
Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2897 Sandeep Sharma et al 2897-2905

Migration from SOA to Microservices Architecture: A

Case-Based Evaluation of Performance Improvements

and Architectural Trade-Offs
Sandeep Sharma1 and Vijay Pal Singh2

1 Department of Computer Engineering & Applications, Mangalayatan University, Aligarh, UP,

India
2 Department of Computer Engineering & Applications, Mangalayatan University, Aligarh, UP,

India
sharmasandeep2617@gmail.com

Abstract. This paper uses a real-world case-study approach to examine the shift from Service-

Oriented Architecture (SOA) to Microservices Architecture (MSA), which focuses on perfor-

mance enhancements and architectural trade-offs in popular and highly demanded software sys-

tems. It analyses key operational metrics of applications such as scalability, latency, availability,

and deployment speed, using case-based scenarios from e-commerce and media streaming sys-

tems. The evaluation shows a significant increase in system agility and responsiveness when

technologies like Kubernetes, Kafka, Redis, API Gateway, and CI/CD Pipelines are leveraged in

MSA. However, this transition from SOA to MSA also has several challenges, including increased

orchestration complexity, decentralized data management, distributed transaction handling, se-

curity enforcement across services, and governance of decentralized components. While address-

ing these pros and cons, this study gives practical recommendations for organizations consider-

ing similar architectural shifts. Moreover, integrating serverless computing and AI-driven ob-

servability remains an area that needs to be explored in future research to improve tooling, mon-

itoring, and operational scalability in microservices ecosystems to increase agility and reduce

the operation cost.

Keywords: Microservices, SOA, Software Architecture, Migration, Application Moderniza-

tion.

1 Introduction
To meet the growing demands for scalability, availability, lower Latency and rapid de-

ployment, many organizations are increasingly shifting from traditional Service-Ori-

ented Architecture (SOA) to modern Microservices Architecture (MSA) [1,2]. This ar-

chitectural shift is particularly prominent in systems such as e-commerce and media

streaming, where systems need high concurrency, low latency, and operational agility

are needed [3,4].

SOA was once accepted as a new paradigm shift in software engineering. By breaking

down large, tightly coupled systems into individual services connected through mid-

dleware—typically an Enterprise Service Bus (ESB)—SOA introduced flexibility and

facilitated strategic alignment with business goals [6,7]. However, as the technological

infrastructure become increasingly complex and grew, the drawbacks of SOA became

noticeable. As a result, SOA deployments ended up being closely coupled that were

supposed to be loosely integrated. This happened due to the use of shared databases,

centralized dependencies, limited scalability, inter-service constraints, and the opera-

tional inefficiencies [7,8]. In contrast, a decentralized architecture is provided by MSA.

This architecture designs systems as a group of independent services, where each ser-

vice is responsible for a defined business function and manages its data [1,3]. MSA

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2898 Sandeep Sharma et al 2897-2905

approach promotes standalone services, continuous delivery and horizontal scaling in

a efficient manner [1,5].

Despite these advantages, migrating from SOA to MSA introduces various architectural

and operational complexities. common trade-offs include increased orchestration over-

head, the need for decentralized security and governance, challenges in managing dis-

tributed transactions, monitoring services and infrastructure, tooling complexity, and

operational overhead [6,9,10]. Therefore, organizations require a balanced understand-

ing of performance gains and architectural trade-offs before initiating such transitions

[2,5].

This paper addresses the need for SOA-to-MSA migration though case-based evalua-

tion using performance-critical and highly-demand applications in e-commerce and

media streaming domains. The study measures changes in key performance metrics,

including latency, availability, scalability, and deployment speed, before and after mi-

gration. It also examines architectural limitations post migration, such as service or-

chestration complexity, data consistency challenges, Cache Invalidation issues, Secu-

rity fragmentation, governance inconsistency, and tooling extensibility [6,9].

The finding indicates that implementing microservice architecture with the latest sup-

porting technologies such as Kubernetes, Kafka, Redis, API Gateway, observability

tools increase the system agility, responsiveness, and maintainability of the system

[1,4]. However, these adaptations demand mature tooling systems, comprehensive

monitoring, and disciplined cross-functional collaboration.

Using the real-world case study, this paper helps to provides the useful guidance for

software architects and developers who are planning similar migration for application

modernization. The study also highlights emerging directions, such as serverless com-

puting and AI-driven observability, as potential avenues to address residual complexi-

ties in microservices architecture [5].

