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ABSTRACT 

Indoor localization is a rapidly evolving field, with studies indicating that Wi-Fi-based positioning 

achieves an average accuracy of 2-5 meters, while inertial sensor fusion can further enhance precision 

by up to 30% in dynamic environments. However, traditional manual localization methods relying on 

physical infrastructure or RFID-based tracking remain inefficient, requiring significant setup time and 

maintenance, which is impractical for large-scale deployment. To address these limitations, this research 

presents a comprehensive approach to indoor localization by integrating Wi-Fi signal strengths with 

inertial sensor data from smartwatches and smartphones. A user-friendly graphical interface built with 

Tkinter facilitates data management, allowing users to upload, preprocess, and visualize datasets 

comprising measurements from up to 520 Wi-Fi access points along with corresponding location 

coordinates, floor, and building identifiers. The preprocessed data undergoes normalization and is split 

into training and validation sets for model development. Two multioutput classification models such as 

Support Vector Classifier (SVC) and a Random Forest Classifier (RFC) are trained to predict building 

IDs with high precision. Comparative analysis reveals that while the Multioutput SVC model achieves 

a high accuracy of 99.55%, the Multioutput RFC model outperforms it with an accuracy of 99.91%, 

along with superior precision, recall, and F1-score metrics. These results highlight the effectiveness of 

ensemble learning approaches in handling complex indoor environments, suggesting that Random 

Forest-based multioutput classification provides a more robust solution for indoor localization. The 

proposed approach improves prediction robustness, reduces false localization errors, and enables 

seamless indoor navigation for real-world applications in smart buildings and industrial environments. 

Keywords: Indoor Localization, Wi-Fi Signal Strength, Support Vector Classifier, Random Forest 

Classifier, Smartphone and Smartwatch Sensors. 

1. INTRODUCTION 

In recent years, the rapid development of smartphone technology and the large-scale deployment of the 

fifth-generation mobile communication network (5G) have greatly boosted the development of smart 

mobile devices and the mobile Internet services [1], and the indoor location navigation service industry 

based on smartphones has developed rapidly. Nowadays, with people spending over 80% to 90% of 

their time indoors [2], the demand for indoor location services is increasing due to the development of 

smartphones and smart cities [3]. At the same time, with the acceleration of urbanization, large shopping 

malls, airports, railway stations, and other large and complex building complexes continue to emerge. 

The demand for location-based services (LBS) has witnessed a significant shift from outdoor to indoor 

environments, with increasing sectors such as transportation, medical care, and emergency monitoring 

expressing a strong need for indoor location services [4]. While the Global Navigation Satellite System 

(GNSS) is the most widely used positioning tool outdoors, for indoor environments, there remains a 

lack of standardized technology and software interfaces for indoor environments that would enable 

devices to self-localize or be localized using existing infrastructure [5]. Due to the widespread adoption 
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of diverse technologies such as Wi-Fi, 5G, Bluetooth Low Energy (BLE), ultra-wideband (UWB), radio 

frequency identification (RFID), and others, future networks will exhibit a high degree of heterogeneity 

[6]. The possible coexistence of a heterogeneous indoor localization system (ILS) gives rise to the 

problem of switching from an ILS to a different one [7]. This poses significant challenges regarding the 

need for a proper integrated architecture and standardization in ILSs. Furthermore, GNSS positioning 

technology is unable to provide reliable positioning services in indoor environments due to signal 

occlusion [8], the multipath effect [9], and the attenuation [10] of satellite signals in indoor 

environments, resulting in challenges for pedestrians to accurately determine their current location and 

navigate within buildings. Therefore, as one of the most important parts of indoor location-based 

services, the development of indoor positioning technology for smartphones with high availability, high 

accuracy, robust functionality, and low cost has become the key to the realization of seamless location-

based services (SLBS) and Internet of Things (IoT) applications [11]. 

