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ABSTRACT 

Biometric authentication has gained significant traction, with palm print recognition emerging as a 

robust and reliable security measure. Research indicates that palm print authentication achieves an 

accuracy of up to 98.5%, outperforming traditional fingerprint recognition, which averages around 95%. 

However, conventional manual authentication methods, such as password-based systems and manual 

biometric verification, suffer from vulnerabilities like identity theft, forgery, and inefficiency in 

processing large datasets. To address these challenges, we propose an ML-driven palm print 

authentication system (PPAS) that leverages advanced image processing and machine learning 

techniques. The system preprocesses palm print images through noise reduction and edge detection to 

enhance feature extraction. The dataset is then subjected to a Train-Test Split to ensure robust model 

evaluation. Two machine learning models such as perceptron and extra trees classifier (ETC) are 

implemented to classify and authenticate palm prints with high accuracy and efficiency. The perceptron 

model offers a foundational approach to classification, while the ETC model enhances decision-making 

through an ensemble learning method, improving performance in feature-rich biometric data. Our 

proposed system demonstrates improved authentication accuracy, reduced false acceptance rates, and 

enhanced security, making it a viable alternative to conventional biometric verification methods. 

Keywords: Palm print authentication, Machine learning, Biometric security, Image preprocessing, 

Pattern recognition, Extra Trees Classifier. 

1.INTRODUCTION 

The palmprint refers to the unique pattern of ridges and valleys found on the inner surface of the hand, 

excluding the wrist and fingers. Palmprints, akin to fingerprints, are a biometric characteristic unique 

to each individual. An earlier seminal study explored the viability of palmprints as a means of personal 

identification, establishing them as a form of physical biometrics. Their findings highlighted distinctive 

features in palmprints, including major lines (life, heart, and headlines), wrinkles, minutiae, and delta 

points. Each palmprint is unique, and the surface of the palm provides more information space compared 

to fingerprints, so it contains a greater amount of information. In general, the attributes of the palmprint 

manifest on multiple levels, each discernible in various types of palmprint images. Typically, these 

characteristics are visible across different image resolutions, with lower resolution, around 100 pixels 

per inch (ppi), exhibiting a pronounced texture in which dark lines are of particular significance and 

visibility. Notably, among these lines, the three widest and longest are termed major lines, constituted 

by the heart line gathering with the head and lifelines, and the remaining lines are referred to as wrinkles, 

as illustrated in Fig.1. 

Therefore, in the case of low-resolution images, the predominant features are the major lines, wrinkles, 

and texture. Nevertheless, the edges of the palmprint remain imperceptible in images of low resolution. 

In contrast, visibility can be achieved in the case of images with high resolution, of approximately 500 
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dpi, which unveils local texture intricacies, including minute creases, ridges, valleys, and minutiae 

points. 

 

Fig. 1: Palmprint characteristics (a) at low resolution and (b) at high resolution. 

 

Fig. 2: Architectural framework of PPAS. 

Furthermore, images with very high resolution allow an abundance of certain local particular features 

related to the palmprint to be visualized, including the pores, which can be seen in resolutions exceeding 

500 ppi or even reaching 1000 ppi. 

2. LITERATURE SURVEY 

In the field of biometric recognition, facial identification still has limitations due to persistent 

challenges, such as pose, lighting, and orientation variations [1]. Conversely, fingerprints have been 

widely adopted due to their efficiency, although certain populations, such as manual workers and the 

elderly, may have difficulty with capturing fingerprints. In a networked society, reliable personal 

authentication remains critical for security [2]. Compared to other biometric modalities, palmprints have 

proven to be more effective and acceptable. The palmprint biometric system offers higher accuracy than 

fingerprints and higher acceptance than facial recognition. With characteristics such as uniqueness, 

reliability, and security, palmprints have been widely adopted by security agencies, providing a cost-

effective and non-intrusive option for developing accurate and efficient biometric systems. 

Advanced research in palmprint feature extraction [3, 4] has been conducted for contactless systems. 

Contactless palmprint recognition aims to improve usability and privacy. However, the lack of a knuckle 

guide can lead to variations in palmprint images due to hand movements. Various methods, such as the 

utilization of texture operators like local binary pattern (LBP) [5] and Gabor filters [6], were proposed 

to overcome these challenges. 

