903, 

MSE = 0.2389, RMSE = 0.4888, R² = 0.9528—demonstrating relative error reductions of ~19.8 % 

(MAE/RMSE) and a ~3.1 % increase in explained variance. Interactive scatter plots of predicted vs. 

actual values, along with textual performance summaries, provide transparent model assessment. 

Finally, users can upload new data for immediate inference, with predictions displayed alongside raw 

inputs. This integrated, click-driven tool democratizes access to advanced stress-level modeling, 

offering both researchers and practitioners a reproducible, environment to develop, deploy regression 

models on datasets. 

Keywords: Deep Learning, Stress Monitoring, Regression models, Machine Learning, Physiological 

Signals. 

1.INTRODUCTION 

In the fast-paced modern world, stress has emerged as a pervasive and significant health concern, 

affecting individuals across all walks of life. The World Health Organization has declared stress a global 

epidemic, with its impacts ranging from decreased productivity and quality of life to severe physical 

and mental health issues. As awareness of these detrimental effects grows, so does the need for accurate, 

real-time stress detection methods that can facilitate timely interventions and support effective stress 

management strategies. 

Traditional approaches to stress assessment have largely relied on self-reports and occasional clinical 

evaluations. However, these methods are limited by their subjective nature, infrequency, and inability 

to capture real-time stress fluctuations. The advent of wearable technology has opened new avenues for 

continuous, objective stress monitoring through the measurement of various physiological signals [1, 

2]. These devices can capture a wealth of data, including heart rate variability, electrodermal activity, 
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skin temperature, and accelerometer data, providing a more comprehensive picture of an individual’s 

physiological state. 

Despite this technological advancement, the challenge of accurately interpreting these multi-modal 

physiological signals to detect stress remains significant. Early attempts at physiological stress detection 

often focused on single-modal approaches, utilizing individual biomarkers such as heart rate or skin 

conductance. While these methods showed promise, they failed to capture the complex, multi-faceted 

nature of the human stress response [3, 4]. More recent studies have explored multi-modal approaches, 

combining data from various physiological signals to improve detection accuracy. However, many of 

these methods still rely heavily on time-domain features, potentially overlooking valuable information 

contained in the frequency domain of these signals [5]. 

2.LITERATURE SURVEY  

Wearable devices coupled with machine learning techniques have emerged as powerful tools for stress 

detection, offering continuous, non-invasive monitoring capabilities in real-world environments. A 

comprehensive review highlighted the significance of physiological indicators, including heart rate 

variability (HRV), skin temperature, and EDA in stress detection [3]. This work emphasized the crucial 

role of both time-domain and frequency-domain analyses for precise stress monitoring. However, 

existing studies often focus on either time-domain or frequency-domain features separately, limiting 

their ability to fully capture stress-related physiological variations. Subsequently, a systematic review 

presented generalizable machine learning models for stress monitoring, addressing critical challenges 

such as dataset transferability and model robustness across diverse populations [6]. While these models 

improve generalizability, they often overlook the challenges posed by intermittent data collection in 

real-world occupational settings. 

Recent advances in predictive modeling have demonstrated the effectiveness of integrating multiple 

data sources. Comparative studies examining various stress prediction models that combine smartwatch 

physiological signals with self-reported measures revealed enhanced predictive performance through 

this dual-source approach [7]. Nevertheless, reliance on self-reported data introduces subjectivity, 

which may affect model reliability and applicability in real-time monitoring. In parallel, research 

introduced an explainable deep learning framework for stress detection using wearable sensor data, 

providing crucial transparency in model interpretation for healthcare applications [8]. Although 

explainability improves trust in deep learning models, further enhancements are needed to balance 

interpretability with predictive accuracy. Furthermore, investigations into autoencoder-based 

approaches demonstrated the effectiveness of temporal feature extraction from wearables for 

forecasting both stress and mood, highlighting the potential of unsupervised learning methods in 

personalized health monitoring [9]. Despite their success, autoencoder-based methods often require 

extensive tuning and may struggle with diverse physiological patterns in occupational stress scenarios. 

