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ABSTRACT 

Quality assurance of magnetic tiles is critical in industries where structural integrity and performance 

are paramount. Defects such as cracks, chips, and surface irregularities can compromise product 

reliability and lead to operational inefficiencies or failures. Traditionally, visual inspection performed 

by human operators has been the standard practice for quality control. However, manual inspection is 

inherently limited by human fatigue, subjectivity, and inconsistency, especially in high-volume 

manufacturing environments. These limitations often result in overlooked defects, increased wastage, 

and higher production costs. This study presents an automated quality control system for magnetic 

tiles using artificial intelligence, focusing on accurate defect detection and classification. The system 

leverages computer vision techniques for image preprocessing and feature extraction, followed by 

machine learning algorithms—Support Vector Machine (SVM) and Random Forest Classifier (RFC) 

to classify tile defects effectively. Image preprocessing ensures uniformity in input images by 

addressing noise, lighting variations, and distortions. Feature extraction techniques isolate meaningful 

patterns indicative of specific defect types, enabling the classifiers to achieve high detection accuracy. 

The proposed system addresses key challenges in traditional inspection methods by offering 

scalability, speed, and objectivity. It significantly reduces inspection time, enhances consistency, and 

minimizes human intervention. The integration of this AI-driven approach into production lines has 

the potential to optimize manufacturing efficiency, reduce resource wastage, and ensure high product 

quality.  
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1. INTRODUCTION 

Quality control in the production of magnetic tiles has evolved significantly over the years, reflecting 

broader trends in manufacturing and industrial quality assurance. Magnetic tiles, essential components 

in various industrial applications including electronics, automotive, and energy sectors, require 

stringent quality checks to ensure their functionality and durability. Historically, the manual inspection 

of magnetic tiles has been a standard practice, with trained inspectors visually examining each tile for 

defects such as cracks, chips, or surface irregularities. However, the limitations of manual inspection 

became apparent as production volumes increased and the complexity of tile designs grew. A study 

conducted in 2010 revealed that manual inspection, while effective to some degree, had an error rate 

of approximately 20% due to factors such as inspector fatigue and subjective judgment. Moreover, as 

the demand for higher-quality products increased, the need for more precise and consistent quality 

control methods became evident. By 2015, advancements in image processing technology led to the 

development of automated inspection systems, which offered improved accuracy but still faced 
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challenges, particularly in adapting to variations in tile appearance and environmental factors like 

lighting. Despite these advances, a 2019 survey found that over 60% of manufacturers reported issues 

with the accuracy and reliability of these automated systems, primarily due to the high rate of false 

positives and negatives. This highlighted the necessity for more sophisticated solutions, paving the 

way for the integration of artificial intelligence in quality control processes. By 2023, AI-driven 

systems had started to demonstrate significant potential in overcoming the shortcomings of traditional 

methods, offering a new level of precision and adaptability in defect detection. 

2. LITERATURE SURVEY 

Li, Mao, and Chang [1] proposed a reversible data hiding scheme using the Haar discrete wavelet 

transform and interleaving prediction method. Their approach focused on improving the efficiency 

and accuracy of data hiding in multimedia applications, achieving high embedding capacity with 

minimal distortion. Zhang et al. [2] presented a SIFT algorithm based on the DOG operator. They 

aimed to enhance feature extraction and matching accuracy in computer vision tasks, particularly for 

object recognition and image registration applications. Konečný and Hagara [3] conducted research 

on one-shot-learning gesture recognition using HOG-HOF features. Their work focused on improving 

the efficiency of gesture recognition systems, emphasizing the use of minimal training data while 

maintaining high accuracy in classification. Zhang et al. [4] proposed a hybrid MLP-CNN classifier 

for very fine resolution remotely sensed image classification. The authors integrated the strengths of 

MLP and CNN to enhance the classification accuracy of high-resolution satellite images, 

demonstrating improved performance over traditional methods. Wu and Yang [5] presented an 

efficient SVM learning method based on linear regression for large-scale classification tasks. Their 

approach aimed to reduce the computational complexity of SVMs, making them more suitable for 

handling large datasets while maintaining accuracy. 

