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ABSTRACT 
This study proposes a convolutional neural network (CNN)-based approach to segment PDAC mass and 
nearby arteries in CT images by combining powerful conventional characteristics. TAU-Net is 
demonstrated by incorporating dense Scale-Invariant Feature Transform (SIFT) & LBP descriptors into the 
attention U-Net. A 3D-CNN & an ensemble model is then employed to combine the advantages of both 
networks. Since the sample size was insufficient for vascular segmentation, the previously stated pre-
trained networks were used and improved. The recommended method performs 7.52% better than the 
most advanced DSC methods in PDAC mass segmentation within the portal-venous phase, according to 
experimental results. Additionally, assessing the response to PDAC treatment can be made easier with the 
use of three-dimensional visualisation of the tumour and surrounding veins. 
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1. INTRODUCTION 
According to some reports, they are also relatively good in diagnosing cancer [1]. These cross-sectional 
imaging studies may, however, have false-positive outcomes. For example, several studies have 
demonstrated that when pancreatic tumours were surgically removed, imaging tests revealed 
malignancies, but the results were negative for neoplastic illness [2]. The correct differential diagnosis of 
pancreatic tumours so typically requires histological investigation. For the extraction of pathological 
material from pancreatic tumours, endoscopy ultrasound-guided fine-needles aspiration (EUS-FNA) is 
crucial because of its high diagnostic yields for malignancy [3,4,5,6]. Although EUS-FNA is thought to be a 
safe technique, there is still a chance that it could produce false-negative results and that it could cause 
unfavourable effects including bleeding or pancreatitis from the needle puncture [7].  
In addition, needle tract seeding has been shown in individuals treated for pancreatic cancer using EUS-
FNA [8,9]. A more precise imaging study without a needle puncture should ideally be used to make the 
diagnosis. Endoscopic ultrasonography (EUS) is a type of imaging that uses a specialised endoscope Having 
a high-frequency transducer on the end to make images of the upper intestine with great spatial resolution 
for the evaluation of pancreatic lesions [10]. Diagnostic accuracy has been significantly improved recently 
by advancements in a number of image augmented EUS approaches [11,12].  
A registration-free deep learning approach was shown by Gibson et al. to segment eight organs, including 
the pancreatic. In their approach, Roth et al. used a pre-segmented pancreatic framework, a refinement 
convolutional network, and a holistically-nested network to further improve it. AG modules were suggested 
by them in order to concurrently highlight relevant regions with significant traits and suppress the 
irrelevant regions. Using the NIH pancreatic dataset, Man Y et al. segmented the pancreas using a Deep Q 
Networks (DQN) driven approach with deformable U-Net, and they obtained a state-of-the-art average DSC 
of 86.93 ± 4.92%. On two datasets, Zhu et al. suggested a progressive 3D coarse-to-fine segmentation 
method utilising the ResNet bypass structure: the JHMI diseased pancreatic dataset and the NIH pancreas 
dataset. A convolutional network model was developed by Zhou et al. in another investigation to detect and 
separate the pancreatic cyst. A summary of our primary contributions is as follows: 

• To tackle the challenge of pancreatic tumour segmentation, we suggest a new cascaded automatic 
neural approach. The two steps of this technique are jointly optimised during training using 
gradient backpropagation. 

• Obtaining more complex feature visualisations of pancreatic tumours is based on multi-scale U-
Net. To mitigate the issues of under-segmentation & false positives, we meticulously crafted a focus 
module and a non-local localisation module to collect target detail feature representations in the 
second stage. 

• We do comparison experiments using various cutting-edge methods with the pancreatic tumour 
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recognition and pancreas segmentation datasets using the Specificity, sensitivity, and Sørensen–
Dice coefficient. According to the trial results, our system performs the best in terms of both visual 
effects and segmentation assessment indicators. 

 
2. Proposed Methodology 
The red highlighted region, which makes up a tiny percentage of the input image, is the pancreatic tumour 
area, as seen in Figure 1A. This causes erroneous tumor localisation during training since the network is 
readily perplexed by complicated and fluctuating background information. (2). The green contour line in 
Figure 1B denotes the pancreatic tumor's perimeter. False positives & under segmentation problems arise 
throughout the pancreatic tumor segmentation procedure because the tumor has poor contrast with an 
unclear border line and the surrounding landscape. In order to precisely identify and quantify pancreatic 
tumors using medical pictures, clinical physicians typically first identify the pancreas' location in order to 
estimate the range of a tumour. The range is then meticulously identified and narrowed until a distinct 
pancreatic tumour is found. We suggest a two-stage Segmenting pancreatic tumours using a cascaded 
automated neural system that is modelled after the physician's diagnostic procedure and gradually 
segments tumour targets. 