Recent sensor-based methods have advanced stress detection by integrating new data modalities. For 

example, magnetostrictive polymer composites (MPCs) using UV-curable epoxy resin demonstrated 

reliable stress detection through changes in magnetic flux, offering potential to refine stress monitoring 

systems by augmenting time and frequency domain features [10]. While this approach showcases novel 

sensor technology, its practicality for widespread wearable integration remains uncertain.Furthermore, 

deep learning advancements in sensor-based recognition have enabled automatic feature extraction 

across complex physiological signals, addressing challenges such as unsupervised and incremental 

learning. These frameworks improve adaptability and interpretability, enhancing stress detection in 

varied real-world contexts [11]. However, many existing models lack mechanisms to effectively 

integrate multi-modal data, limiting their ability to capture stress responses comprehensively. 
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The role of specific physiological parameters in stress detection has been extensively investigated. 

Novel methods for mental stress assessment using HRV derived from electrocardiogram (ECG) signals 

demonstrated high precision in stress quantification [12]. Despite their accuracy, ECG-based 

approaches often require specialized sensors, reducing feasibility for daily wear. Additionally, pilot 

studies contributed to the field through the introduction of the Stress-Predict dataset, establishing a 

robust foundation for developing and validating stress prediction algorithms across diverse conditions 

[13]. While valuable for benchmarking, these datasets may not fully represent stress variability in high-

intensity professional settings. Research into the feasibility of combining wearable and self-reported 

measures in controlled lab environments has illuminated both the potential and limitations of deploying 

these techniques in real-world applications [14]. Yet, stress assessment in controlled environments may 

not directly translate to occupational settings where intermittent data collection is a major challenge. 

In professional environments, research explored embedded devices for continuous stress monitoring, 

providing valuable insights into wearable adaptation for demanding workplace settings [15]. However, 

many existing workplace monitoring solutions require high data availability, which is not always 

feasible in dynamic job roles such as nursing. These findings suggest practical applications for 

occupational health programs. Complementing this work, investigations into EEG-based brain-

computer interfaces for stress detection presented an innovative approach that combines neural 

indicators with physiological data for comprehensive stress assessment [16]. Despite their novelty, 

EEG-based systems are often intrusive and less practical for long-term stress tracking in daily 

occupational settings. Real-time prediction models designed for integrating wearable devices into daily 

life further highlight the practical aspects of these systems [17]. Nevertheless, most real-time models 

struggle with handling missing or intermittently collected data, a crucial issue in professional 

environments. 

Recent research has increasingly focused on personalization in stress monitoring solutions. Extensive 

investigations into wearable-based stress detection in semi-controlled settings identified both 

opportunities and limitations of current technology [12]. However, achieving a balance between 

generalization and personalization remains a challenge in real-world applications. Furthermore, studies 

proposed generalizable machine learning approaches addressing feature extraction and model 

generalization across various contexts, enhancing the versatility of stress monitoring systems [6]. Yet, 

many approaches still struggle with effectively integrating frequency-domain features, which are 

essential for capturing stress-related signal variations. Additional research focused on leveraging bio-

signals for personalized stress detection, demonstrating the efficacy of individual physiological patterns 

for enhancing predictive accuracy [18]. However, ensuring model adaptability across different 

individuals and work environments remains an open problem. Recent developments in real-time 

physiological data analysis have further advanced personalized stress detection models, facilitating both 

immediate interventions and longitudinal stress tracking (Ceren Ates et al., 2024). Despite these 

advances, a unified framework that effectively integrates multi-modal signals for stress detection under 

real-world intermittent data conditions is still lacking. 

3.PROPOSED METHODOLOGY 

The proposed methodology begins with a user-friendly Tkinter GUI that orchestrates each step of the 

machine-learning pipeline. First, raw physiological data are ingested via a file-upload interface and 

loaded into a pandas DataFrame. Next, a preprocessing module handles data cleaning, normalization, 

and exploratory analysis—producing summary statistics and a correlation heatmap. Two regression 

pipelines are then available: a KNN regressor and a hybrid MLP-driven linear regression, each trained 
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(or loaded) and evaluated on hold-out data. Finally, the trained models persisted to disk and can be 

applied to new datasets, with performance metrics and prediction results visualized directly in the app. 

