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ABSTRACT 

Crop disease management has been a crucial aspect of agriculture for centuries, with farmers 

traditionally relying on visual inspection and expert knowledge to identify diseases. As agriculture 

advanced, techniques like chemical treatments and resistant crop varieties were developed. The advent 

of digital tools and data processing in recent decades allowed for more precise agricultural practices, 

but the process of detecting crop diseases still required substantial human expertise and time. The 

objective is to develop an automated system that utilizes deep learning classifiers to accurately detect 

and classify rice leaf diseases from images, thereby providing a faster, more efficient, and scalable 

approach to crop disease management. Visual inspection by farmers or experts. Consultation with 

agricultural extension services. Use of reference books or charts for disease identification. The 

proposed system leverages deep learning to analyze rice leaf images and automatically detect various 

diseases. It involves collecting a large dataset of rice leaf images, preprocessing them for consistency, 

and training a deep learning model to distinguish between healthy and diseased leaves. The system 

then classifies the types of diseases present, providing actionable insights that can be used by farmers 

to make informed decisions. Additionally, a user-friendly interface is developed for easy interaction, 

allowing farmers to upload images and receive real-time results. 

Keywords: Rice Leaf Disease, Image Classification, Convolutional Neural Network (CNN), 

Automated Disease Detection, Agricultural Technology. 

1. INTRODUCTION 

Agriculture is the backbone of India's economy, contributing nearly 18% to the country's GDP and 

employing over 50% of the workforce. Among staple crops, rice occupies a prominent position, 

accounting for 43% of total food grain production. However, rice cultivation faces significant 

challenges due to the prevalence of diseases such as bacterial leaf blight, blast, and brown spot, which 

can reduce yields by 20-50%. Traditional methods for managing crop diseases involve visual 

inspections by farmers, consultation with experts, or reliance on manuals. These methods are time-

intensive, prone to errors, and inaccessible to small-scale farmers. The integration of artificial 

intelligence (AI) and deep learning (DL) in agriculture offers transformative potential. By developing 

a system that automates the identification of rice leaf diseases through image analysis, this research 

aims to reduce dependence on manual expertise, lower economic losses, and ensure food security. 

Applications extend to precision agriculture, early disease detection, and sustainable farming 

practices, contributing to enhanced productivity and farmer livelihoods. 

2. LITERATURE SURVEY 

Devi and Priya [1] concentrated on using UAVs to recognize plant disease through image analysis. 

They explored various optical techniques, including RGB imaging, multi- and hyperspectral sensors, 

thermography, chlorophyll fluorescence and 3D scanning, for their potential in automated and 

objective disease detection systems. The research emphasized the importance of highly sophisticated 
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data analysis methods for accurate disease detection, offering insights into complex plant–pathogen 

systems. Kumar et al. [2] proposed a multilayered perceptron model for predicting fungal diseases in 

plants, including powdery mildew, anthracnose, rust and root rot/leaf blight, based on real-time data 

from soil sensors and satellite information on micrometeorological factors. The method involved 

dataset preprocessing, exploratory data analysis and a detection module. The study emphasized the 

economic benefits of this cost-effective technique and its feasibility for timely and accurate plant 

disease detection.  

Picon et al. [3] proposed to enhance fungal infection identification, which minimizes yield losses and 

optimizes fungicide treatments. The researchers developed an adapted deep residual neural network-

based algorithm using over 8178 images for detecting septoria, tan spot and rust in real acquisition 

conditions. A network architecture called Mobile-DANet was developed by Chen et al. [4] to identify 

maize crop diseases. Based on Dense Net, this architecture incorporated depth-wise separable 

convolution in dense blocks and an embedded attention module to assess inter channel relationships 

and spatial points in input features.  

Yu et al., [5] was developed A rapid identification method for soybean brown leaf spot, soybean frog 

eye leaf spot and soybean Phyllosticta leaf spot based on a residual attention network (RANet) model 

Otsu's algorithm was employed to remove the background from the original images, and the dataset 

was expanded using image enhancement. Reis-Pereira et al., [6] In this Research modular optical 

sensing system is used to detect early bacterial infection in tomato leaves, achieving effective 

discrimination between healthy and infected plants 3 days post-inoculation through the application of 

direct UV–vis spectroscopy, optical fibres and principal component analysis. In this Research of 

Vidhya and Priya [7] they developed three models using ML (KNN and SVM) and deep learning 

(AlexNet) approaches. RGB colour images were employed to train the models with and without 

background. After augmentation, a total of 4353 healthy images, 4154 leafspot images and 4037 

sigatoka images were used to train the model. In the research of Neupane & Baysal-Gurel [8] they 

concluded that ML approaches are increasingly being used to automatically detect patterns or 

anomalies indicating the presence of crop disease. In the research of Abioye et al., [9] once a disease 

is detected, autonomous crop disease management systems can manage the disease by targeted 

application of pesticides.  

