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ABSTRACT 

This research presents an AI-based automated diagnosis system designed to detect eye diseases from 

retinal images with high accuracy and efficiency. The system integrates advanced deep learning 

techniques with a user-friendly graphical interface to provide clinicians and researchers with a powerful 

tool for early disease detection and analysis. The application begins with comprehensive dataset 

management, enabling users to upload retinal images, map them to specific target classes—such as 

Diabetic Retinopathy (DR), Macular Hole (MH), Normal, and Other Diseases/Conditions (ODC)—and 

perform essential preprocessing operations. Preprocessing includes image resizing, normalization, and 

data augmentation using state-of-the-art methods to enhance dataset variability and improve model 

robustness. Two distinct model architectures form the core of this system. The first model is an existing 

deep neural network (DNN) utilizing a Stochastic Gradient Descent (SGD) optimizer. This model 

features multiple convolutional layers, batch normalization, pooling, and dense layers, effectively 

learning intricate features from retinal images. The second model is a proposed Convolutional Neural 

Network (CNN) employing the Adam optimizer with a specific configuration of valid padding (AVP). 

This model integrates additional dropout and batch normalization layers to mitigate overfitting and 

enhance generalization. Both models are evaluated through rigorous performance metrics, including 

accuracy, precision, recall, and F1 score, with detailed classification reports and confusion matrices 

providing insights into their diagnostic performance. Experimental results indicate that while both 

models achieve reliable performance, the proposed CNN with AVP demonstrates superior diagnostic 

accuracy and better class differentiation, particularly in distinguishing subtle pathological features. The 

system’s modular design and extensive use of data augmentation ensure that it is adaptable to various 

clinical datasets and scalable for real-world applications. This research not only validates the potential 

of deep learning in medical imaging but also contributes a practical, user-centric tool for automated 

retinal disease diagnosis, paving the way for further advancements in computer-aided diagnostic 

systems. 

Keywords: Retinal disease detection, Deep learning, Convolutional Neural Network (CNN), Diabetic 

Retinopathy (DR), Medical image classification. 

1. INTRODUCTION 

The retinal disease (RD) classification involves the categorization of retinal images to identify signs of 

the condition in patients with diabetes. Traditionally, this process requires patients to visit hospitals or 

clinics for screening, where healthcare professionals manually examine the images [1]. However, this 

method is time-consuming, often leading to delays in treatment initiation due to the requirement for 

human interpretation. To address this issue, researchers are implementing AI based classification 

systems for RD. These systems utilize advanced algorithms, such as Deep Learning (DL), and Machine 

Learning (ML), to analyse retinal images and detect signs of RD automatically.  Doctors utilize various 

diagnostic tools such as fundus photography and optical coherence tomography (OCT) to capture 
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detailed images of the retina. These images provide critical information about the presence and extent 

of retinal damage caused by diabetes [2]. Through careful examination of these images, doctors can 

identify characteristic signs of RD, including microaneurysms, haemorrhages, exudates, and 

neovascularization. Each of these signs plays a vital in determining the severity of the condition and 

guiding treatment decisions. 

The process of RD classification involves interpreting retinal images and assigning them to appropriate 

categories depends on the severity of retinal abnormalities observed. This classification system helps 

doctors determine the most suitable course of action for each patient [3], whether it involves regular 

monitoring, lifestyle modifications, or referral for further treatment. By accurately classifying RD, 

doctors can intervene early to prevent or delay vision loss in affected individuals. While traditional 

methods of RD classification rely heavily on manual interpretation of retinal images by trained 

ophthalmologists, recent advancements in AI have introduced automated classification systems [4]. 

These AI-based systems leverage ML algorithms to analyze retinal images and classify them depends 

on predefined criteria. By automating the classification process, AI offers the potential to expedite 

diagnosis and improve the efficiency of RD screening programs. Implementing AI-based RD 

classification requires integrating ML models into existing healthcare infrastructure and workflows. 

This involves training the AI approaches utilizing advanced datasets of labeled retinal images to teach 

them to recognize patterns associated with different stages of RD. Once trained, these AI approaches 

accurately classify retinal images, providing timely and consistent assessments without the requirement 

for extensive manual intervention. 

 

Fig. 1: Eye anatomy. 