 

Fig. 1: Proposed system architecture of MLP-driven LR for prediction of stress from physiological 

signals data. 

Here’s the stepwise explanation: 

Step-1: User-Friendly GUI Front End 

Built with Tkinter, the app presents a window with clearly labeled buttons (“Upload Stress Dataset,” 

“Data Preprocessing and EDA,” “KNN Regressor,” “Hybrid MLP-Driven LR,” “Prediction on Test 

Data,” and “Close Application”). 

All outputs (logs, tables, metrics) appear in a scrollable text panel, and plots pop up in Matplotlib 

windows, so you never have to touch the console. 

Step-2: Data Loading & Inspection 

“Upload Stress Dataset” lets you pick a CSV file of physiological measurements. The code reads it into 

a pandas DataFrame and displays the path and initial rows. 

This makes it trivial to swap in different datasets without rewriting any code. 
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Step-3: Preprocessing & Exploratory Data Analysis 

Data Preprocessing and EDA” computes and shows summary statistics, missing-value counts, and 

unique-value counts. 

It then splits the data into training and testing subsets (80/20), z-scores the feature columns, and renders 

a full correlation heatmap so you can spot which signals tend to move together. 

Step-4: Model Training & Evaluation 

KNN Regressor: On demand, the app either loads a saved KNeighborsRegressor or fits a new one to 

the training data, then reports MAE, MSE, RMSE, and R² along with a “Predicted vs. Actual” scatter 

plot. 

Hybrid MLP-Driven Linear Regression: First, an MLPRegressor is trained (or loaded), whose own 

predictions are appended as a new feature. A LinearRegression is then fit on this augmented data to 

create a hybrid pipeline—again evaluated by the same four metrics and visualized. 

Step-5: Making Predictions on New Data 

“Prediction on Test Data” opens another file dialog so you can feed in unseen physiological records. 

Those records are passed through the already-trained MLP to yield stress-level predictions, which are 

displayed alongside the input data in the GUI. 

Step-6: Persistence & Reusability 

Both models are saved to disk (.pkl files) after training, so repeated runs of the app skip retraining unless 

you deliberately delete or rename those files. This makes experimentation fast: you can tweak 

parameters, retrain once, and then instantly re-evaluate or predict. 

3.1 Hybrid MLP-driven LR 

This two-stage pipeline first passes input features through a multi-layer perceptron (MLP) to capture 

nonlinear patterns in physiological signals. 

 

Fig. 2: Internal workflow of MLP-driven LR model. 
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The MLP’s scalar output is then concatenated with the original feature vector and fed into a linear 

regression model. By blending the MLP’s capacity for complex feature learning with the interpretability 

and efficiency of linear regression, the hybrid approach often achieves enhanced accuracy while 

maintaining computational efficiency at inference time. 

Explanation: 

1. Input Feature Vector: The same preprocessed features enter two branches. 

2. MLP Regressor: A multi-layer perceptron with hidden layers of sizes 150 and 50 performs a 

forward pass, outputting a preliminary stress estimate. 

3. Feature Augmentation: That single MLP output is appended to the original feature vector, 

creating an extended input. 

4. Linear Regression: A simple weighted sum (plus intercept) is fit on this augmented data, 

leveraging both the original signals and the MLP’s learned nonlinearity. 

5. Final Prediction: The LR’s output is taken as the refined stress‐level prediction. 

4.RESULTS AND DISCUSSION 

4.1 Dataset description 

The dataset used in this research consists of various physiological signals captured from individuals 

under controlled conditions. One of the primary types of data included is accelerometer data, which is 

divided into three columns: c_ax, c_ay, and c_az. The c_ax column represents acceleration along the 

x-axis, which reflects movement in the horizontal direction. The c_ay column captures acceleration in 

the vertical direction along the y-axis, offering insights into the subject’s position and movement. The 

c_az column measures acceleration along the z-axis, corresponding to depth, and provides additional 

context to the overall physical movement of the subject. 