2 Related Work
Service-oriented architecture (SOA) emerged as a solution to overcome limitation of

monolithic architecture by promoting modularity, reusability, and standalone service

communication [6,7]. Integration across diverse systems was enabled through the use

of common frameworks and a centralized orchestration layer, which is commonly im-

plemented via an Enterprise Service Bus (ESB). In practice, solutions often became

tightly interconnected because of the centralized control and shared data schemas. SOA

implementations began facing difficulties such as performance bottlenecks, integration

complexity, and governance overhead as a architectural complexity and user demand

increased [7,8].

The key factor responsible for the adoption of microservices architecture was the need

to address several drawbacks of SOA by focusing on distributed management and in-

dependent service control [3,9]. Every microservice operates independently, manages

its database, and is usually associated to a specific operation. This architecture solution

provides better fault isolation, greater autonomy, and more scalability. Agile and

DevOps practices promote quicker development and deployment cycles that are well-

aligned with this approach [1,5].

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2899 Sandeep Sharma et al 2897-2905

Over the last few years, context-based research has gained momentum at an accelerated

pace, providing fact-based insights into how the migration from SOA to microservices

is being performed within organizations [2,3]. It has been seen industries such as

streaming media and e-commerce have been early adopters of microservices due to

their high availability, elasticity, and fast feature delivery demands [1,4]. A number of

research studies in these domains have reported significant improvements in system

responsiveness, deployment rate, and fault tolerance capacity following the migration

from SOA to MSA [1,3,5]. While microservices provide performance benefits, theses

come with several trade-offs such as service orchestration complexity, security frag-

mentation, observability tooling, and data management issue between microservices

[6,9,11].

Figure 1. Conceptual architecture comparison between Service-Oriented Architecture (SOA)

and Microservices Architecture (MSA)

3 Methodology
This paper explores a case-based evaluation approach to determine how the systems are

affected by shifting from service-oriented architecture (SOA) to microservices archi-

tecture (MSA).

3.1 Research Design and Study Approach

A qualitative case study design is employed to examine the process of architectural

migration and its implications at the operational level. Quantitative analysis comple-

ments this design by measuring key metrics before and after migration. This mixed-

methods approach enables deeper insights into both behavioral and performance-based

changes, which cannot be captured through simulation or theoretical models alone.

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2900 Sandeep Sharma et al 2897-2905

Figure 2. Migration readiness and transition flow from SOA to MSA.

3.2 Domain and Application Selection

In this paper, e-commerce and media streaming applications were selected because they

are efficiency-oriented and technologically advanced. E-commerce applications require

stable support for search, transaction processing, inventory refresh, and checkout oper-

ations. In contrast, media streaming applications require delivering continuous content

with minimal or no buffering, adaptive quality, and rapid response times. Both domains

face continuous load fluctuations, making them ideal for performance benchmarking.

3.3 Metrics and Evaluation Criteria

In this research, a set of widely accepted performance and operational metrics has been

utilized. The below metrics were selected because of their applicability to large-scale

systems and alignment with industry-standard architecture.

Latency: Refers to the total time required to respond to user or system requests.

Scalability: Defined as the system’s ability to handle varying workloads by scaling out

infrastructure.

Deployment Speed: Indicates the efficiency and frequency of releasing updates.

Availability: Represents the percentage of time a system remains operational under

real-world conditions

3.4 Data Collection and Comparison Approach

Applications were first deployed using a Service-Oriented Architecture (SOA) and mi-

grated to a Microservices Architecture (MSA). Both versions ran in identical cloud en-

vironments under controlled conditions. Apache JMeter is used for simulated the load

on the application. Performance data was collected over a 3-day window using Prome-

theus, Grafana and CI/CD logs. Metrics such as latency, scalability, availability, and

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2901 Sandeep Sharma et al 2897-2905

deployment speed were monitored. Post-migration architectural characteristics—ser-

vice count, interdependencies, and database fragmentation—were also analyzed to

compare structural complexity and operational impact between SOA and MSA.

3.5 Supporting Technologies

In this research, several modern technologies were used to support the shift from SOA

to MSA, helping to improve performance and maintainability.

Kubernetes: Enabled container orchestration, auto-scaling, service discovery, and self-

healing deployments.

Kafka: Facilitated event-driven, decoupled communication between microservices,

improving message consistency.

API Gateway: Handled routing, authentication, rate limiting, and protocol translation

for internal services.