The Internet of Medical Things (IoMT) has revolutionized healthcare by integrating medical devices 

with healthcare information technology systems, creating a connected infrastructure that enhances 

patient car. RDs, such as diabetic retinopathy, macular degeneration, and glaucoma, are leading causes 

of blindness worldwide. Early detection and accurate grading of these diseases are critical for preventing 

severe vision loss. IoMT-based RD grading leverages a network of connected medical devices, sensors, 
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and cloud computing to facilitate real-time monitoring, analysis, and grading of retinal diseases. This 

method utilizes advanced imaging methods and artificial intelligence (AI) algorithms to automate the 

grading process, significantly improving diagnostic accuracy and patient outcomes. The IoMT-based 

RD grading system integrates various technologies, including digital fundus cameras, OCT devices, and 

AI algorithms, to capture and analyze retinal images. These devices are connected to a centralized 

cloud-based platform that collects, stores, and processes retinal images in real time. The images were 

then analyzed utilizing deep learning models trained to recognize and grade various retinal diseases. 

The system's continuous data flow allows for regular monitoring and immediate assessment of retinal 

health, enabling healthcare providers to detect early signs of disease and intervene promptly. This 

integration facilitates a more proactive method to managing retinal diseases and accepting patients to 

receive care in the comfort of their homes. 

The IoMT-based RD grading offers diverse merits over manual methods. First, it provides real-time and 

continuous monitoring of retinal health, which is specifically beneficial for conditions requiring regular 

check-ups.  The utilization of AI algorithms enhances the reliability and consistency of disease grading, 

reducing manual error and variability in diagnoses. Moreover, the automated grading process is 

significantly faster than manual methods, accepting for a higher throughput of patient data and enabling 

healthcare providers to manage more patients efficiently. Additionally, IoMT-based systems were 

combined with electronic health records (EHRs), providing a widespread patient’s health status and 

facilitating more informed decision-making by clinicians. 

 

Fig. 2: Architecture of IoMT. 

The RD is a severe complication of diabetes that can lead to vision loss and blindness if left untreated. 

The motivation for developing advanced grading systems for RD, particularly through the IoMT 

integration, stems from the requirement for early and accurate detection [9]. Traditional grading 

methods, often relying on manual examination of retinal images, are time-consuming, require expert 

intervention, and  lack consistency. IoMT offers a transformative approach by leveraging connected 

devices and sensors to automate and improvise the grading process.  By integrating IoMT, real-time 

data collection, transmission, and analysis was achieved, enabling more frequent and comprehensive 

monitoring of patients' retinal health. This advancement can facilitate timely intervention, improve 

patient outcomes, and reduce the burden on healthcare systems.Furthermore, the use of IoMT in RD 

grading aligns with the broader trend of digitizing healthcare and personalizing medical treatment. 

IoMT devices, such as smart fundus cameras and wearable retinal sensors [10], can continuously gather 

high-resolution data and feed it into sophisticated algorithms for grading RD. This method was not only 

improving the accuracy of the grading process but also enables the development of AI models to 

recognize at-risk individuals before significant damage occurs. 
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Fig. 3: Normal eye and diseased eye. 

By integrating these technologies, healthcare providers can shift from reactive to proactive care. This 

shift has the potential to significantly reduce the incidence of advanced RD, improvise attribute of life 

for patients, and drive forward innovations in diabetic care and management. 

2. LITERATURE SURVEY 

Pachade, Samiksha, et al. [11] proposed the Retinal Fundus Multi-disease Image Dataset (RFMiD), 

which is specifically designed to advance research in multi-disease detection within retinal imaging. 

The dataset includes 3,200 retinal fundus images, capturing various pathological conditions such as 

diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. The dataset is 

structured to facilitate multi-label classification tasks, enabling the development of algorithms. RFMiD 

also supports research on image segmentation and enhancement, providing annotated images that help 

improve the accuracy and robustness of automated diagnostic models. The dataset's diversity in disease 

representation and image quality makes it a comprehensive tool for developing and validating new 

methodologies in retinal disease detection. Siswadi, et al. [12] introduced a multi-modality and multi-

label detection approach for ocular abnormalities utilizing a Transformer-based semantic dictionary 

learning framework. The multiple modalities such as fundus photography and OCT, enabling a 

comprehensive analysis of various retinal conditions. The semantic dictionary learning component 

allows the model to analyse context and relationships among different features, improving its capability 

to detect multiple diseases simultaneously. By leveraging the Transformer architecture, the approach 

benefits from its strong capabilities in capturing long-range dependencies and contextual information 

within the data, which enhances the overall detection accuracy for complex ocular pathologies. Inan, et 

al. [13] presented an adaptive multiscale retinal diagnosis methodology utilizing a hybrid trio-model 

approach for comprehensive fundus multi-disease detection. This work leverages transfer learning and 

Siamese networks to improvise detection capabilities across different scales of retinal images. The 

adaptive multiscale approach allows the model to effectively capture features at various resolutions, 

which is critical for identifying diverse retinal conditions that manifest at different scales. The trio-

model integrates three distinct models that specialize in different aspects of feature extraction and 

classification, combining their strengths to achieve superior diagnostic performance. This hybrid model 

is particularly effective in handling the variability in retinal image quality and disease manifestation. 

