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ABSTRACT 

Predictive maintenance in industrial settings is crucial for optimizing operational efficiency, reducing 

downtime, and lowering maintenance costs. Traditional maintenance methods, such as reactive and 

preventive maintenance, are often inefficient and costly, either leading to unplanned downtimes or 

unnecessary maintenance activities. Therefore, this project leverages the Internet of Things (IoT) and 

machine learning (ML) to develop an advanced predictive maintenance system for machine condition 

monitoring. By integrating IoT sensors, the system continuously collects high-dimensional data, 

including temperature, vibration, pressure, and operational parameters from industrial machinery. 

Advanced ML algorithms, analyze this data to identify patterns and anomalies indicative of potential 

machine failures. The ML models are trained on extensive datasets, allowing them to learn the complex 

relationships between different sensor readings and machine health. The developed predictive 

maintenance system offers real-time monitoring and analysis, providing early warnings of potential 

failures. This proactive approach enables timely maintenance actions, significantly reducing unplanned 

downtimes and enhancing machine reliability. Additionally, the system optimizes maintenance 

schedules based on actual machine conditions, improving resource utilization and reducing maintenance 

costs. The research demonstrates significant improvements over traditional maintenance practices by 

enhancing the accuracy and efficiency of failure predictions. The integration of ML with IoT data 

provides a comprehensive view of machine health, facilitating a proactive maintenance strategy that 

ensures operational continuity and safety. This ML-based predictive maintenance system represents a 

transformative advancement in industrial operations, promoting better asset management and extending 

the lifespan of machinery. 

Keywords: Predictive Maintenance, Internet of Things (IoT), Sensor Data, Anomaly Detection, Failure 

Prediction. 

1. INTRODUCTION 

Predictive maintenance has emerged as a vital component in industrial operations, driven by the need 

to improve operational efficiency, reduce unplanned downtimes, and minimize maintenance costs. The 

global predictive maintenance market has seen substantial growth over the years, fueled by 

advancements in IoT and machine learning. According to a report by MarketsandMarkets, the predictive 

maintenance market size was valued at approximately USD 4.0 billion in 2020 and is projected to reach 

USD 12.3 billion by 2025, growing at a compound annual growth rate (CAGR) of 25.2%. The rapid 

adoption of Industry 4.0 practices, including smart factories and connected machinery, has accelerated 

the deployment of predictive maintenance systems across various sectors. In 2022, it was reported that 

nearly 70% of companies utilizing predictive maintenance observed a reduction in downtime by up to 

45%, and maintenance costs were reduced by 25% on average. These statistics highlight the significance 
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of predictive maintenance in modern industrial settings, where unplanned downtimes can result in 

substantial financial losses. For example, a single hour of downtime in the automotive manufacturing 

industry can cost up to USD 1.3 million, emphasizing the critical need for reliable and accurate 

maintenance strategies. The integration of machine learning with IoT has transformed predictive 

maintenance, allowing for the continuous monitoring of machine conditions and enabling timely 

interventions before failures occur. This proactive approach not only extends the lifespan of machinery 

but also optimizes resource allocation, ensuring that maintenance activities are performed only when 

necessary. 

2. LITERATURE SURVEY 

W. Lee et al. [1] proposed a predictive maintenance system for machine tool systems utilizing artificial 

intelligence techniques applied to machine condition data. Their study focused on employing various 

AI methods to analyze machine condition data and predict potential failures before they occurred. The 

research aimed to enhance maintenance strategies, reduce unplanned downtime, and optimize the 

efficiency of machine tool operations. T. Zonta et al. [2] conducted a systematic literature review on 

predictive maintenance in the context of Industry 4.0. The review provided a comprehensive analysis 

of the current state-of-the-art predictive maintenance techniques, highlighting advancements in data 

analytics and machine learning applications. The study emphasized the importance of integrating 

predictive maintenance with Industry 4.0 technologies to improve operational efficiency and reduce 

maintenance costs. W. Lee et al. [3] revisited their previous work on predictive maintenance of machine 

tool systems, expanding on the application of AI techniques to enhance predictive capabilities. Their 

updated study focused on refining the AI methods used for analyzing machine condition data, with the 

goal of improving the accuracy and reliability of failure predictions in machine tool systems. 

C. Mgbemena and F. Okeagu [4] developed an IoT-based real-time remote monitoring device for 

injection molding machines in the plastic industry. Their work focused on creating a system that allows 

for continuous monitoring of machine performance, facilitating early detection of maintenance needs. 