Monitoring Tools: Prometheus and Grafana were used for real-time observability

through metric collection and visualization.

CI/CD Pipelines: Automated testing, integration, and deployment to reduce errors and

accelerate release cycles.

Additionally, Python and C# were used as the primary programming languages, with

MySQL for transactional services, MongoDB for document storage, ClickHouse for

time-series data, and a Redis Cluster for distributed caching to reduce latency and im-

prove read performance.

3.6 Limitations

The findings of this research analysis are derived from limited areas and technology

ecosystems, and they may be limited to the generalization to other industries or different

applications. Some performance data used observational analysis, and complete access

to core codebase or tooling environments was not always available. Moreover, post-

migration complexities like increased or more tooling complexity, service orchestration

overhead, distributed data management, and decentralized security, demand ongoing

investment and organizational change. These restrictions were considered in the evalu-

ation to ensure a fair assessment.

4 Results
The following section demonstrates the comparative results after migrating from a Ser-

vice-Oriented Architecture (SOA) to a Microservices Architecture (MSA), based on

two exemplary application domains: e-commerce and media streaming.

4.1 Performance Improvements Post-Migration

Migration from SOA to microservices brought notable improvements in performance

across both media streaming and e-commerce spaces.

Latency was reduced by 20% to 35% in e-commerce and 20% to 40% in media stream-

ing systems, as shown in Table 3.

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2902 Sandeep Sharma et al 2897-2905

Scalability was increased by 30% to 50% in e-commerce and 40% to 60% for media

streaming, as shown in Table 4.

Deployment time and speed improvements vary from 40% to 70% for e-commerce

and 50% to 80% for media streaming, as shown in Table 6.

Availability was enhanced by 14.3% to 18.6% in e-commerce and 74.5% to 77.0% in

media streaming, as shown in Table 5.
Table 1. Service Count Comparison Between SOA and MSA Across Applications.

Application Name Service Count (SOA) Service Count (MSA)

E-commerce 12 48

Streaming 10 42

Figure 3. Comparison of Service Count After Migration from SOA to MSA.

Table 2. Comparative Performance improvement Metrics for SOA and MSA Across Applica-

tions.

Application

Name

Scalability (%) Deployment Speed (%) Latency (%) Availability (%)

E-commerce 33.3–50.0 32.5–73.3 21.8–25.8 14.3–18.6

Streaming 43.8–61.1 55.6–80.0 24.2–36.0 74.5–77.0

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2903 Sandeep Sharma et al 2897-2905

Figure 4. Comparison of Key Performance Improvements After Migration from SOA to

MSA.

Table 3. Post-Migration Latency improvement(milliseconds)

Application

Name

Concurrent

Request

SOA

Latency

(millisecond)

MSA

Latency

 (millisecond)

Improvement

(%)

E-commerce 1000 780 610 21.8

E-commerce 10000 850 630 25.8

E-commerce 100000 880 660 25.0

Streaming 1000 950 720 24.2

Streaming 10000 1,100 780 29.1

Streaming 100000 1,250 800 36.0

Table 4. Post-Migration Scalability improvement (Throughput req/sec).

Application

Name

Concurrent

Request

SOA Through-

put (req/sec)

MSA Throughput

(req/sec)

Improvement

(%)

E-commerce 1000 2,400 3,200 33.3

E-commerce 10000 2,500 3,600 44.0

E-commerce 100000 2,500 3,750 50.0

Streaming 1000 3,200 4,600 43.8

Streaming 10000 3,500 5,400 54.3

Streaming 100000 3,600 5,800 61.1

Table 5. Post-Migration Availability improvement (Downtime min/day).

Application

Name

Concurrent

Request

SOA Down-

time (min/day)

MSA Downtime

(min/day)

Improvement

(%)

E-commerce 1000 31.7 11.5 14.3

E-commerce 10000 44.6 18.7 18.6

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2904 Sandeep Sharma et al 2897-2905

E-commerce 100000 36.0 13.0 16.6

Streaming 1000 41.8 9.6 77.0

Streaming 10000 48.0 12.0 75.0

Streaming 100000 51.8 13.2 74.5

Table 6. Post-Migration Deployment Speed and Downtime Comparison.