In this research of Hulbert et al., [10] the crop disease detection involves sharing information on crop 

diseases in a particular region it allows stakeholders to track the spread of diseases and develop 

strategies for disease management and control. In the Research of Burdon & Zhan, [11] The Climate 

changes is expected to impact crop health and disease patterns significantly increasing the complexity 

of crop disease detection. Deep learning techniques were used by Daphal and Koli [12] for disease 

classification in sugarcane. They introduced a database of sugarcane leaf diseases comprising 2569 

images across five categories. Elfatimi et al. [13] investigated rust and angular leaf spot diseases 

affecting bean crops by employing the MobileNet architecture.  

Ghosh et al. [14] studied on sunflower disease recognition using a hybrid deep learning approach. 

Using a small dataset, their model combined transfer learning and a simple CNN. Among the eight 

models tested with four different disease classes (downy mildew, grey mould, leaf scars and fresh 

leaf), the VGG19 + CNN hybrid model demonstrated superior performance in various metrics, 

including precision, recall, F1 score, accuracy, hamming loss, Matthews's coefficient, Jaccard score 

and Cohen's kappa.  

Khotimah et al. [15] introduced a high-performance two-stream spectral-spatial residual network 

(TSRN) for hyperspectral image classification and found that the proposed architecture performs well 
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even with small datasets, outperforming state-of-the-art methods in overall accuracy, average 

accuracy, kappa value and training time. 

3. PROPOSED METHODOLOGY 

Step 1: Rice Leaf Image Dataset  

The research begins with acquiring a comprehensive rice leaf image dataset. The dataset includes 

various images categorized into different classes, such as "Healthy," "BrownSpot," "LeafBlast," and 

"NeckBlast." These images serve as input for the entire deep learning pipeline. Each image is pre-

labeled based on its corresponding class. This dataset provides the foundation for training, validating, 

and testing machine learning models to classify rice leaf diseases effectively. 

Step 2: Image Preprocessing  

Image preprocessing involves several essential tasks to ensure that the dataset is ready for training. 

The images are read using the cv2.imread function and resized to a uniform shape, typically 32x32 

pixels, to ensure consistency. The pixel values of the images are normalized by dividing by 255 to 

scale them between 0 and 1, which helps in faster and more stable model convergence. The images 

are flattened and reshaped as required by the model. Additionally, labels are encoded to match the 

number of classes in the dataset, ensuring compatibility with categorical models. Processed images 

and their corresponding labels are saved for reuse. 

Step 3: Image Augmentation  

To address the problem of limited dataset size, image augmentation techniques are applied. 

Augmentation involves generating variations of existing images by applying transformations such as 

rotation, shear, and horizontal flips. This step creates a more diverse dataset, which helps improve the 

generalization capability of the model. Tools like ImageDataGenerator are utilized to automate this 

process. The augmented images significantly increase the size of the dataset and enhance the model's 

ability to handle unseen variations in real-world scenarios. 

Step 4: Existing CNN with SGD Classifier  

A Convolutional Neural Network (CNN) is trained using the Stochastic Gradient Descent (SGD) 

optimizer. The architecture consists of convolutional layers for feature extraction, followed by batch 

normalization and max-pooling layers to reduce spatial dimensions while retaining significant 

features. Fully connected layers and a final softmax activation layer complete the architecture for 

multi-class classification. SGD with a fixed learning rate is used to minimize the loss function, 

leading to a robust model. The model is trained and validated, and its performance is measured on the 

testing dataset. 

Step 5: Existing CNN with ADAM Classifier  

The next step involves training the same CNN architecture, but this time using the ADAM optimizer. 

Unlike SGD, ADAM adapts the learning rate for each parameter dynamically, leading to faster 

convergence. This step ensures a comparison between optimizers and highlights the improvements 

brought by using ADAM. The model is trained on the training dataset, validated, and its performance 

metrics, including accuracy and loss, are evaluated on the testing dataset. 

Step 6: Proposed Adam & Valid Padding Classifier  

A novel architecture is proposed, incorporating ADAM as the optimizer and valid padding in 

convolutional layers. The use of valid padding ensures that no unnecessary padding is added to the 

input images, leading to more precise feature extraction. The architecture includes additional layers, 
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such as dropout layers to prevent overfitting and batch normalization layers for stable and faster 

convergence. This proposed model is trained and validated extensively, achieving improved 

classification performance due to the combination of architectural modifications and an efficient 

optimizer. 