This approach aimed to improve the reliability and efficiency of injection molding machines by 

enabling timely interventions based on real-time data. Y. Gao et al. [5] proposed a deep learning 

framework for intelligent fault diagnosis using AutoML-CNN and image-like data fusion. Their study 

utilized Convolutional Neural Networks (CNNs) to automatically extract features from vibration signals 

and classify fault types. The framework demonstrated high accuracy in diagnosing faults in circular 

knitting machines, although it required substantial training data to achieve optimal performance. W. 

Udo and Y. Muhammad [6] introduced a data-driven predictive maintenance system for wind turbines 

using SCADA data. Their approach employed XGBoost and Long Short-Term Memory (LSTM) models 

for monitoring gearbox and generator conditions. The system effectively utilized Statistical Process 

Control (SPC) to detect anomalies, enabling early maintenance actions and cost-effective maintenance 

strategies. However, the application of this system to knitting machines was not explored. 

J. Lee et al. [7] explored advancements in intelligent maintenance systems and predictive 

manufacturing. Their research emphasized the transition from traditional reliability improvement 

methods to flexible and customizable maintenance schedules enabled by smart manufacturing 

technologies. The study highlighted the benefits of incorporating AI and machine learning into 

maintenance practices for enhanced adaptability and efficiency. K. Singha et al. [8] investigated the use 

of AI and machine learning techniques in the knitting industry. Their study highlighted how AI 

technologies could transform various aspects of knitting, including fiber classification, thread 

prediction, fault identification, and dye recipe prediction. The research emphasized the potential of AI 
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and ML to improve predictive maintenance and overall efficiency in the knitting industry. C. Baban et 

al. [9] employed a fuzzy logic approach for the predictive maintenance of textile machines. Their study 

developed a fuzzy decision-making system to plan and execute predictive maintenance based on 

machine conditions. The approach was demonstrated through a sewing machine needle case study, 

showcasing its effectiveness in enhancing maintenance planning and reducing unexpected machine 

failures. 

S. Elkateb et al. [10] introduced an IoT and machine learning-based online monitoring system for 

knitting machines. Their system provided real-time tracking and statistical analysis of machine 

performance, facilitating preventive maintenance and accurate productivity measurement. The study 

demonstrated significant improvements in maintenance practices and machine productivity through the 

integration of IoT and ML technologies. S. Elkateb et al. [11] expanded on their previous work by 

developing a predictive model for knitting machine productivity based on online monitoring data. The 

model utilized machine learning algorithms to predict productivity levels and identify potential issues. 

Their approach contributed to more efficient maintenance practices and better productivity management 

in the knitting industry. O. Surucu et al. [12] reviewed the theory, applications, and recent advances in 

condition monitoring using machine learning. Their extensive review covered various ML models and 

techniques, including deep learning and Bayesian optimization, for improving predictive maintenance. 

The study highlighted the effectiveness of these models in precise machine failure time prediction and 

the need for further research to address diverse complexities. N. Mohammed et al. [13] proposed an IoT 

and machine learning-based predictive maintenance system for electrical motors. Their system utilized 

real-time data collected from sensors (vibration, current, and temperature) and analyzed it using various 

ML models, including k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), 

linear regression (LR), and naïve bayes (NB). The random forest model achieved the highest accuracy, 

optimizing maintenance schedules and reducing downtime. 

3. PROPOSED SYSTEM 

Dataset Uploading: The project initializes by importing the necessary libraries and then uploading the 

dataset using the pd.read_csv() function. The dataset is stored in a DataFrame named dataset, which is 

then explored using methods like head(), info(), and describe() to understand its structure, missing 

values, and basic statistics. 

Data Preprocessing: The dataset undergoes several preprocessing steps to prepare it for machine 

learning. First, a count plot is generated to visualize the distribution of the target variable, 'Machine 

failure.' Then, categorical features such as 'Type' and 'Machine failure' are converted to numerical values 

using LabelEncoder. The dataset is further cleaned by dropping unnecessary columns like 'UDI' and 

'Product ID'. The target variable (y) and feature matrix (X) are defined, and SMOTE (Synthetic Minority 

Over-sampling Technique) is applied to balance the classes, addressing any class imbalance issues. 

Another count plot is generated post-SMOTE to verify the balancing. 

ML Model Training: This proceeds with training two machine learning models: the MLP (Multi-Layer 

Perceptron) Classifier and the Gradient Boosting Classifier. The dataset is split into training and testing 

sets using train_test_split(). For both models, the code checks if a pre-trained model exists. If it does, 

the model is loaded; otherwise, a new model is trained on the training data. The trained model is then 

saved using joblib for future use. 

Model Prediction on New Test Data: After training, the models are used to predict outcomes on a new 

test dataset. The test data is preprocessed similarly to the training data. The predictions classify each 
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instance into one of four categories: 'Early Warning,' 'Critical Failure,' 'Moderate Risk,' or 'Nominal 

Operation.' The predictions are then appended to the test dataset for analysis. 