Elsayed, et al. [14] developed computer-aided multi-label retinopathy diagnosis framework that 

incorporates inter-disease graph regularization. This methodology models the relationships among 

different retinal diseases utilizing a graph-based approach, which helps in understanding the co-

occurrence patterns of diseases. The graph regularization technique enhances the model's capability to 

adopt the correlations among multiple diseases, thereby improving its performance in multi-label 



Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 4, 2025 

 
 
 

                                                                                               466                                        Ch. Swapna et al 462-481 

classification tasks. By leveraging this inter-disease dependency, the framework is capable of providing 

more accurate and comprehensive diagnostic predictions, particularly in cases where multiple retinal 

diseases are present in the same patient. 

Vemparala, Yoshita, et al. [15] introduced OcuVision, CNN-powered framework for analyzing retinal 

images to diagnose diseases. The proposed methodology utilizes advanced CNN architectures to 

automatically extract features from retinal images, which are then utilized to classify different retinal 

conditions such as diabetic retinopathy, glaucoma, and AMD. OcuVision is designed to handle large-

scale datasets and is optimized for high-speed and accurate image processing, making it suitable for 

real-time clinical applications. The framework also includes a mechanism for continuous learning, 

accepting it to improve its diagnostic accuracy over time as more data becomes available. Bali, 

Akanksha, et al. [16] presented a multi-class, multi-label classification framework for ophthalmological 

fundus images depends on an optimized deep feature space evolutionary model. The proposed 

methodology combines deep learning with evolutionary algorithms to optimize the feature extraction 

process, enhancing the model's capability to differentiate among various retinal diseases. The 

evolutionary model iteratively refines the deep feature space, selecting the most relevant features that 

contribute to accurate classification. This approach not only improves the diagnostic performance but 

also reduces computational complexity, making it suitable for deployment in clinical settings where 

resources may be limited. Chavan, et al. [17] introduced diabetic disease detection methodology 

depends on optic disc and blood vessel analysis utilizing an enhanced Long-Short-Term Memory 

(LSTM) network. This approach focuses on extracting features from the optic disc and retinal blood 

vessels, which are critical indicators of diabetic retinopathy progression. The enhanced LSTM network 

is tailored to handle sequential data, capturing temporal dependencies that are critical for accurate 

disease detection. By integrating these anatomical features into the diagnostic process, the proposed 

method significantly improves the sensitivity and specificity of diabetic disease detection in retinal 

fundus images. 

ATLAN, et al. [18] explored the impact of noise removal filters on the classification accuracy of 

different types of medical images, including retinal images. The authors evaluated various filtering 

methods to improvise image quality by reducing noise, which is a common issue in medical imaging 

that can obscure important diagnostic features. By systematically analyzing the effect of different noise 

removal filters, machine learning models in medical image classification. The findings suggest that 

optimal noise reduction is critical for achieving high diagnostic accuracy in retinal disease detection. 

Sivaz, et al. [19] combined EfficientNet with a Machine Learning Decoder (ML-Decoder) classification 

head for multi-label retinal disease classification. The EfficientNet architecture is utilized for its high 

parameter efficiency and strong feature extraction capabilities, while the ML-Decoder is designed to 

handle the complexities of multi-label classification tasks. This combination allows for the effective 

identification of multiple retinal diseases from a single image, leveraging the strengths of both deep 

learning and traditional machine learning methods. The integrated model demonstrates improved 

accuracy and robustness in multi-label classification compared to standard CNN-based approaches. Du, 

Jiawei, et al. [20] introduced RET-CLIP, a foundation model for retinal image analysis pre-trained with 

clinical diagnostic reports. RET-CLIP leverages a large-scale dataset of retinal images paired with 

corresponding clinical diagnoses to adopt rich feature descriptions that are clinically relevant. The pre-

training process involves contrastive learning, which helps the model analyse the subtle variations in 

retinal images that correspond to different disease states. RET-CLIP is designed to be fine-tuned on 

specific diagnostic tasks, providing a versatile foundation for developing specialized models for various 

retinal disease detection applications. 
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3. PROPOSED METHODOLOGY 

The integration of ML in RD grading addresses critical gaps in traditional manual methods, offering 

enhanced efficiency and accuracy. Traditional manual grading of RD images was time-consuming and 

subject to variability depends on grader's expertise, leading to inconsistencies and potential errors. DL 

algorithms, particularly CNN, can automate the analysis of retinal images. This automation not only 

speeds up the grading process but also reduces the variability associated with human interpretation, 

ensuring more consistent and reliable assessments across different healthcare settings. Moreover, DL 

methods can improve the scalability of RD screening, making it feasible to implement widespread and 

remote screenings. By leveraging DL models, healthcare systems can process and understands a large 

volume of RD images quickly and accurately, which is particularly beneficial in underserved or 

resource-limited areas where access to trained ophthalmologists is limited. Additionally, DL models 

were continuously updated and refined with new data, enabling them to adapt to evolving patterns and 

trends in RD. This dynamic capability ensures that the grading system remains effective over time and 

was integrated into comprehensive screening programs to provide early and precise detection of RD, 

ultimately enhancing patient outcomes and reducing vision problems. 