Min and Luo [6] developed a soft sensor calibration technique using just-in-time modeling and the 

AdaBoost learning method. Their research focused on improving the accuracy of soft sensors in 

chemical engineering processes, enabling better process monitoring and control. Liu et al. [7] 

introduced the SSD (Single Shot MultiBox Detector) for real-time object detection. The authors 

emphasized the model's ability to detect objects with high speed and accuracy, making it suitable for 

applications requiring real-time processing, such as autonomous driving. Ren et al. [8] proposed the 

Faster R-CNN model, aiming to achieve real-time object detection through region proposal networks. 

Their work significantly improved the speed and accuracy of object detection, contributing to 

advancements in computer vision applications. Fang et al. [9] developed an adaptive fuzzy control 

system for nontriangular stochastic high-order nonlinear systems with asymmetric output constraints. 

Their research addressed the challenges of controlling complex systems under uncertainty, focusing 

on improving system stability and performance. Fang et al. [10] extended their previous work by 

proposing an adaptive fuzzy control system for stochastic high-order nonlinear systems with output 

constraints. This research further refined the control strategy, emphasizing robustness and adaptability 

in dynamic environments. 

Xie et al. [11] presented FFCNN, a deep neural network for surface defect detection of magnetic tiles. 

Their approach aimed to enhance the accuracy and speed of defect detection in industrial applications, 

demonstrating significant improvements over traditional inspection methods. Ben Gharsallah and Ben 

Braiek [12] proposed an improved nonlinear diffusion method for defect identification in magnetic 

tile images. The authors focused on enhancing the precision of defect detection in industrial settings, 

contributing to the development of more reliable quality control systems. Hu et al. [13] introduced an 

online recognition method for magnetic tile defects based on UPM-DenseNet. Their research aimed to 
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improve the real-time detection of surface defects, ensuring higher production quality in 

manufacturing processes. Redmon et al. [14] proposed the YOLO (You Only Look Once) model for 

unified, real-time object detection. Their work significantly impacted the field of computer vision by 

offering a fast and accurate solution for detecting objects in various environments. Redmon and 

Farhadi [15] extended the YOLO model with YOLO9000, enhancing its speed and accuracy. The 

authors focused on improving the model's ability to detect a wide range of objects in real-time, 

making it more versatile for practical applications. 

Hurtik et al. [16] developed Poly-YOLO, an extension of YOLOv3 for higher speed and more precise 

detection and instance segmentation. Their research aimed to optimize the performance of object 

detection models, particularly in scenarios requiring fast and accurate segmentation. Wang et al. [17] 

introduced Scaled-YOLOv4, focusing on scaling the cross-stage partial network to improve object 

detection performance. Their approach demonstrated superior accuracy and speed, contributing to 

advancements in real-time computer vision applications. Woo et al. [18] presented the CBAM 

(Convolutional Block Attention Module) to enhance convolutional neural networks. The authors 

aimed to improve feature representation and model performance by incorporating attention 

mechanisms, leading to more accurate predictions. Çelik et al. [19] developed a machine vision 

system for real-time fabric defect detection and classification using neural networks. Their research 

focused on automating quality control in the textile industry, achieving high accuracy in detecting 

various fabric defects. Saad et al. [20] proposed an automatic semiconductor wafer image 

segmentation method for defect detection using multilevel thresholding. The authors aimed to 

enhance the precision of defect detection in semiconductor manufacturing, contributing to improved 

production quality. 

Nguyen et al. [21] designed and evaluated features and classifiers for OLED panel defect recognition 

in machine vision. Their work focused on optimizing feature extraction and classification methods to 

improve the accuracy of defect detection in OLED panels. Avola et al. [22] presented a real-time deep 

learning method for automated detection and localization of structural defects in manufactured 

products. The authors emphasized the importance of real-time processing in industrial applications, 

demonstrating significant improvements in defect detection. 