Performance Evaluation: The performance of each model is evaluated using various metrics, 

including accuracy, precision, recall, F1 score, and a confusion matrix. These metrics provide insights 

into how well each model performs in classifying the machine failures. The results are summarized and 

compared across the models to determine which one performs best in this predictive maintenance 

context. 

 
Fig. 1: Proposed System Architectural Block Diagram. 

3.1 GBC Modelling 

The Gradient Boosting Classifier is an ensemble learning technique that builds a strong predictive 

model by combining the outputs of multiple weaker models, typically decision trees. Unlike the MLP 

Classifier, which is a neural network-based approach, Gradient Boosting focuses on improving the 

accuracy of predictions by sequentially training decision trees, where each new tree attempts to correct 

the errors made by the previous ones. 

In this project, the Gradient Boosting Classifier starts by training an initial decision tree on the 

preprocessed data. The predictions from this tree are compared to the actual outcomes, and the errors 

are calculated. The next decision tree is then trained on these errors, learning to predict the residuals of 

the previous tree. This process continues, with each successive tree focusing on the mistakes of its 

predecessors, effectively "boosting" the overall model's performance. The final prediction is obtained 

by summing the predictions of all individual trees, weighted by their contribution to the overall model. 

Superior Performance of Gradient Boosting Classifier 

The Gradient Boosting Classifier often outperforms other models, including the MLP Classifier, in tasks 

like predictive maintenance. This superior performance is attributed to its ability to reduce bias and 

variance through the iterative correction of errors. By focusing on the residuals of previous models, 

Gradient Boosting effectively captures complex patterns in the data that may be missed by a neural 

network like the MLP, especially in scenarios with limited data or noisy features. In this project, the 

Gradient Boosting Classifier's ability to iteratively improve upon the mistakes of its predecessors results 
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in more accurate and reliable predictions of machine failures, making it the preferred choice for 

predictive maintenance in an Industrial IoT environment. 

4. RESULTS AND DISCUSSION 

4.1 Dataset description 

The dataset is centered around predictive maintenance for machine condition monitoring. It contains a 

variety of features that capture essential aspects of the machinery's operational parameters. Here's a 

detailed description of each class and its corresponding features: 

UDI (Unique Data Identifier): The 'UDI' column contains a unique identifier for each record in the 

dataset. This identifier is crucial for keeping track of individual data points but is typically not used in 

the modeling process, as it doesn't contribute to the prediction of machine failures. It's mainly for 

reference and ensuring the integrity of the dataset. 

Product ID: The 'Product ID' column represents a unique identifier for the product or machine being 

monitored. Similar to the 'UDI,' this feature is not directly related to the machine's operational status or 

failure prediction and is generally removed during the preprocessing phase. 

Type: The 'Type' column categorizes the machinery into different types or categories, potentially 

reflecting different models or types of equipment. This categorical feature is converted into numerical 

values using label encoding to be used in machine learning models. The type of machine might influence 

how certain parameters behave, and therefore, it plays a role in predicting failures. 

Air Temperature [K]: The 'Air temperature [K]' feature records the ambient air temperature around the 

machinery in Kelvin. Temperature is a critical factor in machine operations, as extreme temperatures 

can lead to overheating or excessive cooling, both of which might result in machine failure. 

Process Temperature [K]: The 'Process temperature [K]' feature captures the temperature of the 

machinery's internal processes. This temperature is typically higher than the ambient temperature due 

to internal operations, and fluctuations can indicate potential issues within the machine. Monitoring 

process temperature helps in detecting overheating conditions that may lead to failure. 

Rotational Speed [rpm]: The 'Rotational speed [rpm]' feature measures the speed at which the 

machinery's components are rotating, expressed in revolutions per minute. High or unstable rotational 

speeds could indicate mechanical problems like imbalance or wear, making this feature critical for 

predicting mechanical failures. 

Torque [Nm]: The 'Torque [Nm]' feature records the amount of rotational force applied by the 

machinery, measured in Newton-meters. Torque is directly related to the machine's operational load, 

and unusual torque values might suggest issues like mechanical binding, misalignment, or overloading, 

all of which can lead to failure. 

Tool Wear [min]: The 'Tool wear [min]' feature tracks the wear on the machine's tools, measured in 

minutes of operation. As tools wear out, the efficiency and precision of the machinery may decrease, 

increasing the likelihood of failures. This feature is critical for maintenance planning and predicting 

when tools need to be replaced. 
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TWF (Tool Wear Failure): The 'TWF' binary feature indicates whether a failure occurred due to tool 

wear. A value of 1 indicates a failure, while 0 indicates no failure. This feature helps identify cases 

where tool wear directly contributed to machine failure. 