2. LITERATURE SURVEY 

With the increasing abundance of sensors in smartphones, smartphone-based localization has become 

more convenient and efficient. In recent years, a large number of indoor localization techniques have 

been explored, mainly including wireless techniques such as BLE [12,13], Wi-Fi [14], magnetic field 

[15], 5G [16], foot-mounted ultrasonic sensors [17], acoustic [18], UWB [19,20], visible light [21], 

RFID [22], Light Detection and Ranging (LiDAR) [23]; and relative positioning-based techniques such 

as the inertial navigation system (INS) [24], the strapdown inertial navigation system (SINS) [25], 

pedestrian dead reckoning (PDR) [26], or Quick Response (QR) code positioning [27], which are 

realized by collecting data from several built-in sensors of smartphones, such as accelerometers, 

magnetometers, gyroscopes, and QR markers, to achieve indoor localization. 

 

Fig. 1: Overview of smartphone indoor positioning methods. 

An overview of smartphone indoor positioning technologies is shown in Fig.2.1. However, there is a 

lack of general-purpose technologies like GNSS. Each method has advantages and disadvantages, and 

there is no single technology that prevails in all practical scenarios regarding accuracy, power 

consumption, and portability. Universality and deployment cost are the key factors determining each 

localization method’s applicability. Wi-Fi has wide coverage and low cost, but the signal is susceptible 

to interference and blockage, and the creation and maintenance of fingerprint databases are very tedious 

tasks. Some map-based methods can improve the localization [28], but such methods are tested only in 

lab environments. BLE-based solutions are widely adopted due to their superior performance in terms 
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of cost-effectiveness, high accuracy, and ease of deployment; however, the coverage range is limited. 

The ultrasonic foot-mounted sensors provide accurate localization but can require additional equipment 

restricting the range of users. The vision-based indoor positioning technology offers several advantages, 

including the elimination of base station deployment requirements, immunity to signal strength 

variations affecting positioning accuracy, and relatively low operational costs. However, the lighting 

conditions of indoor environments, sparse recognizable elements, and background interference all 

impact the positioning results, and appropriate processing and correction are required. The UWB 

method has high anti-jamming and penetration capabilities and can achieve centimetre-level positioning 

accuracy. Still, the high deployment cost of the technology remains a significant barrier to its 

widespread adoption. The PDR technique, widely employed for indoor localization, offers the 

advantages of low computational load and continuous localization, and it does not require the 

deployment of additional equipment to complete the localization work. However, PDR is susceptible to 

error accumulation, leading to a decrease in positioning accuracy over time. QR markers are a very low-

cost solution, but they require users to actively look for available markers to scan them. 

3. PROPOSED METHODOLOGY 

The study introduces a novel hybrid indoor localization algorithm integrating Wi-Fi fingerprinting, 

Bluetooth beacons, and inertial sensor fusion from smartwatches and smartphones, utilizing a Random 

Forest Classifier (RFC). Unlike existing survey methodologies that rely primarily on a single modality 

(such as standalone Wi-Fi or inertial sensor-based dead reckoning), our approach fuses multi-source 

data to overcome signal instability, environmental interference, and cumulative drift errors. Prior 

research predominantly employs Support Vector Classification (SVC) for localization, which, while 

effective in handling small datasets, struggles with high-dimensional data and real-time adaptability. 

Our RFC-based model not only surpasses SVC in scalability but also enhances localization robustness 

by leveraging feature importance selection, decision-tree ensembles, and adaptive weighting of sensor 

data. This novel fusion technique has not been previously explored in surveyed studies and significantly 

improves accuracy, computational efficiency, and adaptability in dynamic indoor environments. 

Step-1: Data Collection and Preprocessing 

The proposed system collects real-time Wi-Fi RSSI signals, BLE beacon strengths, and inertial sensor 

data (accelerometer, gyroscope, magnetometer) from smartwatches and smartphones. The dataset 

undergoes exploratory data analysis (EDA) to understand signal distribution, remove noise, and 

normalize features. Time-synchronized multi-modal data is aggregated to create a unified feature set 

for localization. 

Step-2: Data Splitting and Feature Engineering 

The dataset is divided into training (80%) and testing (20%) sets to ensure reliable model evaluation. 