Tabernik et al. [23] proposed a segmentation-based deep-learning approach for surface-defect 

detection. Their research focused on improving the accuracy of defect detection in manufacturing 

processes by leveraging deep learning techniques. Huang et al. [24] developed a surface defect 

saliency method for magnetic tiles. Their work aimed to enhance the detection of surface defects by 

emphasizing the most salient features, contributing to more effective quality control systems. Cui et 

al. [25] introduced SDDNet, a fast and accurate network for surface defect detection. The authors 

focused on improving the speed and accuracy of defect detection in industrial settings, demonstrating 

the effectiveness of their approach in real-world applications. 

3. PROPOSED METHODOLOGY  

The proposed work begins with dataset uploading, where the system defines the dataset path and 

identifies defect categories based on subdirectory names. If preprocessed data files (X.txt.npy and 

Y.txt.npy) are available, they are loaded directly; otherwise, the images are read, resized uniformly to 

64x64x3 pixels, flattened, and stored in an input array X, while the corresponding class labels are 

saved in array Y. These arrays are then saved for efficient reuse. In the data preprocessing phase, the 

input features and labels are split into training and testing sets in an 80:20 ratio to ensure robust model 

evaluation. Standardization is applied to prepare the data for model training. The model training 



Journal of Computational Analysis and Applications VOL. 34, NO. 4, 2025  
 
 
  

191 
                                                                                                                        Birapaka John Praveen Kumar et al 188-197 

phase involves the implementation of two machine learning classifiers: Support Vector Machine 

(SVM) with a polynomial kernel and Random Forest Classifier (RFC) based on decision trees. The 

system checks for pre-trained models saved as .pkl files; if unavailable, the models are trained on the 

training data and saved for future use. Following this, the models are used for prediction on new test 

data, where they classify defects in unseen images. Predictions are validated against actual labels to 

assess accuracy, and the models are further tested on additional new images by preprocessing and 

classifying them accordingly. Finally, in the performance evaluation stage, key metrics such as 

accuracy, precision, recall, and F1-score are computed. The results are presented through a 

classification report and confusion matrix, with heatmaps used to visually interpret the classification 

effectiveness. 

 

Fig. 1: Proposed AI-Driven Quality Control System for Magnetic Tiles 

3.2 ML Model Training 

The Random Forest Classifier is an ensemble learning method that combines the predictions of 

multiple decision trees to achieve higher accuracy and robustness compared to individual classifiers. 
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In the magnetic tiles defect classification work, the Random Forest Classifier is used to classify 

images into different defect categories based on the features extracted during preprocessing. 

The working of the Random Forest Classifier involves creating a large number of decision trees 

during training. Each tree is trained on a random subset of the training data and a random subset of 

features. This randomness introduces diversity among the trees, making the forest less prone to 

overfitting and more generalizable to unseen data. 

During classification, each tree in the forest independently predicts the class of the input image. The 

Random Forest then aggregates these predictions, typically by taking a majority vote, to determine the 

final classification. This ensemble approach reduces the variance and improves the overall 

performance of the model. 
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Fig. 2: Random Forest Classifier 

 

4. RESULTS AND DISCUSSION 

4.1 Dataset Description 
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In the automated quality control system for magnetic tiles, the dataset consists of images categorized 

into five distinct defect classes: MT_Blowhole, MT_Break, MT_Crack, MT_Fray, and MT_Free. 

Each class represents a specific type of defect commonly encountered in magnetic tile production. 

The MT_Blowhole class includes images showing blowholes—hollow cavities or depressions formed 

due to air entrapment or improper curing during manufacturing. These defects appear as irregular 

circular pits with rough, raised edges and compromise both structural integrity and aesthetics. The 

MT_Break class features tiles with visible fractures or breaks caused by physical stress or impact. 

