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ABSTRACT 

Accurate tree species classification in forest ecosystems is crucial for biodiversity conservation, forest 

management, and ecological research. Traditionally, forests have been mapped through labour-intensive 

field surveys and the visual interpretation of aerial images, methods prone to human error and 

inefficiencies. Studies show that error rates in manual mapping can exceed 15%, with variability in 

expertise and limited scalability contributing to inconsistencies. This research aims to develop an 

automated system that uses statistical measures such as accuracy, precision, recall, and F1 score to 

ensure high-quality classification, reducing the need for extensive fieldwork and minimizing errors 

inherent in manual processes. In traditional systems, surveys are conducted by experts who physically 

navigate forest terrains to gather data, which is later analyzed using basic tools. This approach delays 

decision-making, incurs high operational costs, and struggles to adapt to rapidly changing forest 

conditions. In response to these limitations, the research proposes a system utilizing Logistic Regression 

and Extra Trees classifiers within a Tkinter-based graphical interface. The system simplifies the entire 

process: it allows for seamless upload and preprocessing of LiDAR datasets, followed by model 

training, evaluation, and storage, ultimately automating tree species prediction. By overcoming the 

inefficiencies, high costs, and susceptibility to errors of manual mapping, this approach aims to improve 

forest ecosystem monitoring and contribute to sustainable forest management practices. 

Keywords: Tree species classification, Forest mapping, Machine Learning, LiDAR Data, Logistic 

Regression. 

1. INTRODUCTION 

The use of geographic information systems (GIS) and remote sensing techniques for forestry 

applications has been central to geographic research since the field’s inception, and over the past three 

decades a technical revolution has enabled ever more sophisticated analyses of forest structure, 

composition, and dynamics. Although optical, multispectral, and hyperspectral sensors have 

traditionally provided the bulk of forest data, integrating information on tree and canopy structure—

especially via Light Detection and Ranging (LiDAR)—can markedly improve estimates of biomass, 

health, carbon sequestration potential, and habitat range, in some cases even at the species level. 

Airborne LiDAR platforms mounted on small aircraft now routinely capture detailed structural features 

such as canopy architecture, branching patterns, succession stages, and physiological metrics like leaf 

area index. By accurately measuring canopy height, basal area, and timber volume in a single survey 

flight, LiDAR has become indispensable for commercial forest resource monitoring and valuation. 

Changing weather patterns are reshaping species distributions worldwide, making it essential to monitor 

shifts in tree and plant community dynamics—key drivers of ecosystem function and composition—to 

inform conservation strategies, bolster resilience, and safeguard livelihoods. Yet individual LiDAR 
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returns by themselves reveal little about species identity. Fortunately, tree species exhibit distinctive 

canopy architectures, shape factors, and foliage characteristics, which have been exploited to 

distinguish deciduous from coniferous taxa and, in some studies, to achieve detailed species-level 

classification. A single laser pulse may reflect off multiple canopy layers, generating several returns 

with varying intensities; full-waveform LiDAR captures these within-canopy echoes in detail, providing 

robust information on complex canopy structures and forest composition. Conversely, discrete-return 

LiDAR—even though it records only the first few echoes—can provide additional structural 

information beyond that obtained from full-waveform data and offers valuable canopy insights when 

its point clouds are summarized into percentiles, deciles, or other statistical metrics that represent 

ground and canopy returns. 

Researchers have successfully used discrete-return LiDAR–derived structural indices to characterize 

species richness, predict stand-level species composition in tropical forests, and differentiate among a 

limited number of tree taxa. Classifications achieve the highest accuracies in forests with few species 

and when point-cloud densities are high, but the discriminatory power of LiDAR summary metrics 

diminishes as species diversity increases. Debate continues over the optimal data resolution relative to 

individual crown size: some caution against species-level mapping with data coarser than tree crowns, 

while others argue that an inherent “individual-tree signature” may explain up to 65 percent of 

within-species variability. Although individual tree detection (ITD) methods have shown promise in 

approximating tree locations and crown sizes, remaining uncertainties limit their current use in robust 

forest inventories; until these methods are further refined, discrete-return LiDAR is best applied at 

aggregated scales—stands, plots, or larger management units—for large-scale forest inventory and 

classification 

2. LITERATURE SURVEY  

Colgan et al. [1] proposed a method to map savanna tree species at ecosystem scales by utilizing support 

vector machine classification and BRDF correction on airborne hyperspectral and LiDAR data. Their 

study demonstrated the effectiveness of integrating multiple data types to improve the accuracy of tree 

species classification at large scales. George et al. [2] presented a forest tree species discrimination 

method in the Western Himalayas using EO data. Their research focused on the challenges posed by the 

region's complex terrain and vegetation, demonstrating the potential of EO-cedar cypresscedar data for 

accurate species identification. Krahwinkler and Rossmann [3] investigated tree species classification 

and evaluated various input data for improving the accuracy of remote sensing-based species 

identification. Their study highlighted the importance of selecting appropriate data types for different 

forest environments. 