Application

Name

Metric SOA MSA Improvement (%)

E-commerce Speed 40–45 minutes 12–27 minutes 14.3

E-commerce Downtime 15–20 minutes <10 Seconds 18.6

Streaming Speed 45–50 minutes 10–20 seconds 75.0

Streaming Downtime 15–25 minutes <10 Seconds 74.5

4.2 Architectural Trade-Offs and Limitations

There were still some complex architectural issues when the company moved from

SOA to MSA, even though they have witnessed performance improvements. These

shortcomings were observed in both domains. Common Limitations are:

Service Orchestration Complexity: The absence of a centralized orchestration layer

made service integration highly complex, especially in high-throughput workflows.

Security Fragmentation: To handle the Identity management became challenging, as

each service required its own authentication and authorization layers.

Observability Tooling: For end-to-end observability required the use of Prometheus,

Grafana, Jaeger, and the various alerting systems.

Data Consistency: Keeping data consistency across microservice services is challeng-

ing. Patterns like Saga, Event Sourcing, and Outbox are commonly used to manage

distributed transactions and support eventual consistency.

4.3 Summary of Findings

The shift from SOA to MSA resulted in notable improvements in performance across

key metrics. However, these benefits were accompanied by challenges related to or-

chestration, security, and observability. Careful planning, tooling investment, and do-

main alignment are critical for success.

5 Conclusion
In this research analysis, a comparative study of Service-Oriented Architecture (SOA)

and Microservices Architecture (MSA) was performed. Mainly. Two domain applica-

tions were employed, one in e-commerce and the other in media streaming. The main

purpose was to evaluate the quantifiable influence of migration on the system perfor-

mance using industry-driven operations.

A significant performance gain was achieved by the migration from SOA to MSA, as

demonstrated by the analysis. These improvements were mainly achieved because of

the utilization of Kubernetes for service deployment, CI/CD automation, Kafka for

event-driven communication and observability tooling. On the other hand, architectural

independence also enhanced the scalability and fault tolerance in parallel-processing

Journal of Computational Analysis and Applications VOL. 33, NO. 8, 2024

 2905 Sandeep Sharma et al 2897-2905

scenarios. The shift from SOA to MSA also introduced new challenges such as orches-

tration complexity, security measures, and the requirement of the advanced monitoring

infrastructure.

In future work, the approach could be further developed in other domains such as

fintech or healthcare, where the trustworthiness and compliance of transactions intro-

duce additional complications. Also, combining AI-powered observability could help

address post-migration issues more effectively.

6 References
1.M. Villamizar, D. Garces, H. Castro, J. Verano. Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud. Future Generation Computer Sys-

tems 135, 345–359 (2023).

2.A. Balalaie, A. Heydarnoori, P. Jamshidi. Migrating to cloud-native architectures using micro-

services: An industrial survey. Journal of Systems and Software 192, 111384 (2022).

3.M. Khadka, A. Sapkota, J. Zdun, U. Zdun. A systematic literature review on the SOA to micro-

services migration. Journal of Systems and Software 197, 111545 (2023).

4.G. Preuveneers, W. Joosen. Self-adaptive microservice architectures: From goal models to

runtime containers. ACM Computing Surveys 55(1), 1–39 (2022).

5.J. Soldani, D.A. Tamburri, W. van den Heuvel. The pains and gains of microservices: A system-

atic grey literature review. Journal of Systems and Software 146, 215–232 (2021).

6.M. Rahman, M.A. Babar, L. Zhu. Challenges and practices in adopting microservices architec-

ture: A survey of industry experiences. ACM Trans. Softw. Eng. Methodology. 30(2), 1–47

(2021).

7.P. Jamshidi, M. Hoseini, M. Ghafari, C. Pahl. A survey of modeling approaches for microservice

architectures. Journal of Systems and Software 170, 110708 (2021).

8.B. Taibi, V. Lenarduzzi. On the definition of microservice bad smells. IEEE Software 38(5), 56–

64 (2021).

9.F. Ciccozzi, I. Malavolta, M. Sharaf. Model-driven engineering for microservice architecture.

IEEE Software 38(5), 35–43 (2021).

10.A. Gokhale, A. Bhave, A. Dubey, G. Karsai. Challenges and opportunities in modeling and syn-

thesizing cloud-native applications for edge computing. IEEE Software 38(1), 48–56 (2021).

11.J. Fritzsch, J. Bogner, A. Zimmermann, A. Wagner. Microservices migration in industry: Inten-

tions, strategies, and challenges. Empirical Software Engineering 26(2), 1–39 (2021).