3.1 Proposed Methodology 

The proposed approach aims to improvise RD grading utilizing DL methods by leveraging the RFMID 

as presented in Figure 4. This approach demonstrates the potential of advanced CNN architectures and 

optimization methods in enhancing the reliability of RD grading, offering a scalable solution for 

widespread clinical application. 

 

 

 

Fig. 4: Proposed RD grading system architecture using CNN with AVP model.  
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Step 1: RFMID Dataset: The first process involves acquiring and preparing the RFMID dataset, which 

was a collection of RD images specifically annotated for grading. This dataset is essential for training 

and evaluating CNNs in RD detection. The dataset should be comprehensive, containing a diverse range 

of images that represent various stages and types of RDs. Proper data preprocessing is critical at this 

stage to ensure that the images are of high quality and appropriately labelled. This includes steps such 

as ensuring consistent image resolution, color balance, and format.  

Step 2: Image Processing: In this step, it contains diverse analysis like normalization, contrast 

adjustment, and noise reduction to ensure that the images are clear and the features relevant to RD are 

prominently visible. Image processing methods help in reducing artifacts and standardizing the input 

data, which improves the performance of the CNN models. Additionally, methods such as segmentation 

was applied to isolate regions of interest, such as blood vessels or lesions, which were critical for 

accurate RD assessment. 

Step 3: Image Augmentation: This step helps in increasing the diversity of the dataset and prevents 

overfitting by introducing variations such as rotation, scaling, flipping, and brightness adjustments. 

Augmentation methods improvise the CNN model, accepting it to generalize better to new data. By 

simulating different conditions and perspectives, augmentation ensures that the model can handle 

diverse data variations and improve its predictive accuracy. 

Step 4: Train-Test Splitting: Once the dataset has been processed and augmented, it is split into 

training and test sets. A usual process was to allocate a majority of information to training information 

data and a smaller portion to the test set, ensuring that the model has enough data to adopt from while 

reserving a representative subset for unbiased evaluation.  

Step 5: Existing CNN with SGD Optimizer: At this stage, a baseline CNN is implemented utilizing 

the Stochastic Gradient Descent (SGD) optimizer. The existing CNN was trained on processed and 

augmented dataset to establish a performance benchmark. Although effective, SGD have limitations in 

converging to optimal solutions, particularly in complex models with large datasets. 

Step 6: Proposed CNN with Adam-Valid Padding Optimization: The proposed CNN model is 

introduced, incorporating Adam optimizer and valid padding (AVP) methods. The AVP contains 

adaptive with fast learning rates and is often more effective than SGD in converging to optimal 

solutions. Valid padding, as opposed to same padding, involves cropping the edges of input data to 

maintain spatial dimensions, which enhance model’s focus on the central regions of interest. Finally, 

training the proposed CNN with these enhancements to evaluate their impact on model performance. 

Step 7: Prediction from Test Image: With the proposed CNN model trained, predictions are made on 

the test images to assess the model’s capability to catalogue and grade RD accurately. The test data were 

applied to trained model, and the outputs are compared to the ground truth labels to evaluate the model’s 

performance. So, proposed model generalizes to new data and how accurately it can identify, and grade 

RD compared to the baseline model. 

Step 8: Performance Comparison: The final step involves contrasting performance of existing CNN 

with SGD optimizer and the proposed CNN with Adam-Valid Padding Optimization. This comparison 

highlights the improvements brought by the proposed optimizations and supplies a quantitative 

assessment of their effectiveness in enhancing RD grading. The results were explored to determine 

which model offers superior performance. 

3.2 Image Preprocessing 

The image processing involves following steps  
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Image Read: The first step in processing retinal images for DL applications is to load them from the 

dataset utilizing libraries like OpenCV. These provide robust functions for reading and manipulating 

image files. When utilizing OpenCV, the function cv2.imread() was utilized to read an image file into 

memory, whereas PIL utilizes Image.open() for the same purpose. This step is critical as it allows the 

images to be imported into the Python environment where further preprocessing and analysis was 

performed. Proper loading ensures that the images retain their quality and characteristics, which is vital 

for accurate model training and evaluation in RD grading. 