Step 7: Performance Comparison Plot and Accuracy vs Epoch Graph  

The performance of all the models is compared using graphical visualizations. Metrics such as 

accuracy, precision, recall, and F1 score are plotted for the three approaches: CNN with SGD, CNN 

with ADAM, and the proposed model. Additionally, training accuracy and loss graphs are plotted 

against epochs to visualize the learning progress of each model. These comparisons provide insights 

into the strengths and limitations of each approach and demonstrate the effectiveness of the proposed 

method. 

Step 8: Prediction of Output from Test Images  

Finally, the trained model with ADAM and valid padding is used to predict the class of unseen test 

images. The test images are preprocessed to match the input dimensions of the model. The model 

outputs the predicted class label for each test image, which is then compared with the true labels to 

evaluate its real-world applicability. This step validates the model's capability to classify rice leaf 

diseases accurately and highlights its practical utility in crop disease management. 

 

Fig. 1: Architectural Block Diagram of Proposed System. 

3.2 Image Preprocessing  

Image preprocessing is a critical step in preparing raw image data for effective training of deep 

learning models. The process begins with reading and resizing each image using libraries such as 

OpenCV. All images are resized to a uniform dimension, typically 32x32 pixels, to ensure consistency 

across the dataset—an essential requirement for most deep learning architectures. Following resizing, 

normalization is applied by scaling pixel values to a range between 0 and 1, achieved by dividing each 

pixel value by 255. This step standardizes the data and accelerates the convergence of optimization 

algorithms during model training. To further enhance the learning process, the dataset is shuffled to 

randomize the order of images, which helps prevent the model from developing biases based on 

image sequence and encourages generalization. Lastly, label encoding is performed by assigning each 

disease category a unique numerical value. These numerical labels are then transformed into one-hot 

encoded vectors using functions like to_categorical, facilitating efficient multi-class classification. 

This comprehensive preprocessing pipeline ensures that the image data is clean, consistent, and ready 

for robust model training. 

3.3 CNN with ADAM Classifier 
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A CNN with ADAM (Adaptive Moment Estimation) optimizer uses a sophisticated optimization 

algorithm that combines the advantages of SGD with momentum and adaptive learning rates for faster 

and more robust convergence. 

 

Fig. 2: Architectural block diagram of CNN model. 

In the proposed system, the Convolutional Neural Network (CNN) serves as the core component for 

feature extraction and classification. It processes input images through multiple layers, extracting 

relevant features and mapping them to predictions using a combination of convolutional, activation, 

pooling, and fully connected layers. To optimize the learning process, the ADAM (Adaptive Moment 

Estimation) optimizer is employed for weight updates. ADAM enhances training efficiency by 

computing exponentially weighted averages of both past gradients (capturing momentum) and the 

squared gradients (enabling adaptive learning rates). This dual approach allows the optimizer to 

adaptively adjust the learning rate for each parameter based on the dynamics of the training process. 

As a result, ADAM not only accelerates convergence but also improves the stability and accuracy of 

the model, making it particularly well-suited for complex image classification tasks like rice leaf 

disease detection. Similar to the CNN model trained using Stochastic Gradient Descent (SGD), a 

CNN optimized with ADAM also follows the process of extracting features and mapping them to 

predictions through layered processing. However, ADAM introduces a more sophisticated approach to 

weight updates. Unlike SGD, which uses a fixed learning rate for all weights, ADAM dynamically 

adjusts the learning rate for each individual weight based on the historical gradients. It maintains 

exponentially weighted moving averages of past gradients and their squared values, allowing the 

model to fine-tune learning for each parameter. Key hyperparameters, such as beta1 and beta2, are 

used to control the decay rates of the moving averages of the gradients (momentum) and the squared 

gradients (adaptive learning), respectively. This tailored adaptation helps improve convergence speed 

and training stability, making ADAM particularly effective in handling sparse gradients and noisy data 

during the training of deep learning models like CNNs. 

3.3.2 Adam & Valid Padding Classifier 

What is Adam & Valid Padding Classifier?  

This classifier uses a CNN with the ADAM optimizer and employs valid padding in convolutional 

layers, which ensures no padding is added to input images, resulting in smaller output dimensions. 

The system begins with feature extraction, where the Convolutional Neural Network (CNN) processes 

input images through convolutional layers using valid padding, meaning no extra padding is added to 

the input. As a result, the spatial dimensions of the feature maps reduce with each convolution, 

focusing the network on essential features while naturally shrinking the output size. Once features are 

extracted, the model enters the optimization phase, where the ADAM optimizer updates the network’s 

weights. ADAM combines momentum and adaptive learning rates by maintaining moving averages of 

both gradients and their squared values, enabling faster and more stable convergence. Finally, the 

model reaches the prediction stage, where the extracted features are passed through fully connected 



Journal of Computational Analysis and Applications                                                              VOL. 34, NO. 4, 2025 

 

                                                                                   289                                 Dr. Swathi Bolugoddu et al 284-293 
 
 

layers. The softmax activation function in the output layer converts these into a probability 

distribution across the possible disease classes, providing clear and interpretable predictions for rice 

leaf disease classification. 