Palmprint has advantages over other biometric methods, including iris and fingerprint, in terms of 

identity matching. Palmprints offer the advantage of easy capture with low-resolution devices, 

mitigating the high costs associated with other modalities. Moreover, law enforcement agencies have 
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extensively employed palmprints for criminal identification, leveraging their unique and stable 

characteristics [7, 8]. These prints encapsulate diverse features like primary lines, minutiae points, 

ridges, and overall texture. Each feature class contributes significantly to the individuality and 

discriminative power of a palmprint. This flexibility permits adaptation to the specific security 

requirements of individuals and organizations. 

Palmprint recognition has enjoyed great research popularity for identity authentication and 

identification in recent years. It has many unique advantages, e.g., the richness of features, high user-

friendliness, suitability for private security, etc. [9]. There are many palmprint identification systems 

that exhibit encouraging results, but there is a need to improve the performance of the existing systems. 

State-of-the-art methods can be broadly organized into two main categories: Handcrafted-features-

based and deep-learning-based approaches.The texture features are an important low-level feature in 

palmprint recognition [10] that can describe the contents and details of a specific region in an image, 

and for that, several handcrafted features-based approaches are based on the analysis of image texture 

information and provide precise features for the best palmprint recognition rate. 

 Zhang et al. [11] supplied a multispectral palmprint recognition approach that captured palmprint 

images under four bands: Red, green, blue, and near-infrared light. A score-level fusion of these bands 

achieved superior performance compared to any single band. Jing et al. [12] used a two-dimensional 

(2D) separability judgment to select DCT frequency bands with appropriate linear separability. Then 

from the given bands, it extracts the linear discriminant features by optimized Fisherface method and 

classifies by nearest neighbor classifier. Luo et al. [13] proposed a new image descriptor, local line 

directional patterns (LLDP). This work shows that different implementations of LLDP descriptors 

perform competitively in palmprint recognition. Kang et al. [14] presented a novel recognition approach 

for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures 

distributed over the palm surface, including finger veins and palm veins, to minimize the loss of features 

information. First, a hierarchical enhancement algorithm is adopted, which combines a DOG filter and 

histogram equalization to alleviate uneven illumination and highlights vein textures. Second, a Root 

Scale Invariant Feature Transform (RootSIFT), a more stable local invariant feature extraction method 

compared to Scale Invariant Feature Transform (SIFT), is used to overcome the projection 

transformation in contact-free mode. 

Recently, many systems and applications have used deep learning for biometric identification. The deep 

network is trained on a variety of patterns. Once the network has learned all the unique features of the 

dataset, it can be used to recognize similar patterns. Deep learning approaches have been used primarily 

to learn features for palmprint recognition. Deep learning can also be very efficient in classification 

(supervised learning) and clustering (unsupervised learning) tasks. In a classification task, the system 

classifies the input instances based on their corresponding class labels, while in clustering, the instances 

are grouped based on their similarity without the need for class labels. Clustering can be used for several 

well-known problems, such as recommender systems [15] [16] [17]. Several approaches described 

below are based on deep learning with classification and clustering. 

Wang et al. [18] proposed 2D Gabor wavelets for palmprint images. They used a Pulse-Coupled Neural 

Network (PCNN) to imitate the creatural vision perceptive process and decompose each Gabor subband 

into a series of binary images. Entropies for these binary images are calculated and regarded as features. 

An SVM classifier is employed for classification. Minaee and Wang [19] proposed deep scattering 

convolutional network with a two-layer for palmprint recognition. Then Principal Component Analysis 

(PCA) is applied to reduce the dimensionality of the data. For classification, a multi-class SVM and the 

nearest neighbor classifier are used. Svoboda [20] proposed a Convolutional Neural Network (CNN) 
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based on the AlexNet model and trained by optimizing a loss function related to the d-prime index to 

achieve a better genuine/impostor score distribution separation of touchless palmprint databases.  

Meraoumia et al. [21] proposed Principal Component Analysis Network (PCANet) deep learning-based 

feature extraction using two stages. Then four classifiers (SVM, Radial Basis Function - RBF, Random 

Forest Transform—RFT, and KNN) are used with the supervised procedure. The testing was performed 

on multispectral palmprint databases.Cheng et al. [22] proposed Deep Convolutional Features-Based 

Supervised Hashing (DCFSH). They used CNN-F architecture to extract the palmprint convolutional 

features, followed by learning binary coding from distilled deep features. DCFSH is evaluated on a 

multispectral palmprint database. The Hamming distance is employed in the matching steps.  

Bensid et al. [10] proposed a simple new deep learning feature extraction algorithm for an efficient 

multispectral palmprint identification system called Discrete Cosine Transform Network (DCTNet). 