Lin and Herold [4] developed a method for tree species classification using explicit tree structure feature 

parameters derived from static terrestrial laser scanning data. Their approach emphasized the 

significance of structural features in distinguishing between tree species in forest inventories. 

Brandtberg [5] explored the classification of individual tree species under both leaf-off and leaf-on 

conditions using airborne LiDAR. The study demonstrated that LiDAR could effectively differentiate 

species regardless of seasonal changes in foliage. Naidoo et al. [6] integrated hyperspectral and LiDAR 

data to classify savanna tree species in the Greater Kruger National Park region. Their research showed 

that combining these two data sources enhances classification accuracy, especially in heterogeneous 

environments. Raumonen et al. [7] approximated the volume and branch size distribution of trees from 

laser scanner data. Their study contributed to the development of methods for quantifying tree structures 

in 3D, which are crucial for forest inventory and biomass estimation. 
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Zheng and Moskal [8] proposed a method for retrieving leaf orientation from terrestrial laser scanning 

(TLS) data. This research provided insights into using TLS for detailed leaf-level measurements, which 

can improve species classification and ecological studies. Liang et al. [9] automated stem curve 

measurements using terrestrial laser scanning, contributing to the accurate modeling of tree structures 

for forestry applications. Their method enabled more precise assessments of tree growth and health. 

Kankare et al. [10] focused on individual tree biomass estimation using terrestrial laser scanning. Their 

research demonstrated the potential of TLS for non-destructive biomass estimation, a critical factor for 

forest management and carbon stock assessments. 

Guan et al. [11] introduced a deep learning-based approach for tree classification using mobile LiDAR 

data. Their method utilized a combination of deep learning techniques to improve the accuracy of 

species identification in complex forest environments. Othmani et al. [12] proposed a region-based 

segmentation method on depth images from a 3D reference surface for tree species recognition. Their 

approach provided a new way to leverage depth information for more accurate tree species 

classification. Zhang et al. [13] improved object detection with deep convolutional networks using 

Bayesian optimization and structured prediction. Although focused on general object detection, their 

work provided valuable insights for applying deep learning techniques to tree species classification. 

Angelova et al. [14] developed a real-time pedestrian detection system using deep network cascades. 

Their research, while centered on pedestrian detection, demonstrated the broader applicability of deep 

learning networks, including potential applications in forestry. Krizhevsky et al. [15] achieved 

groundbreaking results in image classification with deep convolutional neural networks on the 

ImageNet dataset. Their work laid the foundation for using CNNs in various image-based classification 

tasks, including tree species identification. 

3. sPROPOSED METHODOLOGY 

The machine learning approach for LiDAR-based tree species classification begins with dataset 

uploading, where the CSV file is read into a DataFrame using pandas. Initial data inspection includes 

displaying the first few rows, checking for unique values, and summarizing the dataset’s structure and 

missing values to ensure the data is correctly loaded. Data preprocessing follows, involving the use of 

LabelEncoder to convert categorical labels into numerical values for model compatibility. To address 

class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) generates synthetic 

samples, which are visualized to confirm the balancing effect. The dataset is then split into training and 

testing sets using train_test_split. For model training, two classifiers—Naive Bayes and ExtraTrees—

are employed. The system checks for pre-trained model files, loading them if available; otherwise, the 

models are trained from scratch and saved using joblib for future use. Once trained, the models are 

applied to new test data to predict tree species, with predictions mapped back to class labels and 

appended to the test DataFrame. Model performance is evaluated using precision, recall, F1-score, and 

accuracy, with a function calculating these metrics and generating confusion matrices to offer a detailed 

performance analysis. The results are compiled into a DataFrame for an easy comparison of the models' 

effectiveness in classifying tree species, helping identify the most suitable model for the task. 

3.1 Extra Trees Classifier 

Extra Trees Classifier (Extremely Randomized Trees) is an ensemble learning method for classification 

that creates multiple decision trees and aggregates their outputs to improve predictive performance. 

Unlike traditional decision tree methods, Extra Trees introduces randomness in the tree-building process 

by selecting split points for nodes at random rather than searching for the optimal split. This increased 

randomness reduces variance but introduces a slight increase in bias, ultimately improving the overall 
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performance when the trees are combined as an ensemble. The algorithm builds many unpruned 

decision trees on different sub-samples of the dataset and aggregates their results either through majority 

voting (for classification) or averaging (for regression). This ensemble approach reduces overfitting and 

makes the model more robust to noise. Extra Trees is also computationally efficient because it bypasses 

the exhaustive search for the best splits, enabling faster training, especially on high-dimensional 

datasets. The architecture involves randomly selecting feature subsets and split points at each node, 

building unpruned trees from bootstrapped data samples, and repeating the process to construct multiple 

trees. During prediction, the model aggregates the predictions from all trees and outputs the class with 

the highest number of votes. Extra Trees excels in situations with high feature interaction and non-

linearity and can be parallelized for faster tree construction. The algorithm typically includes steps like 

cross-validation, parameter optimization, model saving, and parallel processing to enhance performance 

and efficiency. 

 

Fig. 1: Block diagram of proposed system. 