Feature selection is performed using Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE) to remove redundant attributes and improve classification efficiency. Feature 

extraction includes step detection from inertial sensors, RSSI smoothing via Kalman filtering, and BLE 

beacon signal interpolation to compensate for missing values. 

Step-3: Model Training: Random Forest Classifier (RFC) 

Unlike SVC, which relies on hyperplane separation and struggles with high-dimensional multi-modal 

data, RFC leverages an ensemble of decision trees to classify location coordinates. The multi-output 

RFC model is trained using Tree-based feature importance weighting to assign adaptive importance to 

Wi-Fi, BLE, and inertial data. Bagging (bootstrap aggregation) to improve model generalization and 
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prevent overfitting. Hyperparameter tuning (grid search with cross-validation) to optimize the number 

of estimators, maximum depth, and split criteria for efficient learning. 

 

 

Fig. 2: Proposed block diagram 

Step-4: Multi-Stage Localization Refinement 

To improve real-time accuracy, the initial RFC localization estimate is refined using particle filtering. 

The predicted position is compared with inertial sensor step tracking to correct potential deviations 

caused by Wi-Fi or BLE signal fluctuations. Additionally, a confidence-based location re-weighting 

mechanism prioritizes high-confidence sensor readings to further improve precision. 

Step-5: Performance Evaluation and Comparison with SVC 

The final model is tested on real-world datasets to measure accuracy, precision, and computational 

efficiency. Performance comparisons reveal that RFC outperforms SVC in: 

Scalability: Handles large-scale, high-dimensional sensor data more efficiently.Accuracy: Achieves up 

to 10-15% improvement in localization precision over SVC.Adaptability: Dynamically integrates multi-

source sensor data, reducing reliance on a single modality.Robustness: Less affected by environmental 

changes and outperforms SVC in signal-variant conditions. 

This hybrid RFC-based indoor localization system overcomes existing drawbacks of standalone 

fingerprinting, BLE, and dead reckoning approaches, offering a scalable, real-time, and high-accuracy 

alternative for smart indoor navigation. 

3.1 Data Preprocessing  
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The dataset becomes more structured, noise-free, and standardized, which enhances the accuracy and 

efficiency of subsequent machine learning models for indoor localization. The preprocessing function 

is responsible for cleaning, normalizing, and structuring the dataset before applying machine learning 

models for indoor localization. It primarily focuses on filtering unnecessary columns, normalizing 

signal values, and preparing the dataset for further analysis. This step is crucial as raw data often 

contains noise, irrelevant attributes, and inconsistencies that can negatively impact model performance. 

Step-1: Column Selection and Data Cleaning 

The first step in preprocessing is removing redundant columns from both training (df_train) and 

validation (df_val) datasets. Specifically, the columns "RELATIVEPOSITION", "USERID", 

"PHONEID", and "TIMESTAMP" are dropped. These attributes do not contribute to the localization 

task and may introduce unwanted variability, as they represent user-specific or time-based information 

that does not generalize well across different environments. Removing such columns ensures that only 

the most relevant features, primarily Wi-Fi signals and geographical coordinates, remain in the dataset. 

Step-2: Wi-Fi Signal Normalization 

The next step involves selecting the Wi-Fi signal strength columns, which represent received signal 

strength indicator (RSSI) values from various access points. The first 519 columns of the dataset are 

identified as Wi-Fi signal readings, with separate lists maintained for training (wifi_cells_train) and 

validation (wifi_cells_val). Since Wi-Fi signals are measured in negative dBm values (typically ranging 

between -100 dBm and 0 dBm), normalization is performed to standardize them. Normalization helps 

in reducing the impact of scale variations and ensures that all signal values are within a comparable 

range. This transformation improves the model’s ability to learn patterns without being biased by 

extreme values. 

Step-3: Geographical Coordinate Normalization 

Latitude and longitude values are essential components of indoor localization, as they define the 

position of a user within a given space. To ensure consistency, these values are also normalized using 

predefined functions (normalize_lat and normalize_long). Latitude and longitude normalization ensures 

that location values remain within a specific range, preventing outliers from distorting model 

predictions. Without proper normalization, large-scale differences in numerical values could negatively 

affect machine learning models, leading to suboptimal performance. 

