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Abstract 

                   Semi vector spaces are algebraic structures analogous to vector spaces with the 

basefields replaced by semifields. Corresponding to each linear map between two semi vector 

spaces, we may associate an equivalence relation. The equivalence classes corresponding to this 

equivalence relation have close connection with the nature of the associated linear map. 

  In this paper we discuss the basic properties of these equivalence classes. 

 

1.Introduction 

  A non-empty set 𝐹 with two binary operations + and ∙ defined on it is 

called a semifield if the following conditions are satisfied:  

(𝐹, +) is a commutative semigroup 

            (𝐹 − {0},∙) is a commutative group, where 0 is the identity element with respect to +, if it 

exists. 

 A semi vector space over a semifield F is defined to be a non-empty set X 

equipped with the operations + : X × X → X, called addition, and  : F × X → X, called scalar 

multiplication, satisfying the following conditions: 
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For each α, β ϵ F, x, y, z ϵ X, 

                       x + (y + z) = (x + y) + z;   x + y = y + x 

                              (αβ) x  =  α (βx) 

                                   1x  = x, where 1 is the multiplicative identity of F, if exists 

                        α ( x + y)  = αx + αy;     (α + β)x  = αx + βx. 

                          We shall write α x instead of α  x, for x ϵ X and α ϵ F. 

             

          Let X,Y be two vector spaces over the same field F. A map 𝑇: 𝑋 → 𝑌 is a linear map if the 

following two conditions are satisfied: 

𝑇(𝑥 + 𝑦) = 𝑇(𝑥) + 𝑇(𝑦) for any 𝑥, 𝑦 ∈ 𝑋, 

             𝑇(𝛼𝑥) =  𝛼𝑇(𝑥) for any 𝑥 ∈ 𝑋 and 𝛼 ∈ 𝐹. 

 

            An equivalence relation on a set 𝑋 is a relation that is reflexive, symmetric and transitive, 

which partitions the elements into equivalence classes, where elements within the same class are 

considered ‘equivalent’ under the relation. 

 

2. Linear maps and Equivalence Relation  

 2.1 Definition  

Let 𝑇: 𝑋 → 𝑌 be a linear map, where X and Y are semi vector spaces over ℝ+. Define the 

relation 𝜌𝑇 on X by  

                      𝑥 𝜌𝑇  𝑧 if  𝑇(𝑥) = 𝑇(𝑧),  𝑥, 𝑧 ∈ 𝑋.                               (1) 

 

2.2 Proposition  

 𝜌𝑇 is an equivalence relation. 

Proof: 

 

 Since  𝑇(𝑥) = 𝑇(𝑥) for all 𝑥 ∈ 𝑋,  𝑥 𝜌𝑇 𝑥 for all 𝑥 ∈ 𝑋 and 𝜌𝑇 is reflexive. 

 

 Let 𝑥, 𝑧 ∈ 𝑋. Suppose 𝑥 𝜌𝑇 𝑧. 

 

 Then 𝑇(𝑥1) = 𝑇(𝑥2).  So,  𝑇(𝑥2) = 𝑇(𝑥1). 

 

 Hence 𝑥2 𝜌𝑇 𝑥1 and  𝜌𝑇 is symmetric. 

 

Let 𝑥, 𝑦, 𝑧 ∈ 𝑋.  Let 𝑥 𝜌𝑇 𝑦 and 𝑦 ρT z. 

 

Then 𝑇(𝑥) = 𝑇(𝑦) and 𝑇(𝑦) = 𝑇(𝑧).  Hence , 𝑇(𝑥) = 𝑇(𝑧). 

 

That is, 𝑥 𝜌𝑇 𝑧.  Thus 𝜌𝑇 is transitive. 

 

Hence 𝜌𝑇 is an equivalence relation. 
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Note  

Since 𝜌𝑇 is an equivalence relation, 𝜌𝑇 partitions X into equivalence classes [𝑎]𝑇 given by  

[𝑎]𝑇 = {𝑥 ∈ 𝑋/𝑥 𝜌𝑇 𝑎} = {𝑥 ∈ 𝑋 / 𝑇(𝑥) = 𝑇(𝑎)}, 𝑎 ∈ 𝑋.                                                          (2) 

2.3 Remark  

                 [0]𝑇 = {𝑥 ∈ 𝑋/ 𝑇(𝑥) = 𝑇(0) = 0} = 𝑁(𝑇),the null space of T. 

                 [𝑎]0 = {𝑥 ∈ 𝑋/0(𝑥) = 0(𝑎)} = 𝑋,where 0 is the zero map. 

                 [𝑎]𝐼 = {𝑥 ∈ 𝑋/𝐼(𝑥) = 𝐼(𝑎)} = {𝑥 ∈ 𝑋/𝑥 = 𝑎} = {𝑎},where I is the identity map. 

Notation 

 

 Let us denote the set of all distinct equivalence classes [𝑎]𝑇 by [𝑋]𝑇 . 
 That is,  [𝑋]𝑇 = {[𝑎]𝑇/𝑎 ∈ 𝑋}. 

For any set A let us denote the cardinality of A by |𝐴|. 
 

2.4 Definition 

   A semi vector space X is regular if 𝑥 + 𝑧 = 𝑦 + 𝑧 ⇒ 𝑥 = 𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

 

2.5 Theorem  

Let X and Y  be regular semi vector spaces with 0 over ℝ+. Let 𝑇: 𝑋 → 𝑌 be a linear map. 

Then, |[0]𝑇| ≤ |[𝑎]𝑇| for all 𝑎 ∈ 𝑋. 