HDF (Heat Dissipation Failure): The 'HDF' binary feature records failures due to inadequate heat 

dissipation. Poor heat dissipation can lead to overheating, a common cause of machinery breakdowns. 

This feature flags instances where heat-related issues were the cause of failure. 

PWF (Power Failure): The 'PWF' binary feature indicates failures related to power issues. Power 

failures can disrupt machine operations, leading to unexpected downtime and possible damage to 

machinery. This feature identifies such events in the dataset. 

OSF (Overstrain Failure): The 'OSF' binary feature denotes failures caused by overstrain, where the 

machine has been subjected to forces beyond its design limits. Overstraining can lead to mechanical 

failures, and this feature captures such incidents. 

RNF (Random Failures): The 'RNF' binary feature records random failures that don't fall into the 

specific categories mentioned above. These failures could be due to unforeseen circumstances or 

random events, making them harder to predict but important to include for comprehensive analysis. 

Machine Failure: The 'Machine failure' feature is the target variable in this dataset. It is a four-class 

indicator of whether a machine failure occurred early warning, critical failure, moderate risk, nominal 

operation. This feature is the primary focus of the predictive maintenance model, which aims to predict 

this outcome based on the other features. 

4.2 Results Description 

Figure 2 is a count plot illustrating the distribution of machine failure classes in the dataset. It 

categorizes the data into early warning, critical failure, moderate risk, nominal operation showing the 

frequency of each class. This visualization is essential for understanding the class imbalance, which 

may affect model training and require techniques like SMOTE for balancing. 

 

Figure 2: Distribution of Machine Failure Classes 
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Figure 3: Distribution of Machine Failure Classes After SMOTE 

Figure 3 displays the distribution of machine failure classes after applying the SMOTE technique to 

balance the dataset. This figure shows how the class imbalance has been addressed, with the machine 

failure classes now having equal representation, facilitating more effective model training. 

 

Figure 4: MLP Classifier Confusion Matrix 

Figure 4 illustrates the confusion matrix for the MLP (Multi-Layer Perceptron) Classifier. The 

confusion matrix shows the performance of the MLP model in predicting machine failures across 

different categories, such as Early Warning, Critical Failure, Moderate Risk, and Nominal Operation. 

This matrix provides insights into the model's accuracy and areas where it may be misclassifying 

instances. 
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Figure 5: Gradient Boosting Classifier Confusion Matrix 

Figure 5 displays the confusion matrix for the Gradient Boosting Classifier. Similar to the MLP 

classifier, this matrix shows the performance of the Gradient Boosting model in predicting machine 

failures. The detailed comparison helps in evaluating the effectiveness of the Gradient Boosting 

Classifier, which is shown to have superior performance. 

Table 1 compares the performance metrics of the MLP Classifier and Gradient Boosting Classifier, 

including Precision, Recall, F-Score, and Accuracy. This figure provides a clear comparison of both 

models, highlighting the superior performance of the Gradient Boosting Classifier in predicting 

machine failures accurately. 

Table 1: Performance Comparison of MLP and Gradient Boosting Classifiers. 

 Algorithm Name Precision Recall F-Score Accuracy 

MLP Classifier 87.609105 75.697375 68.403767 76.281407 

Gradient Boosting Classifier 99.974280 99.974696 99.974475 99.974874 

 

 

Figure 6: Predictions on New Test Data 

Figure 6 showcases the predictions made by the Gradient Boosting Classifier on a new set of test data. 

It categorizes the test instances into Early Warning, Critical Failure, Moderate Risk, and Nominal 

Operation. This figure illustrates how the trained model performs on unseen data, providing insights 

into its generalization capabilities. 
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5. CONCLUSION 

The research demonstrates a significant advancement in predictive maintenance systems. By leveraging 

IoT sensors and advanced machine learning algorithms, the project effectively integrates real-time data 

collection with sophisticated analytical techniques to predict machine failures. The use of MLP and 

Gradient Boosting Classifiers highlights the project's capability to handle complex datasets and deliver 

actionable insights into machine health. Among the models evaluated, the Gradient Boosting Classifier 

exhibits superior performance, achieving higher accuracy and more reliable predictions compared to 

the MLP Classifier. The project's findings underscore the importance of a proactive maintenance 

approach, which not only enhances the reliability of industrial machinery but also optimizes resource 

allocation and reduces overall maintenance costs. The successful application of SMOTE for handling 

class imbalance further demonstrates the project's commitment to improving model performance and 

ensuring robust predictive capabilities. By providing early warnings and classifying machine conditions 

into distinct categories, the system facilitates timely interventions and supports efficient maintenance 

scheduling. 
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