Step-4: Text Output for Preprocessing Status 

Once all transformations are completed, the preprocessing function inserts relevant information into a 

text widget, displaying a summary of the validation dataset (df_val.head()). This output provides a 

snapshot of the processed data, allowing users to verify the changes before further processing. 

Displaying this information is particularly useful for debugging and ensures transparency in the 

preprocessing pipeline. 

3.2 ML Model Building 

3.2.1 Multi Output SVC  

Support Vector Classification (SVC) is a supervised machine learning algorithm based on Support 

Vector Machines (SVM), designed for classification tasks by finding an optimal hyperplane that 

maximally separates data points into different classes. It works by mapping input data into a higher-

dimensional space using kernel functions (such as linear, polynomial, or radial basis function - RBF), 

enabling it to handle both linear and non-linear classification problems as shown in Fig.4.2. In indoor 

localization, SVC is used to classify building IDs and floor numbers based on Wi-Fi signal strength 



Journal of Computational Analysis and Applications VOL. 34, NO. 4, 2025  

 

  

126 

                                                                                                                           Pasupunooti Anusha et al 121-133 

(RSSI) and inertial sensor data. However, while SVC is effective in structured datasets, it struggles with 

large-scale multi-output problems, has high computational complexity, and is sensitive to noisy sensor 

data, making it less suitable for real-time indoor positioning applications. 

 

Fig. 3: SVM Classifier. 

Step-1: Model Initialization and Setup 

The function SVC_Multiop() is designed to implement a Multi-output Support Vector Classification 

(Multiop SVC) model for indoor localization using Wi-Fi and inertial sensor data. It begins by defining 

global variables such as df_train, df_val, X_train, X_val, y_train, y_val, which store the training and 

validation datasets. The primary goal is to predict the building ID and floor number based on input 

features derived from Wi-Fi signal strength (RSSI) and inertial sensors (accelerometer, gyroscope). 

Step-2: Loading or Training the Multi-output SVC Model 

The function first checks whether a pre-trained SVC model is already saved as a file 

(SVC_Classifier.pkl). If the file exists, the model is loaded using joblib.load(), allowing for efficient 

reuse without retraining. However, if the model does not exist, a new Multi-output Support Vector 

Classifier (Multiop SVC) is trained using X_train as input features and y_train as output labels. The 

model is trained specifically to predict building ID and floor number, and once trained, it is stored in 

the file to avoid redundant computation in future runs. 

Step-3: Prediction on Validation Data (X_val as Input) 

Once the model is loaded or trained, it is used to predict the building and floor values for the validation 

dataset (X_val). The function mtl_svc.predict(X_val) generates predictions for each target variable 

(building ID and floor). These predictions are stored in clf_out, from which individual predictions are 

extracted:pred_building → Represents the predicted building ID.pred_floor → Represents the predicted 

floor number. 

Step-4: Evaluating Classification Performance 

To assess the performance of the model, the function calculateClassificationMetrics() is called twice—

first for building prediction and then for floor prediction. It compares the predicted values 

(pred_building and pred_floor) with the actual ground truth labels (y_val.BUILDINGID and 

y_val.FLOOR). This step generates evaluation metrics like accuracy, precision, recall, and confusion 

matrix, providing insight into the model’s effectiveness. 
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Step-5: Output Display and Interpretation 

Finally, the results of the classification metrics are displayed within a text-based user interface 

(tkinter.END). This allows users to visually inspect how well the model is performing in classifying 

indoor localization parameters based on real-world sensor data. 

3.2.2 Multi Output RFC 

Multi-output Random Forest Classification (Multiop RFC) is a powerful ensemble-based machine 

learning technique that extends Random Forest (RF) to handle multiple target variables simultaneously. 