These breaks can range from fine, hairline splits to deep, jagged cracks, making their detection vital 

for maintaining structural reliability. In contrast, the MT_Crack class represents tiles with smaller, 

often linear or spiderweb-like surface cracks resulting from thermal stress or material shrinkage. 

While less severe than breaks, these cracks still threaten tile durability and must be identified early. 

The MT_Fray class includes images of tiles with frayed or worn edges, typically caused by abrasion 

or mishandling. These defects lead to uneven, chipped borders that affect the tile’s fitting and visual 

appeal. Lastly, the MT_Free class comprises defect-free tiles that exhibit perfect surface quality and 

serve as a standard reference for classification. This category helps the AI system distinguish 

defective tiles from acceptable ones, ensuring only high-quality tiles proceed to the next stage. 

Accurate identification of each class is essential for enhancing manufacturing quality and reducing 

defective outputs. 

Table 1: Performance comparison of existing SVM and proposed RFC models. 

Metric Existing SVM Proposed RFC 

Accuracy 79.59% 99.25% 

Precision 86.32% 99.32% 

Recall 79.23% 99.20% 

F1-Score 79.69% 99.25% 

 

The performance comparison Table 1 between the Existing Support Vector Machine (SVM) and the 

Proposed Random Forest Classifier (RFC) reveals a significant improvement with the RFC across all 

key metrics. The SVM achieves an accuracy of 79.59%, while the RFC performs markedly better with 

99.25%, indicating that the RFC is much more accurate in classifying the data. In terms of precision, 

which measures the correctness of positive predictions, the RFC outperforms the SVM by a wide 

margin, scoring 99.32% compared to the SVM’s 86.32%. This suggests that the RFC is far better at 

minimizing false positives. The recall, which evaluates how well the models identify true positive 

instances, shows a similar trend, with the SVM scoring 79.23%, while the RFC reaches 99.20%, 

demonstrating the RFC's superior ability to correctly identify positive instances. Finally, the F1-Score, 

which balances precision and recall, also favors the RFC, with a score of 99.25% compared to the 

SVM's 79.69%, further highlighting the RFC’s overall effectiveness. These results clearly show that 

the Proposed RFC is far superior to the Existing SVM in terms of classification performance, 

achieving much higher accuracy, precision, recall, and F1-Score across the board. 
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(a)                                                                        (b) 

Fig 9.4(a), 9.4(b) Confusion matrices of Existing SVM and Proposed RFC. 

 

Figure 9.5: The proposed RFC model predication on new test image. 

5. CONCLUSION 

This research presents a significant advancement in the manufacturing industry’s quality assurance 

processes. By leveraging advanced AI techniques, particularly machine learning and computer vision, 

this work aims to address the limitations of traditional manual and conventional automated inspection 

methods. The implementation of the AI-driven system enables precise and efficient identification of 

defects such as blowholes, breaks, cracks, frays, and defect-free tiles. The system’s ability to adapt to 

new defect patterns without extensive reprogramming overcomes the challenges faced by earlier 

methods, which struggled with variations in tile appearance and defect types. The work’s results 

demonstrate that the AI-based approach offers superior accuracy and consistency in defect 

classification compared to traditional methods. The Random Forest Classifier, in particular, has shown 

to outperform the Support Vector Machine (SVM) model, providing more reliable predictions and 

reducing the rate of false positives and negatives. This improvement in defect detection not only 

enhances the quality of the tiles but also reduces inspection time and minimizes human error, leading 

to significant cost savings and increased productivity for manufacturers. By integrating AI into the 

quality control process, the work not only revolutionizes defect detection but also sets a precedent for 

future advancements in manufacturing quality assurance. The ability to quickly and accurately 

classify defects ensures that only high-quality tiles are used, thereby maintaining the overall standard 

of the products and enhancing customer satisfaction. 
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