 

(a)                                                                           (b) 

Figure 1. Distinct labelling schemes for tumours of the pancreas. (A) Labelling the tumour region; (B) Labelling 

the tumour contour. 

Treatment options for locally advanced and borderline resectable PDAC include chemotherapy and radiation 
therapy. Before beginning any chemoradiation treatment, the tumour volume must be manually assessed, which 
can be a time-consuming process and intricate process based on the radiologist's background. Artificial volumetric 
segmentation of important tumours is essential for monitoring and diagnosis. It is crucial to recognise lesions in 
organs such as the liver, brain, and breast when segmenting medical images. The most often utilised technique for 
evaluating pancreatic cancer is CT. One of the most difficult tumour segmentation tasks is undoubtedly fully-
automated PDAC segmentation in CT scans. The primary challenges in automated tumour and pancreatic 
segmentation stem from three factors: (1) The pancreas's size, shape, and location, particularly the PDAC mass, 
might vary, as seen in Fig. 2. (2) The tumour and pancreas are small throughout the CT scan; (3) the contrast is 
low at the edges. 
The two main kinds of organ segmentation techniques are top-down and bottom-up approaches. Top-down 
approaches use pre-existing knowledge, like atlases or shape models, which are created and integrated into the 
framework by image registration or shape model fitting. Bottom-up methods employ local picture similarity 
grouping or labelling based on pixels or voxels. When segmenting problematic organs, the bottom-up approaches 
work better.The model's sensitivity to target pixels is increased without the need for complex heuristics. While 
noisy and irrelevant replies are disambiguated, significant aspects are highlighted using a gating module. These 
steps are taken to fuse the pertinent features right before each skip connection. Equation (1) provides the AG 
module with both low-level & high-level feature maps. 
φAG = fφ(x) = Sigmoid(WT. ReLU(x1 ⊕ xh))                                                                                           (1) 

The linear transformation is shown byWT , the low-level and high-level feature maps are represented by 

xl and xhrespectively, the attention coefficient is Sigmoid(x) = 1/(1 + e−x)  , and the matrix addition is indicated by ⊕. 

A low-level feature map is multiplied element-wise by attention coefficients to produce attention features [Eq. (2)].  
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Raw Image                           Ground truth                        3D display 

Figure 2. Pancreatic abnormalities, demonstrating the wide range of PDAC mass locations, sizes, and shapes. 
DAC mass is shown as red, whereas the normal pancreatic region is shown as yellow. 

x̂l = φAG ⨀  xl                                                                                                                                                       (2) 
where ⊙ stands for element-wise product, φAGis the higher-level features' attention coefficient, and the attention 
feature is denoted by x̂l. 
The output (xhnew

) of this stage is one of the inputs of the gate module. The inputs of the attention gate consist of 

combined low-level feature maps xlfrom the coding stage and newly generated high-level feature maps (xhnew
) 

[Eq. (3)].  

  x̂l = [Sigmoid (WT . ReLU(Wx
Tx1 + Wx

T  xhnew
))] x1                                                                             (3) 

xhnew
= Concat(xh, TXFea)                                                                                                                            (4) 

x̂h = U(concat(x̂l, xh))                                                                                                                                     (5) 
 x̂lin in this case represents attention features, x̂h_hand up-sampling by U represents input to the next step of the 
decoder route, andxhnew

  represents high-level features combined with texture features.  

3. METHODS 

 
Figure 3. A two-phase approach for pancreatic tumour cascade segmentation. 