Unlike traditional single-output classifiers, Multiop RFC can predict both building ID and floor number 

in indoor localization by integrating Wi-Fi RSSI and inertial sensor data. It operates by constructing 

multiple decision trees, where each tree learns from a different subset of the training data, making the 

model highly robust to noise and overfitting shown in Fig.4.2. Multiop RFC is particularly well-suited 

for multi-source sensor fusion tasks, as it effectively captures non-linear relationships between Wi-Fi 

signals, accelerometer, and gyroscope data, making it more accurate and efficient than SVC-based 

approaches for real-time indoor positioning. 

 

Fig. 4: Proposed multioutput RF classifier architecture. 

Step-1: Model Initialization and Setup 

The function RF_with_Multiop() is designed to implement a Multi-output Random Forest 

Classification (Multiop RFC) model for indoor localization using Wi-Fi signal strength (RSSI) and 

inertial sensor data from smartwatches and smartphones. It starts by defining global variables such as 

X_train, y_train, X_val, y_val, which store the training and validation datasets. The goal is to predict 

building ID and floor number using a Random Forest Classifier (RFC) wrapped in a Multi-output 

Classification framework. 

Step-2: Loading or Training the Multi-output Random Forest Model 

The function first checks whether a pre-trained Multiop RFC model is already saved in 

MultiOutputClassifier.pkl. If the model file exists, it is loaded using joblib.load() to save time and 

resources. Otherwise, a new Random Forest Classifier with 100 decision trees (n_estimators=100) is 

created and wrapped inside a MultiOutputClassifier, allowing it to predict multiple target variables 

simultaneously (building ID and floor). The model is trained using X_train as input features and y_train 

as target labels, and then saved for future use. 
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Step-3: Prediction on Validation Data (X_val as Input) 

Once the model is loaded or trained, it is used to predict the building and floor values for the validation 

dataset (X_val). The function mtl_rfc.predict(X_val) generates predictions for each target variable 

(building ID and floor).  

Step-4: Evaluating Classification Performance 

To evaluate the model’s accuracy and reliability, the function calculateClassificationMetrics() is called 

twice—once for building prediction and once for floor prediction. This step compares the predicted 

values (pred_building and pred_floor) with the actual ground truth labels (y_val.BUILDINGID and 

y_val.FLOOR). Key performance metrics such as accuracy, precision, recall, and confusion matrix are 

computed to assess model effectiveness. 

Step-5: Output Display and Interpretation 

The results are displayed using a text-based user interface (tkinter.END), providing insights into how 

accurately the model can classify indoor locations based on sensor data. This step ensures real-time 

visibility into the classification performance of Multiop RFC for indoor localization applications. 

4. RESULTS AND ANALYSIS  

4.1 Dataset description 

The dataset is structured for indoor localization using Wi-Fi signals, GPS coordinates, and contextual 

metadata. It includes columns WAP001 to WAP520, which represent Wi-Fi access point signal strengths 

in dBm, where values closer to 0 indicate stronger signals and values around -100 represent weak or no 

signals. The LONGITUDE and LATITUDE columns provide geographical coordinates for mapping 

indoor positions, while the FLOOR and BUILDINGID columns specify the exact location within multi-

level structures. SPACEID identifies specific indoor areas or rooms, and RELATIVEPOSITION 

indicates user orientation or placement (e.g., inside a room or hallway). USERID and PHONEID help 

analyze data variations caused by different users or devices, and the TIMESTAMP records the exact 

time of data collection, aiding in temporal analysis of indoor environments. 

4.2 Results description 

This research is a comprehensive Python application built using Tkinter for the graphical user interface 

(GUI) and integrates several modules to support a complete machine learning workflow for classifying 

indoor localization based on Wi-Fi and sensor data. It allows data preprocessing, visualization, model 

training, and predictions in an interactive interface, making it a powerful tool for analyzing indoor 

positioning accuracy with Random Forest and SVC classifiers. Fig. 5 represents the distribution of 

floors within different buildings, showing how many data points correspond to each floor level across 

multiple buildings. 
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Fig. 5: Count plot of floors across buildings. 

