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ABSTRACT 

The rapid advancement of the Internet of Things (IoT) has enabled the incorporation of intelligent 

sensor networks in smart homes, enhancing activity monitoring, security, and automation capabilities. 

This design emphasizes the creation of an advanced IoT-enabled detector network aimed at real-time 

exertion monitoring within smart homes, thereby improving security, energy efficiency, and supported 

living operations. Traditional monitoring systems frequently encounter extended durations of inactivity, 

constrained data accessibility, and restricted data processing functionalities. This design implements 

machine learning algorithms to attain accurate human activity recognition and incorporates edge 

computing to improve the efficiency of real-time data processing. The system will utilize a network of 

intelligent detectors, including stir sensors, environmental detectors, and wearable devices, to collect 

and analyze exertion patterns for the purpose of identifying anomalies and automating responses. 

Advanced machine learning models, including deep learning-based sequence classifiers and anomaly 

detection algorithms, are expected to enhance the accuracy of activity recognition and security 

monitoring. Furthermore, the implementation of energy-efficient adaptive literacy methods will lead to 

a decrease in computational output, which will subsequently improve the scalability and sustainability 

of the system. Sequestration will entail the application of conservation mechanisms, including secure 

encryption and authentication protocols, to safeguard sensitive user data. The proposed frame improves 

home security, facilitates independent living for seniors, and enhances smart home automation, thereby 

contributing to the creation of safer, more intelligent, and energy-efficient living environments. 

Keywords: Activity Monitoring, Sensor Fusion, Human Activity Recognition, Edge Computing in IoT. 

1. INTRODUCTION 

The integration of IoT-enabled detector networks in smart homes has changed the way individuals 

interact with their living environments. Smart homes employ interconnected devices and sensors to 

automate routine activities, bolster security measures, and optimize energy efficiency. The function of 

exertion monitoring within IoT-enabled smart homes is critical. This process involves the tracking and 

analysis of human behavior to enhance safety, optimize resource usage, and facilitate personalized 

automation. Traditional exertion covering systems depend on cameras, stir detectors, and tailored 

interventions, which may demonstrate constraints in terms of sequestration, real-time processing, and 

inflexibility. The growing implementation of wireless sensor networks (WSNs), edge computing, and 

AI-driven analytics facilitates the creation of effective, real-time, and adaptive monitoring solutions that 

can detect and analyze human behavior with improved accuracy.  This design aims to enhance exertion 

monitoring in smart homes by implementing a network of IoT-enabled detectors, which are integrated 

with machine learning algorithms. The proposed system will employ advanced smart detectors, which 

include stir sensors, temperature detectors, wearables, and environmental detectors. These components 

will be used to collect and analyze data related to various activities, such as walking, sleeping, cooking, 

exercising, and detecting anomalies, including falls or unusual inactivity. The system utilizes real-time 
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processing techniques to provide immediate alerts and facilitate adaptive automation, which improves 

the overall efficiency of smart homes.   

 

Fig. 1: Overview of IoT architecture in smart homes. 

The design also tackles essential challenges including energy efficiency, data sequestration, and 

scalability. The deployment of edge computing will reduce latency and computational overhead, 

facilitating real-time processing near the data source. Advanced encryption and security mechanisms 

are implemented to safeguard sensitive data, thereby ensuring the system's reliability and focus on 

privacy. 

2. LITERATURE SURVEY 

The incorporation of IoT-enabled detector networks within smart homes has transformed the manner in 

which individuals engage with their living environments. Smart homes utilize interconnected devices 

and sensors to automate routine tasks, improve security protocols, and maximize energy efficiency. The 

assessment of exertion represents a fundamental capability of Internet of Things (IoT) technology 

within smart home environments. This procedure encompasses the monitoring and examination of 

human behavior to guarantee safety, enhance resource efficiency, and enable tailored automation. The 

analysis of high-frequency electricity data enables the examination of electricity consumption patterns 

among different consumer groups over specific time intervals, along with the assessment of behavioral 

changes that occur after the implementation of new technologies and demand-side operational 

strategies. Furthermore, high-frequency data improves the accuracy of energy consumption forecasts as 

it exhibits greater variability. The utilization of high-frequency electricity data during epidemic periods 

has enabled the analysis and assessment of the overall effects of COVID-19 on energy consumption 

and transition in both pre- and post-pandemic scenarios. The global population has undergone 

alterations in behavioral patterns and daily routines due to the epidemic. As a result, the patterns of 

electricity consumption in residential and commercial buildings have changed. Ku et al. [5] employed 

individual hourly power consumption data within a machine learning framework to examine changes 

in electricity usage patterns due to COVID-19 regulations in Arizona. Chinthavali et al. [6] conducted 

an analysis of variations in energy consumption patterns on weekdays and weekends, comparing data 

from before and after the COVID-19 pandemic. Raman and Peng [7] conducted an analysis of domestic 

electricity consumption data, revealing a significant positive correlation between the progression of the 
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epidemic and domestic electricity consumption in Singapore. Li et al. conducted an analysis of data 

from New York apartments to examine the relationship between the number of COVID-19 cases, 

outdoor temperature, and residential electricity consumption.  