Image resizing and Array Conversion: After loading the images, next step was to convert them into 

numerical arrays. DL models, particularly CNNs, require input information in form of numerical arrays 

because these models operate on numerical data. In Python, this conversion was performed utilizing 

libraries like NumPy, which provides efficient storing of large numerical arrays. Each image is 

represented as a multi-dimensional array, where the dimensions correspond to the image height, width, 

and color channels (such as RGB). For instance, a colored retinal image of size 256x256 pixels was 

represented as a 3D array of shape (256, 256, 3). Each element in this array corresponds to a pixel's 

intensity value, capturing the image's visual information.  

Image Normalization: Once the images were transformed into data arrays, then normalize the pixel 

data amounts by converting them to floating-point numbers. In their raw form, pixel intensity values 

typically range from 0 to 255 for an 8-bit image. However, for better model performance and faster 

convergence during training, it is common practice to normalize these values to a range among zero and 

one. It is achieved by separating each pixel value by 255, converting them from integer format to float. 

Normalization helps in standardizing the input data, making the learning process more stable and 

efficient for DL models.  

3.3 Image Augmentation 

Image Augmentation is a critical technique in the preprocessing pipeline for training DL models, 

particularly when employed with medical datasets such as those utilized for RD grading. Image 

augmentation requires series of random transformations to the original images to artificially expand the 

dataset. It contains rotation, flipping, zooming, shifting, cropping, brightness adjustment, and adding 

noise, among others. The primary purpose of augmentation is to increase the multiplicity without 

actually collecting new images, which is especially valuable in medical datasets where obtaining labeled 

data is often challenging and expensive. By introducing these variations, the model becomes more 

robust and less likely to overfit to the specific characteristics of training information data, accepting it 

to generalize better to unseen images. 

In RD grading, augmentation helps in simulating different scenarios that the model encounter in real-

world settings, such as variations in lighting, orientation, or scale of the retinal images. This is important 

because retinal fundus images can vary significantly depending on factors like the imaging device, 

patient positioning, or environmental conditions during image capture. By exposing the model to these 

augmented versions of the data, it learns to recognize RD features such as microaneurysms, 

hemorrhages, and exudates under different conditions. This enhanced variability not only improves the 

model's accuracy and robustness but also ensures that it can provide consistent and reliable performance 

and patient populations. 

3.4 Train-Test Splitting 

In the realm of RD diagnosis, the utilization of CNN as a proposed method was extended traction due 

to its capability to effectively process medical imaging data. When coupled with a data splitting strategy 
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comprising an 80% training and 20% testing rate, CNNs offer a powerful approach to enhancing 

diagnostic accuracy.  

This methodology involves partitioning the dataset into an 80% training set and a 20% testing set, with 

the former utilized to train CNN methodology. By allocating a significant portion of the dataset to 

training, the CNN can effectively adopt from a diverse range of examples, enhancing its capability to 

accurately diagnose RD from medical images.  

3.5 Model Building & Training  

Proposed CNN Classifier with AVP Optimization 

In deep CNN for RD classification from OCT images, several key layers and components are commonly 

employed as presented in the Figure 4.2. The convolution layer plays a pivotal role in extracting features 

from the input images. To build feature maps that emphasize various patterns and textures within the 

picture data, it entails sliding a tiny filter or kernel over the input image, executing element-wise 

multiplications and summations, and then showing the result.  

It is common practice to employ a max-pooling layer after the convolution layer in order to down 

sampling the feature maps, while still preserving the most substantial information. Through a 

concentration on the most important characteristics, this layer contributes to the reduction of 

computational complexity and the prevention of overfitting.  The ReLU algorithm essentially introduces 

a threshold for activation by forcing all negative values to be equal to zero. After the convolutional and 

pooling layers, a flatten layer is applied to the feature maps in order to transform them into a one-

dimensional vector. This makes it possible to extract higher-level characteristics and patterns from the 

flattened feature vector.  When doing multi-class classification tasks, such as RD classification, it is 

common practice to apply a SoftMax classifier after the dense classification layer.  

To enable overall architecture to generate a probability distribution that encompasses many classes, 

SoftMax computes the probabilities of each class and then normalizes those probabilities. It is usual 

practice to utilize the AVP optimization method during training in order to repeatedly adjust the weights 

and biases of overall architecture. The AVP makes dynamic adjustments to the learning rate and ensures 

that all the parameters with unique adaptive learning rates.  