The dataset also contains physiological signals that are critical for understanding stress responses. The 

c_ecg column holds electrocardiogram (ECG) data, which reflects the electrical activity of the heart 

and is vital for analyzing cardiovascular responses to stress. The c_emg column includes 

electromyography (EMG) data, which measures muscle activity and tension, providing clues about 

physical stress reactions. Another important column is c_eda, which contains electrodermal activity 

(EDA) data. EDA tracks changes in the skin's electrical conductivity and is commonly used to assess 

emotional arousal and stress levels. 

In addition to these, the c_temp column records the subject’s body temperature. Since stress can 

influence body heat, temperature data can be a useful indicator of stress-related physiological changes. 

The c_resp column represents the respiratory rate, indicating the number of breaths per minute. 

Breathing patterns often change under stress, making respiratory data essential for stress analysis. 

To support time-series analysis, the w_label column identifies the specific data window or segment, 

helping to analyze temporal patterns in the physiological signals. Finally, the target column represents 

the stress level classification for each window of data. This is the key output variable used in machine 

learning models and typically categorizes stress into levels such as No Stress, Low Stress, Moderate 

Stress, High Stress, Severe Stress, or Extreme Stress. 
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4.2 Results description 

Fig. 3 illustrates a regression scatter plot for the KNN regressor model. The scatter plot compares the 

true values (actual stress levels) with the predicted values from the KNN model. The line of perfect 

prediction (represented by a red line) is shown alongside the scatter points, allowing for visual 

assessment of the model's accuracy. The performance metrics are also displayed in the GUI, providing 

quantitative insights into the model's predictive capability. 

 

Fig. 3: Regression scatter plot of KNN regressor model 

 

Fig. 4: Regression scatter plot of hybrid MLP-driven LR model. 
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Fig. 4 presents a regression scatter plot that illustrates the performance of a hybrid model combining a 

Multi-Layer Perceptron (MLP) with Linear Regression (LR) in predicting stress levels. The x-axis 

represents the true (actual) values, while the y-axis shows the predicted values generated by the model. 

Each blue dot in the plot corresponds to an individual prediction instance, with its position indicating 

how close or far the predicted value is from the actual value. The red line represents the line of perfect 

prediction, where predicted values exactly match the true values. The dense clustering of blue points 

around the red line suggests a strong correlation between predicted and actual values, indicating that 

the model has high accuracy and effectively captures the underlying patterns in the data 

 

Fig. 5 Model prediction on the test data. 

Fig. 5 shows the model's prediction results on the test data. After training the models, the predictions 

are made for the test dataset, and the results are displayed in the GUI. The predicted stress levels are 

compared against the true values, providing insight into the model's effectiveness. This figure is crucial 

for evaluating how well the trained model generalizes to unseen data. 

5.CONCLUSION 

The proposed end-to-end desktop application successfully streamlines stress-level prediction by 

integrating data ingestion, preprocessing, model training, evaluation, and deployment into a single 

Tkinter GUI. Quantitatively, the hybrid MLP-driven Linear Regression model outperformed the KNN 

baseline across every metric: Mean Absolute Error decreased from 0.4867 to 0.3903 (∼19.8 % 

reduction), Mean Squared Error fell from 0.3717 to 0.2389 (∼35.7 % reduction), and Root Mean 

Squared Error dropped from 0.6097 to 0.4888 (∼19.8 % reduction). Meanwhile, the coefficient of 

determination improved from R² = 0.9241 to R² = 0.9528—a relative increase of ∼3.1 %—

demonstrating the hybrid pipeline’s superior ability to capture variance in physiological signals. The 

KNN regressor, with its simplicity and non-parametric nature, provided a robust benchmark, but the 

hybrid approach’s combination of nonlinear feature learning (via MLP) and linear interpretability 

ultimately delivered the best trade-off between accuracy and computational efficiency. Persisting 

trained models as serialized artifacts further reduces runtime overhead, while on-demand visualization 

of metrics and predictions ensures transparency for both practitioners and researchers.  
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