Accurately identifying pancreatic tumours from an abdominal CT scan is our aim. For pancreatic tumour 
segmentation, we develop a cascade segmentation neural approach, as shown in Figure 3. The algorithm's two 
stages depend on a multi-scale U-Net. In the second stage, we meticulously construct a multi-scale U-Net structure 
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based on concentrating modules and non-local localisation to segment pancreatic tumours, minimising the issues 
of false positives and under-segmentation. The small-scale pancreatic tumor's minor contribution to the loss 
function makes it simple to overlook throughout training. We use a common boundary-based metric across classes 
to help the algorithm generate more robust parameters. The two steps and the loss function settings are then 
explained in detail. 
Weighted cross entropy for pixels (WPCE) 
The definition of WPCE loss is as follows: 
Loss 1 = WPCE = −Wc × U × log (V)                                                                                                      (6) 

where the ground truth is U and the expected binary mask is V. nc, Wc =
nB

nc
 the ratio of the total number of 

background pixels nB to the total number of pixels in each class (tumour or pancreas), was chosen as the sample 
weight for each class in this investigation.  
Generalized dice loss (GDL) 
Multiple class segmentation has been evaluated using the Generalised Dice Score (GDS), which assigns a single 
score. A proposed loss function for deep neural network training with extremely imbalanced data is Generalise 
Dice Loss (GDL): 

Loss 2 = GDL = 1 − 2
∑ Wc ∑ (V)iC+εN

i=1
2
c=1

∑ Wc
2
c=1 ∑ (V)2

I=1 ic
+(U)ic+ε

                                                                                           (7) 

where Wc = 1/(∑ (U)ic
N
i=1 )

2
 is a weight is used to offset the effect of different region sizes on data loss, c represents 

the target class, & ε is used to avoid division by zero. 
5. RESULTS 
Additionally, Fig. 4 displays the qualitative segmentation results for several CT slices. Findings for two samples of 
the self-collected dataset appear in rows 3 and 4, whereas two samples of the MSD dataset are displayed in rows 
1 and 2. The results' 3D reconstruction using ITK-SNAP (Fig. 4d) displays a realistic and anatomical view with very 
few imperfections. 

 

Figure 4. The hybrid network was used to segment the pancreatic and PDAC mass. (a) Initial picture; (b) Ground 
truth (normal pancreatic tissue is shown in green, and PDAC mass is indicated in red); (c) Completed 

segmentation; and (d) PDAC mass visualisation in three dimensions. 
Combining SIFT, 2D-LBP, and 3D-LBP slices into the selected network layers was investigated in order to integrate 
texture information. According to experimental results, 3D-LBP outperforms 2D-LBP, as predicted. Figure 5 
contrasts a single slice's 2D-LBP with 3D-LBP. Compared to the 2D LBP and the original image, a 2D slice of a 3D-
LBP provides much more information. 
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Figure 5. A slice of the original volume is shown in (a), followed by the LBP slice made from the original 
volume's 3D LBP and the 2D LBP made from the original image. 

SIFT maps were added to the network as well. Different step sizes are used to create the SIFT maps, which are then 
concatenated into the appropriate layer in the decoding route. As a result, during decoding, both high-level and 
low-level SIFT features benefit from each other. The examination's findings are presented in Table 1, which clearly 
shows that the duodenal segmentation task is difficult as well as that the dice values from earlier approaches are 
reasonably close. The two-stage segmentation method is generally more effective than the one-stage method. Our 
system receives an NIH score of 87.63% for Dice. The performance outperforms the top two-stage segmentation 
approach, RTUNet, by 1.38% and the best one-stage segmentation method, LMNS-Net, by 2.26%. In terms of SEN 
& SPE, our system also outperforms earlier segmentation techniques. 

Table 1. comparison with the NIH dataset and the most sophisticated pancreatic segmentation methods. 
Method Dice SEN SPE 
Nishio et .al [24] 0.7890 0.6783 0.9877 
Li et al [25] 0.8203 0.7107 0.9865 
LMNS –Net [26] 0.8337 0.8015 0.9878 
Fixed –point [27] 0.8157 0.6194 0.9868 
RSTN [28] 0.8308 0.8366 0.9887 
Ours  0.8763 0.9126 0.9988 

 
6. CONCLUSION: 
In order to help physicians diagnose pancreatic tumours and in order to facilitate radiation therapy, we have 
created a two-phase automatic segmentation method. The first step segments the pancreas using a multi-scale 
network, while the second stage uses the segmentation results to decrease the input area. The first stage's 
segmentation risk map is used to determine the prior knowledge for the second step. The creation of a multi-scale 
network with an emphasis on pancreatic tumour segmentation and non-local localisation occurs in the second 
step. Using class-to-class shared boundary measurements, we create a loss function to address the issue of small-
scale targets' inadequate contribution. Our approach outperforms other cutting-edge segmentation techniques on 
pancreas tumour segmentation exercises, according to many trials. Our technique has a special reference 
significance in microscopic target segmentation tasks in several sectors, in addition to being advantageous to the 
medical imaging community. 
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