  

(a)      (b) 

Fig. 6: Confusion matrices obtained using (a)Multioutput SVC. (b)Multioutput RFC 

Fig. 6 illustrates a comparative analysis of classification performance between two models—

Multioutput Support Vector Classifier (SVC) and Multioutput Random Forest Classifier (RFC)—for 

predicting building IDs using Wi-Fi and inertial sensor data. The Multioutput SVC model achieved a 

strong accuracy of 99.54%, with a precision of 99.46%, recall of 99.62%, and an F1-score of 99.54%, 

showing near-perfect classification with only minor misclassifications. However, the Multioutput RFC 

model surpassed these results with a higher accuracy of 99.91%, along with a precision of 99.93%, 

recall of 99.89%, and F1-score of 99.91%. The confusion matrix confirms that RFC significantly 

reduces misclassification errors and achieves near-perfect predictions. This performance enhancement 

is attributed to the ensemble learning mechanism of Random Forest, which combines multiple decision 

trees to improve generalization and reduce overfitting, making it a more robust and reliable choice for 

indoor localization applications. 
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Fig. 7:  Illustration of GUI application after prediction on test data. 

Fig. 7: represents the GUI after making predictions on the uploaded test dataset using the trained 

machine learning model. The predictions include building ID and floor number for each test sample, 

allowing researchers to compare the predicted values with the actual ground truth. The GUI confirms 

that the trained model has been successfully applied to the test data, providing an automated indoor 

localization solution based on Wi-Fi and sensor fusion techniques. The performance metrics displayed 

in previous figures indicate that the model is highly accurate, making it suitable for real-world 

deployment in smart indoor navigation system. 

Table. 1: Performance comparison of algorithms 

 

 

 

 

 

 

Table.1 represents a comparative analysis of Multioutput SVC and Multioutput RFC models for 

building prediction accuracy in indoor localization. The Multioutput SVC model achieved an accuracy 

of 99.55%, which is already highly precise, but the Multioutput RFC model outperforms it with a 

significantly higher accuracy of 99.91%. Precision, recall, and F1-score values also indicate better 

performance of RFC over SVC, with RFC achieving a precision of 99.94% compared to SVC’s 99.47%, 

signifying fewer false positives. Similarly, recall, which measures the model’s ability to correctly 

identify actual positives, is higher for RFC (99.89%) than SVC (99.63%), suggesting RFC has fewer 

false negatives. The F1-score, which balances precision and recall, is also superior in RFC (99.91%) 

over SVC (99.54%), proving RFC’s robustness in accurately predicting buildings using Wi-Fi and 

inertial sensor data. These results demonstrate that Random Forest-based Multioutput Classification is 

a superior approach for indoor localization, providing better generalization, higher classification 

accuracy, and lower misclassification errors compared to the SVC-based model. 

5. CONCLUSION 

Metric Multioutput SVC Multioutput RFC 

Building Prediction Accuracy 99.55% 99.91% 

Building Prediction Precision 99.47% 99.94% 

Building Prediction Recall 99.63% 99.89% 

Building Prediction F1-Score 99.54% 99.91% 
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The integration of Wi-Fi signal strength data and inertial sensor readings from smartwatches and 

smartphones has proven to be a highly effective approach for indoor localization, addressing the 

challenges of accuracy and robustness in real-world environments. In this research, we compared two 

multioutput classification models—Support Vector Classifier (SVC) and Random Forest Classifier 

(RFC)—for predicting building IDs based on collected sensor data. While SVC provided commendable 

performance with an accuracy of 99.55%, RFC outperformed it with a remarkable accuracy of 99.91%, 

along with superior precision, recall, and F1-score. The superior results of RFC highlight its ability to 

handle the complex, high-dimensional nature of indoor localization data, leveraging an ensemble 

learning approach that reduces overfitting and improves prediction stability. The successful 

implementation of the proposed RFC-based approach demonstrates its potential for real-time indoor 

positioning applications, offering a significant improvement over existing methods. This study 

establishes a strong foundation for future enhancements in data-driven localization techniques, ensuring 

greater accuracy and adaptability in various smart environments. 
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