Genovese et al. [23] proposed PalmNet, which is a convolutional network that uses Gabor responses 

and PCA filters through an unsupervised procedure applied on different touchless palmprint databases 

and uses the 1-NN classifier based on the Euclidean distance for classification step. Fei et al. [24] 

proposed LRRIPLD which is a new Low-Rank Representation (LRR) model integrated with principal 

line distance for contactless palmprint recognition. LRRIPLD generates a graph that is more distinct 

than LRR because main line distances effectively improve clustering results by increasing the weights 

of the links between similar samples. The approach is tested on three palmprint databases IITD-

Touchless, GPDS-Touchless, and CASIA. 

Arora et al. [25] introduced PalmHashNet, a novel indexing method that learns compact feature vectors 

for palmprint identification. They used the Softmax loss function with additive margin to train the model 

to index the palmprint database and to simultaneously learn the feature vector embeddings. 

Furthermore, to generate an index table, the learned embeddings are indexed using the k-means 

clustering and locality sensitive hashing techniques. PalmHashNet is evaluated on four publicly 

available palmprint databases CASIA, IITD-Touchless, Tongji-Contactless, and PolyU II.Besides, Zhao 

et al. [26] proposed a joint constrained least-square regression (JCLSR) model with deep convolutional 

neural networks to solve the under-sampling classification problem by extracting different deep local 

convolution features using different patches of the same palmprint image. The experiments of the 

proposed method (JCLSR) are performed on touchless and multispectral palmprint databases.  

3. PROPOSED METHODOLOGY 

This research is a machine learning-based Palm Print Authentication System (PPAS) designed with a 

graphical user interface (GUI) built using Tkinter. Its main goal is to authenticate individuals by 

analyzing the unique features present in their palm prints. 

Step-1: User Interface (GUI): The system utilizes Tkinter, a standard Python library, to build the GUI. 

This framework provides a user-friendly interface that enables users to interact with various system 

components through buttons, text fields, and dialogs. One of the key features of the interface is the 

ability to upload a dataset directory that contains subdirectories—each representing a different class or 

individual, with corresponding palm print images. Additionally, a text widget is implemented within the 

GUI to display logs, status messages, and evaluation results, offering real-time feedback to the user. 

Step-2: Data Acquisition and Preprocessing: When a dataset is uploaded, the application scans the 

chosen directory to detect subdirectories. Each subdirectory represents a unique class and contains 

multiple images related to that specific individual. The images are then processed through several steps. 

First, they are read using OpenCV, resized to a uniform dimension of 64x64 pixels for consistency, and 

flattened into one-dimensional arrays. Next, the pixel values are normalized to fall within the range [0, 
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1], ensuring uniformity across the dataset. These processed images, along with their class labels, are 

stored as NumPy arrays, which enhances processing speed during future runs and improves overall 

reusability. 

Step-3: Dataset Splitting: Following preprocessing, the dataset is divided into training and testing 

subsets. Eighty-five percent of the data is allocated for training the machine learning models, while the 

remaining fifteen percent is reserved for evaluating the model’s performance. This division ensures that 

the model is validated on new, unseen data and allows assessment of its generalization capability. 

 

Fig. 3: Block diagram of proposed PPAS using ETC model. 

Step-4: Model Training and Evaluation: The system offers two approaches for classification. The 

first uses a Perceptron model, which may either be loaded from disk if it has been previously trained or 

trained from scratch using the current training data. This model functions as a simple linear classifier. 

The second approach employs a proposed Extra Trees Classifier (ETC), an ensemble learning method 

known for its robustness and accuracy. Like the Perceptron, it is either loaded or newly trained 

depending on availability. Both models are assessed using multiple performance metrics, including 

accuracy, precision, recall, and F1-score, to provide a detailed evaluation of classification quality. A 
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confusion matrix is visualized using a heatmap generated with Seaborn and Matplotlib, offering insights 

into model performance across different classes. Additionally, sensitivity and specificity are calculated 

to analyze the rates of true positive and true negative predictions. 

Step-5: Prediction: For making a prediction, users can select a new test image through the interface. 

The image undergoes the same preprocessing steps used during training. Once processed, it is passed 

through the trained classifier—either ETC or Perceptron—to predict the corresponding class, 

effectively identifying the individual based on their palm print. The predicted class is then overlaid on 

the image, which is displayed using OpenCV to provide immediate visual feedback. 

Step-6: Workflow Summary: The workflow of the system is designed to be both modular and 

interactive. It proceeds through the following stages: uploading the dataset, processing the images, 

splitting the dataset, training the model (either Perceptron or ETC), evaluating the model, performing 

predictions, and finally displaying the results. The modular structure of the system allows for 

straightforward updates and maintenance. Each component—data processing, training, evaluation, and 

prediction—can be independently modified or enhanced without disrupting the rest of the system. 