 

Fig. 5: DCNN Classifier 

It is common practice to use binary cross-entropy loss reduction as function of loss while doing 

classification jobs. So, it assesses the difference among the anticipated probability distribution and the 

actual distribution of the labels, it is ideal for RD classification. So, training with multiple epochs entails 

going over the complete dataset numerous times throughout the training process, with each iteration 

being referred to as an epoch. Through the use of this approach, the network is able to gradually acquire 
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knowledge from the data, so enhancing its performance and refining its weights over the course of 

succeeding epochs. 

3.5.1 Convolution Layer 

 In the realm of RD diagnosis, CNN employ convolution layers as essential components in their 

architecture. These convolution layers serve a critical role in extracting features from input data, such 

as medical images as presented in the Figure 4.3. Each convolution layer contains a series of learnable 

filters or kernels that systematically convolve across the input data, identifying intricate edges and 

feature patterns indicative of different RD. Through successive convolution layers, the CNN 

progressively learns classified descriptions of input information, capturing nuanced details critical for 

accurate diagnosis. By leveraging convolution layers, CNNs efficiently capture spatial dependencies 

and patterns within the input, enabling the automatic learning of relevant features without the 

requirement for traditional feature engineering. This hierarchical approach enhances reliability of RD 

diagnosis by enabling the CNN to discern progressively complicated feature correlated with different 

eye conditions. 

The utilization of convolutional layers in CNNs enables the model to efficiently capture spatial 

dependencies and patterns within the input data, critical for discerning subtle differences associated 

with various RD.  

 

Fig. 6: Convolutional layer. 

3.5.2 Max-Pooling Layer 

When it comes to the diagnosis of RD, CNN incorporates max-pooling layers as essential components 

within its design. As presented in the Figure 4.4, these layers play a significant part in down sampling 

the feature maps, while preserving the most important characteristics. The maximum pooling technique 

does this by separating the input into multiple parts and picking the largest value from each zone. This 

allows the maximum pooling technique to highlight critical aspects while ignoring the details that are 

not vital.  

By reducing size of feature maps, max-pooling layers contribute to the computational efficiency of 

CNNs and help prevent overfitting by promoting feature generalization. Moreover, max-pooling 

translational invariance of the network, accepting, recognizing features irrespective of their exact spatial 

location in input information. It characteristic proves beneficial in RD diagnosis, as it enables the CNN 

to effectively identify key features indicative of different eye conditions across diverse medical images 

or patient data. Through the integration of max-pooling layers, CNNs can efficiently extract and 

prioritize relevant features important for diagnosis of RD. 
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Fig. 6: Image of max-pooling layer operation. 

3.5.3 ReLU activation unit 

The ReLU activation function is an important component in the process of determining the diagnosis 

of RD utilizing CNN methods. A non-linear activation function known as ReLU is often utilized in 

CNNs to include non-linearity into the decision-making process of the network, as seen in Figure 4.5. 

The operation of this activation function involves bringing all of the negative input values to zero while 

maintaining the status quo for the positive values. It is possible for a CNN to efficiently adopt and 

extract complicated patterns, which in turn improves the network's capability to recognize small 

changes that are indicative of different RD. Furthermore, because to its ease of use and high 

computational efficiency, ReLU has been a common option for activation functions in CNNs. This has 

contributed to the overall efficacy and accuracy of RD diagnosis. CNNs are able to process and evaluate 

input data in an efficient manner because to the incorporation of ReLU activation functions. This allows 

CNNs to facilitate the formation of educated predictions about the existence and severity of RD, which 

in turn assists medical practitioners in making diagnostic choices that are both prompt and accurate. . 

 

Fig. 7: ReLU activation. 

3.5.4 Flatten Layer 

In proposed architecture, the Flatten layer is an essential component that accomplishes its purpose. To 

facilitate the transition to fully and densely connected layers, this layer serves a critical role in 

translating the multi-dimensional output of the convolutional and pooling layers into a one-dimensional 

array, as illustrated in Figure 4.6. Figure 4.6 also illustrates this transformation. CNNs are able to 

successfully extract and condense most important characteristics from the input data thanks to the 

Flatten layer, which flattens the output. The CNN will be able to do a full analysis and interpretation of 

the retrieved characteristics because of this transformation, which will eventually contribute to correct 

diagnosis of RD. 
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The integration of the Flatten layer within CNNs streamlines the diagnostic process by preparing the 

extracted features for input into subsequent fully connected layers. This layer's function is critical in 

consolidating the extracted information from earlier layers into a format that was readily utilized for 

classification tasks. By enabling the CNN to efficiently process and interpret the extracted features, the 

Flatten layer enhances the network's capacity to discern intricate patterns indicative of different RD. 