4.RESULTS AND DISCUSSION 

4.1 Dataset description 

The dataset for LiDAR-based tree species classification consists of various features derived from the 

forest environment and tree characteristics, with the target variable, SP3, representing the tree species. 

The features include zmean, the mean of LiDAR-derived height measurements, providing an average 

tree height in the region; zsd, the standard deviation of height, indicating the variability in tree heights; 

zskew, measuring the asymmetry of height distribution; zkurt, reflecting the peakedness of height 

distribution; and zentropy, quantifying the randomness in height data. The dataset also includes 

intensity-related features, such as itot (total intensity), imean (mean intensity), isd (intensity standard 

deviation), iskew (intensity skewness), and ikurt (intensity kurtosis), which describe the reflectivity and 

distribution patterns of the scanned area. Additional features include cumulative percentiles of intensity 

values (ipc), dtm (Digital Terrain Model) for ground elevation, aspect for slope orientation, and slope 
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for terrain steepness. The target variable, SP3, categorizes the tree species, with classes such as Green 

Alder, typically found in wet areas; European Larch, known for its conical shape; Other Broadleaves, 

which includes various broadleaf species; Pines, coniferous trees with distinct height profiles; Norway 

Spruce, a common conifer; and Silver Fir, another conifer species with unique characteristics. These 

features and class labels provide the necessary data for classification and analysis of tree species in 

forest ecosystems. 

4.2 Result analysis 

Fig. 3 illustrates the performance of the classification model using a confusion matrix, where the 

diagonal values—such as 48, 40, 320, 523, 91, and 194—represent the correctly classified instances, or 

True Positives, for each corresponding tree species class. These values indicate where the model 

successfully identified samples belonging to their actual categories. In contrast, the non-diagonal values 

reflect misclassifications, where the model incorrectly predicted the class labels, assigning samples to 

the wrong categories.  

 

Fig. 3: Confusion matrix obtained using LRC. 
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Fig. 4: Confusion matrix obtained using ETC model. 

Fig. 4 presents the confusion matrix generated by the Extra Trees Classifier (ETC) model, offering a 

detailed view of its classification performance across different tree species. The diagonal elements, such 

as 420 for Pines, 837 for Other Broadleaves, 54 for Norway Spruce, and 68 for Silver Fir, represent 

correct predictions (True Positives), where the model accurately identified the species. However, several 

off-diagonal values indicate misclassifications. For instance, 355 Green Alder samples were incorrectly 

predicted as Green Alder instead of other classes, and 94 European Larch instances were misclassified 

as Green Alder. A few Other Broadleaves were also misclassified into unrelated categories. Overall, the 

confusion matrix shows strong performance for some classes, like Other Broadleaves and Pines, but 

reveals areas where the classifier struggles and could benefit from further tuning or additional features 

to improve accuracy. 

 



Journal of Computational Analysis and Applications VOL. 34, NO. 4, 2025  
  
 
 

28 
                                                                                                                                        Gudimilla Pallavi et al 22-29 
 

Fig. 5: Predicted output on test data. 

Fig. 5 displays the results of predictions on new test data using the trained models. It includes the actual 

and predicted tree species labels, demonstrating the application of the models to unseen data. 

Table. 1: Comparison algorithms of algorithms. 

Metric Logistic Regression Classifier (LRC) Extra Trees Classifier (ETC) 

Accuracy 65.30% 99.30% 

Precision 71.47% 99.04% 

Recall 57.25% 99.45% 

F1-Score 59.41% 99.25% 

 

The comparative analysis between the existing Logistic Regression Classifier (LRC) and the proposed 

Extra Trees Classifier (ETC) clearly demonstrates a significant performance improvement with the 

proposed model in Table.1 . LRC achieved an accuracy of 65.30%, precision of 71.47%, recall of 

57.25%, and an F1-score of 59.41%, indicating moderate effectiveness and potential issues with recall. 

In contrast, the ETC model drastically outperformed LRC, achieving an accuracy of 99.30%, precision 

of 99.04%, recall of 99.45%, and an F1-score of 99.25%. These results highlight ETC’s superior 

capability in correctly identifying and classifying instances, with balanced and near-perfect precision 

and recall. The drastic improvement suggests that the ETC model is more robust, handles feature 

interactions more effectively, and is better suited for the dataset in question, making it a highly reliable 

and efficient alternative to LRC for the classification task. 

5. CONCLUSION 

The analysis of tree species classification using LiDAR data demonstrates that the Extra Trees Classifier 

(ETC) significantly outperforms Logistic Regression (LRC) in terms of accuracy, precision, recall, and 

F1-score. While LRC achieved a moderate accuracy of 65.84%, highlighting room for improvement, 

ETC exhibited an impressive accuracy of 98.97%, demonstrating its robustness in handling complex 

classification tasks. The high precision (97.93%) and recall (99.09%) of ETC indicate that it is highly 

reliable in classifying tree species with minimal errors. The confusion matrices further emphasize the 

superior classification ability of ETC, with fewer misclassified instances. However, some minor 

misclassifications suggest potential areas for further refinement, such as feature selection, 

hyperparameter tuning, or additional data preprocessing. 
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