3.1 Image Processing  

The image preprocessing pipeline ensures that raw images are transformed into a structured, 

normalized, and labeled dataset suitable for machine learning. This method eliminates inconsistencies, 

enhances computational efficiency, and prepares the images for accurate classification in security-based 

applications like biometric authentication. Image processing is performed to prepare images for a 

machine learning model. The preprocessing pipeline involves image loading, resizing, normalization, 

and dataset storage, ensuring that the input data is structured efficiently for training. The process begins 

by checking whether pre-processed image arrays already exist in the model folder. If the saved arrays 

(X.txt.npy and Y.txt.npy) are available, they are directly loaded to save computational resources. 

Otherwise, the function performs the entire preprocessing sequence from scratch. 

Step-1: Image Loading and Category Assignment 

The function iterates through directories containing images, treating each folder as a different category. 

For every image file found in these directories, the function extracts the category name based on the 

folder structure. This is a crucial step in supervised learning tasks where images are labeled for 

classification. The category name is then converted into an index value, which serves as the 

corresponding label in the Y array. This structured labeling allows the machine learning model to 

associate input images with their respective categories. 

Step-2: Image Resizing and Flattening 

Since raw images can have varying sizes, they are resized to a fixed dimension of 64×64 pixels with 3 

color channels (RGB). Standardizing image dimensions is essential to ensure uniformity across the 

dataset, allowing the model to process inputs of the same shape. Once resized, the image data is flattened 

into a one-dimensional array, transforming the 3D image structure into a 1D numerical format that can 

be used in machine learning models. This step reduces computational complexity while retaining critical 

image features for classification. 

Step-3: Normalization for Model Efficiency 

To enhance model performance, the pixel values of images are normalized by dividing each value by 

255. Since pixel intensities range from 0 to 255, this transformation scales values between 0 and 1, 

making computations more efficient and preventing numerical instability during training. 

Normalization also improves model convergence, as smaller values help neural networks learn faster 
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and avoid bias toward larger numbers. This step is particularly crucial in deep learning-based image 

classification tasks, where efficient optimization is required. 

Step-4: Dataset Storage for Reusability 

Once all images are preprocessed, the structured input (X) and output labels (Y) are converted into 

NumPy arrays for efficient storage and retrieval. These arrays are saved as .npy files, which ensures 

that future runs can directly load the processed dataset without repeating the entire preprocessing 

sequence. This significantly reduces execution time, making the system more scalable and adaptable 

for larger datasets. 

3.2 Proposed ETC 

The ETC model is an ensemble learning method that improves classification accuracy by constructing 

multiple decision trees in a highly randomized manner. The given function Proposed ETC implements 

the ETC model for palm print authentication, ensuring efficient training and evaluation. The workflow 

follows a structured approach, starting with model loading, training, and prediction. 

Step 1: Model Loading and Initialization 

The function first checks if a pre-trained ETC model exists in the specified directory. If found, the model 

is loaded directly to avoid redundant training, ensuring faster execution. This step is particularly useful 

in real-world scenarios where model retraining is computationally expensive and unnecessary for every 

function call. If no saved model is found, a new Extra Trees Classifier instance is created to train from 

scratch. 

 

Fig. 4: ETC model architecture. 

Step 2: Training the Model with (X_train, y_train) 

If the model is newly initialized, it undergoes a training process using (X_train, y_train). During 

training, the ETC algorithm constructs multiple decision trees by randomly selecting features and 

samples from the training dataset. Unlike traditional decision trees, ETC introduces additional 

randomness by selecting split points at random, rather than choosing the most optimal split. This leads 
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to better generalization and reduces the risk of overfitting. Once training is complete, the model is saved 

as a .pkl file, allowing for future reuse without retraining. 

Step 3: Prediction on Test Data (X_test) and Output Generation (y_test) 

After training, the model is used to predict class labels for unseen data samples in X_test. The trained 

ETC classifier evaluates each test sample and assigns a predicted category label, generating the 

predicted output y_pred. These predictions are then compared to the actual labels (y_test) using the 

calculateMetrics function, which likely computes accuracy, precision, recall, and confusion matrix 

values to assess model performance. 

Step 4: Ensemble Learning and Performance Enhancement 

ETC improves classification accuracy by aggregating predictions from multiple decision trees, making 

it more robust to noise and data variations. The additional randomness in split selection helps in 

reducing bias and variance, ensuring that the model performs well on unseen data. The final 

classification decision is made using a majority voting mechanism, where the most frequently predicted 

class label among all decision trees is chosen as the final output. 