Consequently, the integration of the Flatten layer optimizes the CNN's capability to make informed and 

reliable diagnoses of eye conditions depends on separated features from input data. 

 

Fig. 8: Flatten layer. 

3.5.5 Dense layers 

 In the domain of RD diagnosis utilizing CNN, the Dense layer serves as a pivotal element in the 

network architecture. Unlike convolutional and pooling layers that focus on feature extraction and 

dimensionality reduction, the Dense layer is responsible for classification tasks. This layer is fully 

connected as presented in the Figure 4.7, connected every neuron in the preceding layer.  

In RD diagnosis, the dense layer utilizes extracted features from earlier layers to make predictions about 

the presence or severity of RD. It is critical role in accurately classifying input data, such as medical 

images or patient records, into different categories of RD. The integration of Dense layers within CNNs 

enhances the diagnostic capabilities by providing a final layer of classification depends on the extracted 

features. This layer utilizes sophisticated mathematical operations to analyze and interpret the 

aggregated information from preceding layers, enabling the CNN to make informed decisions regarding 

RD diagnosis.  By employing Dense layers, CNNs effectively leverage the hierarchical representations 

learned from earlier layers to classify input information. As a result, the integration of Dense layers 

contributes significantly to the overall effectiveness of CNNs in diagnosing RD, facilitating timely and 

accurate medical interventions depends on the model's predictions. 

 

Fig. 9: Dense layer. 

4.5.6 SoftMax classifier 



Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 4, 2025 

 
 
 

                                                                                               474                                        Ch. Swapna et al 462-481 

 In the realm of RD diagnosis utilizing CNN, the SoftMax classifier plays a pivotal role in the final 

stage of the network architecture. This classifier is employed to make probabilistic predictions regarding 

the presence and severity of RD depends on the extracted features from earlier layers as presented in 

the Figure 4.8. The SoftMax classifier operates by computing the probabilities of each class (e.g., 

different types of RDs) given the input data. 

It achieves this by taking the output of the preceding fully connected layer and applying the SoftMax 

function, which normalizes the output with all possible classes. In RD diagnosis, the SoftMax classifier 

allows CNNs to assign probabilities to each class, thereby facilitating the identification and 

classification of various RD depends on the input data, such as medical images or patient records. 

By employing the SoftMax classifier, CNNs can effectively analyze the extracted features and provide 

probabilistic predictions regarding the likelihood of different RD. This classifier enables the network to 

make informed decisions by assigning probabilities to each class, ensuring a comprehensive assessment 

of potential diagnoses.  

It is possible for medical practitioners to evaluate the predictions made by the CNN and to make 

educated choices about patient care and treatment methods thanks to the SoftMax classifier, which plays 

an essential part in the diagnostic process. Considering this, the use of the SoftMax classifier enhances 

overall efficacy and dependability of CNNs in the diagnosis of RD, which in turn helps to facilitate 

earlier treatments and achieve better results for patients. 

 

Fig. 10:  SoftMax classifier (source: analytics vidhya). 

3.5.7 Binary cross entropy loss reduction 

Binary cross-entropy loss reduction was an important module of the training process for CNN utilized 

in RD diagnosis. The difference among projected probability and actual labels in binary classification 

tasks, it is especially well-suited for situations in which the CNN is trained to determine whether or not 

a patient has a certain RD.  

During training, the CNN makes repeated adjustments to its parameters to reduce loss of binary cross-

entropy. This helps the CNN improve its capacity to reliably differentiate among positive and negative 

occurrences of RD. CNNs are able to successfully train to assign greater probability to accurate 

classifications and lower probabilities to wrong ones by optimizing the binary cross-entropy loss. This 

in turn leads to increased diagnostic accuracy, which is ultimately the goal.    

Through the reduction of binary cross-entropy loss, CNNs are equipped to deliver outcomes regarding 

the presence or absence of RD, empowering healthcare informed decision-making in patient care and 

treatment strategies. 
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4. RESULTS  

In contrast, Fig.11 demonstrates the outcome of image information augmentation on the dataset. The 

graph illustrates a more balanced distribution across the four classes after augmentation. The ranging 

from 6,492 for ODC to 8,655 for Normal. This balanced distribution helps to reduce model bias and 

advances the model's capability, resulting in better generalization to unseen data. The augmentation 

strategy effectively addresses the initial imbalance, which is critical for accurate model predictions and 

fair performance across all classes. 

 

Fig. 11: Dataset labels versus number of sample count before augmentation.  

 

Fig. 12: Bar graph obtained after augmentation (dataset class labels versus count). 

Table 1 provides a comprehensive analysis of allocation of images across four different retinal disease 

classes: DR, MH, Normal, and ODC, both before and after augmentation. The table shows the initial 

count of images accessible for each class and the increased count after applying data augmentation 

methods. 