Lou et al [8]. determined that the measures implemented in response to COVID-19 led to a 4-5% rise 

in domestic electricity consumption, contributing to increased energy instability. This conclusion was 

drawn from the analysis of individual smart cadence data collected from Arizona and Illinois [9]. 

Sánchez-López et al. conducted an investigation into the evolution of energy demands by analyzing 

hourly data across domestic, marketable, and artificial demand during the initial surge of COVID-19 

[10]. Examining the changes in household hourly electricity demand following the epidemic, especially 

due to the increase in remote work, provides essential information for electricity system operators 

concerning operational efficiency and management strategies. Additionally, by analyzing the changes 

in the spatial and temporal patterns of energy consumption, policymakers can develop more informed 

strategies to improve the integration of renewable energy sources into the power grid. The analysis of 

high-frequency electricity data facilitates the comprehension of electricity consumption patterns among 

distinct consumer groups, especially households that have integrated new technologies such as 

photovoltaics (PV), batteries, and electric vehicles (EV). Qiu et al. [11] employed a difference-in-

differences methodology to examine high-frequency smart cadence data from 1,600 electric vehicle 

(EV) households, demonstrating that individuals enhanced EV charging during off-peak hours 

characterized by lower prices.  

Al Khafaf et al. [12] performed a comparative analysis of electricity consumption among consumers 

employing photovoltaic (PV) systems equipped with energy storage systems (ESS) versus those lacking 

ESS. The analysis utilized data collected from more than 5,000 energy consumers, employing 30-

minute interval recordings from smart meters. During periods of high temperatures, the deployment of 

batteries aids in decreasing peak power usage in the autumn season. Qiu et al. (2022b) analyzed hourly 

electricity data from Arizona and identified a notable variation in consumption patterns among 

photovoltaic (PV) consumers after the implementation of battery storage systems. Liang et al. (2022a) 

presented empirical evidence from Arizona concerning the relinquishment of heat pumps, 

demonstrating that these systems do not inherently lead to energy savings [14]. The integration of 

electric vehicle charging profiles with residential electricity data enables the assessment of electric 

vehicles' effects on electricity distribution networks [15]. The identified patterns enable residents to 

analyze the beneficial impacts of new technology implementations and explore the extent to which the 

adoption of these technologies affects the electric grid's capacity.  Forecast analysis is contingent upon 

the data employed in the training process, with high-frequency smart cadence data significantly 

improving the precision of the prediction model. High-resolution predictive models that employ robust 

data-driven algorithms necessitate validation using high-frequency data. The recent rise in the adoption 

of smart measures has generated opportunities for improving household cargo forecasting. Precise 

forecasting of electricity cargo provides essential theoretical support for the smart grid, encompassing 

demand response, energy operations, and structural planning and investment. Sousa and Bernardo [16] 

performed a comparative analysis of the effectiveness of multivariate adaptive regression splines, 

arbitrary timbers, and artificial neural networks in predicting the cargo for the subsequent day, utilizing 

half-hourly readings from 5,567 homes.  

3. PROPOSED SYSTEM 

The proposed system is designed to improve exertion monitoring within smart homes by utilizing IoT-

enabled detector networks in conjunction with machine learning (ML) models for real-time exertion 

classification and anomaly detection. The system utilizes vibrant environmental and wearable sensors 
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to gather data on human conditions, facilitating intelligent automation, anomaly detection, and 

enhanced decision-making in smart home environments and also aims to improve exertion monitoring 

within smart homes through the implementation of a Decision Tree Classifier (DTC), and another model 

with the AdaBoost (Adaptive Boosting) Algorithm. The proposed DTC model as a foundational learner 

provides enhanced precision, resilience, and stability in real-time activity recognition and anomaly 

detection. 

 

Fig. 2: Proposed system architecture. 

Data Collection: IoT Sensors in Smart Homes IoT-enabled detectors capture real-time, timestamped 

exertion data from various smart home devices. The data encompasses parameters such as movement, 

temperature, light conditions, door access logs, and appliance operation, among others.  

Data Preprocessing and Feature Engineering:  

⎯ Transform timestamp data into relevant features such as Month, Hour, Minute, Second, and 

others.  

⎯ Utilize LabelEncoder to transform categorical variables (exertion markers). 

⎯ Address the absence of values and eliminate discrepancies. Divide the dataset into training and 

testing sets, allocating 80% for training and 20% for testing. 
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DTC model for Activity Recognition: Constructs a hierarchical structure to categorize conditioning.  

Divides data at irregularities based on the importance of specific points.  The workshop effectively 

utilizes structured data; however, it may be prone to overfitting issues.   

• Simplicity & Interpretability: Decision trees are easy to interpret, visualize, and deploy. 

• Faster Training Time: Unlike AdaBoost, which combines multiple weak classifiers, a single 

decision tree is computationally less expensive. 