Step 5: Performance Evaluation and Real-World Application 

The function calculates performance metrics to determine the model’s effectiveness in palm print 

authentication. The accuracy of predictions, along with other metrics like precision and recall, helps in 

evaluating how well the ETC model distinguishes between different classes. This robust classification 

approach ensures that the system can be deployed in security-critical applications such as biometric 

authentication, banking security, and digital access control. 

4.RESULTS AND DISCUSSION 

4.1 Dataset Description 

The palm print dataset consists of images collected from 20 different individuals, each representing a 

unique class. Each class corresponds to a specific person and contains multiple palm print images 

captured under various conditions. Each class (person) contains multiple palm print images captured 

from different angles and under varying lighting conditions to ensure variability and robustness in the 

dataset. The dataset aims to provide a diverse and representative collection of palm prints for model 

training and evaluation in PPASs. This dataset serves as the foundation for training machine learning 

models to recognize and authenticate individuals based on their unique palm print patterns.  

4.2 Result analysis  

Fig. 5 displays the confusion matrix of the Perceptron model, which is a table that visualizes the 

performance of the model by comparing the actual and predicted classes. Each cell in the matrix 

represents the number of instances where the actual class (rows) was predicted as the predicted class 

(columns) by the Perceptron model. The confusion matrix provides valuable insights into the model's 

performance across different classes, highlighting areas of accurate classification and potential 

misclassifications. This information is crucial for evaluating the model's effectiveness and identifying 

areas for improvement in the classification task. 
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Fig. 5: (a) Confusion matrix of perceptron model. (b) Confusion matrix of ETC model. 

Fig. 7 presents the confusion matrix of the Extra Trees Classifier (ETC) model. A confusion matrix is a 

table that visualizes the performance of a classification algorithm by comparing the actual and predicted 

classes. Each cell in the matrix represents the number of instances where the actual class (rows) was 

predicted as the predicted class (columns). The values in the matrix provide insights into the model's 

performance across different classes.  

Table.1: Performance metrics table for the Perceptron and Extra Trees Classifier model. 

Model Accuracy Precision Recall F1-score 

Perceptron 70.0% 75.88% 65.19% 65.45% 

Extra Trees Classifier 97.5% 98.19% 97.92% 97.82% 

 

The Table-1 presents the performance metrics of two machine learning models: The Perceptron model 

and the Extra Trees Classifier (ETC) model. These models are used for palm print recognition in a 

security authentication system. Here's what each metric signifies: 

Accuracy: The percentage of correctly classified instances out of the total instances in the dataset. 

Higher accuracy indicates better overall performance. 

Precision: The ratio of correctly predicted positive observations to the total predicted positive 

observations. It measures the model's ability to avoid false positives. Higher precision indicates fewer 

false positives. 

Recall: The ratio of correctly predicted positive observations to all actual positive observations in the 

dataset. It measures the model's ability to capture all positive instances. Higher recall indicates fewer 

false negatives. 

F1-score: The harmonic means of precision and recall. It provides a balance between precision and 

recall and is useful when the classes are imbalanced. Higher F1-score indicates better overall 

performance. 

5. CONCLUSION 

The study demonstrates the development and evaluation of a Machine Learning-driven PPAS for 

security applications. The existing Perceptron model and the proposed Extra Trees Classifier (ETC) 

model are built and compared to assess their effectiveness in palm print recognition. The Perceptron 



Journal of Computational Analysis and Applications VOL. 34, NO. 4, 2025  
  

108 
                                                                                                                                Burgu Maheshwari et al 99-109 
 

model, while simple and efficient, is limited in its ability to handle complex, non-linear patterns in the 

data. It performs adequately for basic classification tasks but falls short in terms of accuracy and 

robustness when compared to more advanced models. The ETC model, on the other hand, leverages the 

power of ensemble learning to combine multiple decision trees. This approach significantly improves 

the model's accuracy and robustness, making it a more suitable choice for palm print authentication. 

The ETC model's superior performance is evident from the higher accuracy, precision, recall, and F1-

scores obtained during the evaluation. The study highlights the importance of selecting appropriate ML 

models for biometric authentication tasks. The ETC model's ability to handle high-dimensional data 

and provide accurate predictions makes it a valuable tool for security applications. The practical 

demonstration of using the ETC model to predict identities from palm print images further underscores 

its potential for real-world deployment. 
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