• Before Augmentation: The dataset initially contained 1,376 images distributed among the four 

classes, with the 'Normal' class having the highest count (401 images) and the 'ODC' class the 

lowest (282 images). This uneven distribution potentially led to bias in model training, 

favouring the more frequent classes. 
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• After Augmentation: Post augmentation, the dataset expanded to 30,001 images, significantly 

balancing the class representation. The count of images for each category increased to 

approximately 8,230 for DR, 6,624 for MH, 8,655 for Normal, and 6,492 for ODC. The 

augmentation process aimed to mitigate the imbalance, accepting for more equitable training 

data, which enhances the model’s capability to generalize across different classes. 

Table 1: Class specific image count analysis. 

Class Before Augmentation After Augmentation 

DR 376 8230 

MH 317 6624 

Normal 401 8655 

ODC 282 6492 

Total 1376 30001 

 

 

Fig. 13: Confusion matrix obtained using existing DNN with SGD approach. 
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Fig. 14: Confusion matrix obtained using proposed CNN with AVP approach. 

 

(a)       (b) 

 

(c)       (d) 

Fig. 15: Sample predictions on test case images using proposed CNN with AVP model. 

Table 2 compares the performance of different models depends on key metrics: Validation Accuracy, 

Testing Accuracy, Testing Precision, Testing Recall, and Testing F-Score. 

• Existing SGD: This model shows lower performance metrics across all aspects, with validation 

accuracy at 79.60%, testing accuracy at 79.85%, precision at 80.15%, recall at 78.41%, and F-

Score at 78.54%. This indicates that while the model performs reasonably well, there is room 

for improvement. 

• Existing Adam: The Adam optimizer significantly improves performance compared to SGD, 

with validation accuracy at 84.46%, testing accuracy at 83.39%, precision at 83.11%, recall at 
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82.77%, and F-Score at 82.47%. These improvements highlight Adam’s effectiveness in 

optimizing the CNN model. 

• Proposed CNN-AVP: The proposed model with AVP optimization shows the best performance, 

with validation accuracy at 94.58%, testing accuracy at 94.43%, precision at 94.10%, recall at 

93.98%, and F-Score at 93.95%. The significant improvements in these metrics suggest that 

AVP optimization greatly enhances model accuracy and overall performance. 

Table 3. Performance Comparison of Various Models. 

Metric Existing SGD Existing Adam Proposed CNN-AVP  

Validation Accuracy (%) 79.60 84.46 94.58 

Testing Accuracy (%) 79.85 83.39 94.43 

Testing Precision (%) 80.15 83.11 94.10 

Testing Recall (%) 78.41 82.77 93.98 

Testing F-Score (%) 78.54 82.47 93.95 

 

 

Fig. 16: Performance comparison of obtained classification metrics using existing and proposed 

models. 
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Fig. 16: Performance evaluation of existing and proposed classifiers. 

Figure 16 shows how accuracy changes over 20 epochs of training for the various models. It features 

line plots depicting accuracy trends over time. The proposed CNN-AVP model display a more rapid and 

sustained increase in accuracy compared to the SGD and Adam models, reflecting its superior 

performance and stability. 

5. CONCLUSION 

The development of the AI-based automated diagnosis tool for retinal images demonstrates a robust 

integration of deep learning techniques and user-friendly GUI design to facilitate the early detection of 

eye diseases. Throughout the project, two different models were implemented and evaluated: an existing 

deep neural network (DNN) with a Stochastic Gradient Descent (SGD) optimizer and a proposed 

Convolutional Neural Network (CNN) employing the Adam optimizer with AVP (Adam with Valid 

Padding). Both models underwent a series of rigorous preprocessing, data augmentation, and train-test 

splitting steps to ensure that the dataset was optimally prepared for training. The existing DNN model 

achieved a commendable overall accuracy, with performance metrics including precision, recall, and 

F1 score that indicated a reliable ability to classify images into categories such as Diabetic Retinopathy 

(DR), Macular Hole (MH), Normal, and Other Diseases/Conditions (ODC). The confusion matrix for 

this model revealed that while most classes were accurately predicted, there were minor 

misclassifications between similar categories, suggesting areas for potential refinement. On the other 

hand, the proposed CNN model, which featured advanced architectural configurations and incorporated 

a loss optimization mechanism, demonstrated improved performance in several key metrics. In 

particular, the proposed model showed higher accuracy and better recall rates for classes that were 

challenging to distinguish, as evidenced by its more balanced confusion matrix. The detailed 

classification reports provided clear insights into per-class performance, validating the effectiveness of 

the proposed improvements over the baseline model. 
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