The architecture of the proposed model begins with an input layer that receives the preprocessed 

image data, ensuring a consistent format for analysis. This is followed by convolutional layers that 

apply filters to extract spatial features from the images. These layers use valid padding, which means 

no extra padding is added, leading to a reduction in the spatial dimensions of the output and a focus 

on core image regions. To further reduce dimensionality while preserving essential information, 

pooling layers are applied after the convolutions, helping to simplify computations and prevent 

overfitting. The resulting feature maps are then flattened and passed through fully connected layers, 

which interpret the extracted features and prepare them for final classification. Lastly, the output layer 

generates the model’s predictions, typically through a softmax activation function, which outputs the 

probabilities for each disease class, enabling accurate and efficient rice leaf disease detection. 

4. RESULTS AND DISCUSSION 

4.1 Dataset Description 

The dataset used in this study comprises images categorized into four distinct classes, each 

representing a specific condition related to the health of rice plants. The BrownSpot class includes 

images of leaves exhibiting small, brown lesions often surrounded by a yellowish halo—symptoms 

indicative of a fungal infection that can compromise the plant's vitality. The Healthy class contains 

images of disease-free leaves, which appear green, vibrant, and uniform in texture, serving as the 

reference category for identifying abnormalities. The LeafBlast class features leaves affected by Leaf 

Blast disease, characterized by grayish or whitish lesions that may merge to form irregular shapes, 

severely impacting the plant’s photosynthetic capabilities. Lastly, the NeckBlast class includes images 

of plants showing symptoms of Neck Blast disease, which typically manifest at the neck of the 

panicle, leading to discoloration and structural weakening—ultimately affecting grain development 

and crop yield. These well-defined classes provide a comprehensive foundation for training the deep 

learning model to accurately detect and classify various rice plant conditions. 

4.2 Results Analysis 

Figure 3 visualizes the distribution of dataset categories before and after augmentation. It highlights 

the balanced representation of the four classes achieved through augmentation techniques. This step 

ensures that the model receives a well-distributed dataset, improving training outcomes and reducing 

class imbalance. 
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Fig. 3: Categories and augmented dataset count plot. 

 

 

Fig. 4: Confusion matrix plot of CNN with SGD classifier model. 

Figure 4 displays the performance metrics—accuracy, precision, recall, and F-score—achieved by the 

CNN model trained with the SGD classifier. It also includes the confusion matrix, which shows the 

classification performance across the four classes. The model achieved a testing accuracy of 71.59%, 

with precision, recall, and F-score values of 75.49%, 73.54%, and 74.27%, respectively. 

 

Fig. 5: Confusion matrix plot of CNN with Adam classifier model. 

Figure 5 represents the performance metrics for the CNN model trained with the Adam optimizer. The 

confusion matrix visualizes the correct and incorrect predictions for each class. The model achieved a 
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testing accuracy of 75.87%, with precision, recall, and F-score values of 78.71%, 77.74%, and 

77.94%, respectively. 

 

Fig. 6: Confusion matrix plot of CNN with Adam and valid padding classifier model 

Figure 6 showcases the performance metrics for the proposed extension of the CNN model using the 

Adam optimizer with valid padding. The confusion matrix highlights the significant improvement in 

classification accuracy and reduced misclassifications. The model achieved a testing accuracy of 

89.73%, with precision, recall, and F-score values of 90.54%, 90.88%, and 90.69%, respectively. 

 

Fig. 7: Model predictions on Test Case 1. 

Figure 7 presents examples of the model's predictions on test images. It shows the input images, their 

corresponding ground truth labels, and the predictions made by the best-performing model (CNN with 

Adam and valid padding). Correctly classified and misclassified instances are highlighted. 
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Fig. 8: Model predictions on Test Case 2. 

 

Fig 9: All algorithms’ training accuracy. 

5. Conclusion 

The research successfully demonstrates the potential of leveraging machine learning techniques, 

particularly Convolutional Neural Networks (CNNs), for the accurate classification of plant leaf 

diseases. By preprocessing the dataset, splitting it effectively, and employing robust algorithms like 

CNN with SGD and Adam optimizers, the model achieves high accuracy and generalization in 

distinguishing between the classes: Brown Spot, Healthy, Leaf Blast, and Neck Blast. The use of 

Adam optimizer with valid padding further enhances performance by ensuring efficient gradient 

descent and preserving image features during convolutions. This approach provides a scalable and 

reliable solution for early disease detection, helping farmers and agricultural stakeholders make timely 

decisions to manage and mitigate crop losses. 
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