• No Need for Boosting: A well-optimized decision tree can achieve comparable performance 

without requiring iterative weight adjustments. 

• Handling of Feature Importance: Decision trees inherently provide insights into the most 

important features influencing the classification. 

4. RESULTS AND DISCUSSION 

Figure 3 represents a structured dataset containing smart home sensor data used for activity recognition. 

The table includes multiple binary features (0s and 1s) corresponding to the state of various home 

elements such as doors, carpets, lamps, beds, and bathroom-related activities. Each row represents a 

recorded instance at a specific timestamp, with the "Activity" column indicating the detected human 

activity (e.g., "sleep" or "anomaly"). The dataset suggests that sensor activations are monitored over 

time to classify normal activities and detect anomalies, likely for an intelligent home automation or 

security system. 

 

Fig. 3: Uploading Dataset 

Figure 4 is a bar chart titled "Count Plot," representing the distribution of different activity categories 

based on their recorded counts. The x-axis lists categories such as "sleep," "eat," "leisure," "other," 

"personal," "anomaly," and "work," while the y-axis represents the count of occurrences for each 

category. The "anomaly" category has the highest count (408,683), followed by "sleep" (273,386), 

"leisure" (155,414), and "other" (155,352). The "eat," "personal," and "work" categories have 

significantly lower counts, with "work" being the least frequent (10,835). The plot visually highlights 

the distribution of activities, suggesting a focus on anomaly detection in behavioral patterns. 
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Figure 5 presents a confusion matrix corresponding to an AdaBoost Classifier model employed in a 

multi-class bracket problem. This model categorizes different exertion orders, which encompass sleep, 

work, rest, personal activities, eating, other tasks, and anomalies. The confusion matrix is represented 

as a heatmap, with darker shades indicating higher values, thereby emphasizing regions of concentrated 

predictions. The slant values indicate precise groupings, while the out-slant values represent 

misclassifications. The classifier successfully identified 28,659 instances of rest, 15,888 instances of 

other, and 58,043 instances of sleep, indicating satisfactory performance across these categories. There 

are notable instances of misclassification, including 45,517 cases categorized as anomalies and 14,299 

cases incorrectly identified as "sleep" under the "other" category. The work order included a total of 

2,192 accurate groups, suggesting a possible difficulty in distinguishing it from other orders. The 

presence of misclassifications highlights particular aspects where enhancements to the AdaBoost model 

may be advantageous, potentially through the integration of a more robust classifier, such as a Decision 

Tree, as recommended in this design. 

 

Fig. 4: Count plot. 
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Fig. 5: Confusion matrix obtained using AdaBoost classifier. 

 

Fig. 6: Confusion matrix obtained using DTC model. 
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Fig. 7: Predicted output on test data 

Figure 6 illustrates a confusion matrix associated with a DTC model, detailing the classification 

performance across various activity categories, including sleep, work, leisure, personal, eat, other, and 

anomaly. The matrix is represented through a heatmap, with darker shades denoting elevated values. 

The Decision Tree model exhibits enhancements compared to the AdaBoost classifier in accurately 

categorizing instances such as "other" (30,907 correct classifications) and "leisure" (31,091 correct 

classifications), which were previously associated with significant misclassifications. In a similar 

manner, the classification of "sleep" has been accurately achieved 81,752 times, indicating an 

enhancement relative to the performance of AdaBoost. The category labeled "anomaly" demonstrates 

improved classification accuracy, with 54,556 correct instances recorded, thereby minimizing instances 

of misclassification. Nonetheless, certain misclassifications persist, especially concerning the term 

"eat," which accounts for 4,167 misclassified instances, along with minor inaccuracies in categories 

such as "personal" and "work." The DTC model demonstrates enhanced accuracy in differentiating 

various activity categories, thereby highlighting its potential superiority compared to AdaBoost in this 

project. Finally, Fig. 7 demonstrate the sample predictions on new test data using the proposed DTC 

model. 

5. CONCLUSION 

The project involved an analysis of the performance metrics associated with AdaBoost and DTC models 

in the context of classifying multiple activity categories, which include sleep, work, leisure, personal, 

eat, other, and anomaly. The AdaBoost classifier demonstrated effectiveness in certain domains; 

however, it showed considerable misclassification, especially within the "other" and "personal" 

categories, resulting in ambiguity among various activities. The DTC model exhibited superior 

classification accuracy, leading to a notable enhancement in the identification of categories such as 

"leisure," "other," and "sleep." The confusion matrix for the Decision Tree model indicated a significant 

decrease in misclassification errors, particularly concerning anomalous activities, thereby establishing 

it as a more appropriate option for this task. Our findings indicate that a classification model based on 

Decision Trees demonstrates greater effectiveness compared to AdaBoost for this dataset. The 

enhancements observed in classification accuracy and the reduction in errors demonstrate that Decision 
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Trees are more effective in identifying the key characteristics of activity categories. Future work may 

concentrate on the optimization of hyperparameters associated with the Decision Tree or the integration 

of ensemble methods, such as Random Forest, to improve classification performance further. 
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