Proof  

Let 𝑎 ∈ 𝑋. 
[𝑎]𝑇 = {𝑥 ∈ 𝑋/𝑇(𝑥) = 𝑇(𝑎)} and [0]𝑇 = {𝑥 ∈ 𝑋/𝑇(𝑥) = 0}. 
 

Claim : 𝑥 ∈ [0]𝑇  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 + 𝑎 ∈ [𝑎]𝑇 .                         (3) 

 

           𝑥 ∈ [0]𝑇  if and only if 𝑥 𝜌𝑇 0 

                           

                           if  and only if 𝑇(𝑥) = 𝑇(0) = 0 

 

                          if and only if 𝑇(𝑥) + 𝑇(𝑎) = 𝑇(𝑎), since 𝑌 is regular 

                          

                          if and only if 𝑇(𝑥 + 𝑎) = 𝑇(𝑎) 

 

                         if and only if (𝑥 + 𝑎) 𝜌𝑇 𝑎 

 

                         if and only if 𝑥 + 𝑎 ∈ [𝑎]𝑇. 

 

Define 𝐹: [0]𝑇 → [𝑎]𝑇 by  
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 𝐹(𝑥) = 𝑥 + 𝑎.                                                                                                                  (4) 

 

Then F is well defined because of (3). 
 

Claim : F is 1-1. 

 

Suppose 𝐹(𝑥1) = 𝐹(𝑥2), where 𝑥1, 𝑥2 ∈ [0]𝑇. 

 

That is, 𝑥1 + 𝑎 = 𝑥2 + 𝑎. Then, 𝑥1 = 𝑥2, since X is regular. 

 

So, F is 1-1.  
 

Thus there is an 1-1 map 𝐹: [0]𝑇 → [𝑎]𝑇 and hence |[0]𝑇| ≤ |[𝑎]𝑇|. 
                                                                                                                                                   

2.6 Proposition 

T is 1-1 if and only if [𝑎]𝑇 is a singleton set for all 𝑎 ∈ 𝑋. 
Proof: 

Assume that T is 1-1. 

Let 𝑎 ∈ 𝑋. Then 𝑎 ∈ [𝑎]𝑇. 

Suppose 𝑏 ∈ [𝑎]𝑇 . Then 𝑏 𝜌𝑇  𝑎. 
So, 𝑇(𝑏) = 𝑇(𝑎). Since, T is 1-1, 𝑏 = 𝑎. 

Thus T contains no element other than a. 

Now assume that [𝑎] is a singleton set for all 𝑎 ∈ 𝑋. 

To prove that 𝑇 is 1-1 ,suppose 𝑇(𝑎) = 𝑇(𝑏), where 𝑎, 𝑏 ∈ 𝑋. 

Then 𝑎 𝜌𝑇 𝑏. So 𝑏 ∈ [𝑎]𝑇. Also 𝑎 ∈ [𝑎]𝑇. But  [𝑎]𝑇 is a singleton set. Hence 𝑏 = 𝑎. 

Thus, 𝑇(𝑎) = 𝑇(𝑏) implies a= 𝑏 and T is 1-1. 
                                                                                                                                                   

2.7 Definition 
 A subset S of X is said to be convex if for all 𝑎, 𝑏 ∈ 𝑆 and 0 ≤ 𝑟 ≤ 1, 𝑟𝑎 + (1 − 𝑟)𝑏 ∈ 𝑆. 

 

2.8 Proposition 

 [𝑎]𝑇 is a convex set for all 𝑎 ∈ 𝑋. 
Proof: 

 

 Let 𝑥1, 𝑥2 ∈ [𝑎]𝑇 and 0 ≤ 𝑟 ≤ 1. 
Then 𝑥1 𝜌𝑇 𝑎 and 𝑥2 𝜌𝑇𝑎. So 𝑇(𝑥1) = 𝑇(𝑎) 𝑎𝑛𝑑 𝑇(𝑥2) = 𝑇(𝑎). 

Now 𝑇(𝑟𝑥1 + (1 − 𝑟) 𝑥2) = 𝑟 𝑇(𝑥1) + (1 − 𝑟) 𝑇 (𝑥2) 

                                           = 𝑟 𝑇(𝑎) + (1 − 𝑟) 𝑇 (𝑎)  = 𝑇(𝑎).  
So, (𝑟𝑥1 + (1 − 𝑟)𝑥2) 𝜌𝑇 𝑎 and so 𝑟𝑥1 + (1 − 𝑟)𝑥2 ∈ [𝑎]𝑇 .                                                                
                                                                                                                                                  

2.9 Theorem  

Let 𝑇: 𝑋 → 𝑌 be a linear map, where X and Y are regular seemi vector spaces. Let 𝑥, 𝑧 ∈

𝑋. Then for any 𝑎 ∈ 𝑋, 
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(i) 𝑥 𝜌𝑇 𝑧 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 + 𝑎 𝜌𝑇 𝑧 + 𝑎 

(ii) 𝑥 𝜌𝑇 𝑧 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝛼𝑥 𝜌𝑇 𝛼𝑧, where 𝛼 ≠ 0. 

            The proof is direct.                                                                                             

2.10 Proposition  

 Let 𝑎, 𝑏 ∈ 𝑋. Then, [𝑎 + 𝑏]𝑇 ⊃ [𝑎]𝑇 + [𝑏]𝑇 .                           (5) 

 

            If T is 1 − 1, [𝑎 + 𝑏]𝑇 = [𝑎]𝑇 + [𝑏]𝑇 .                           (6) 

 

Proof: 

 

 Let 𝑥1 + 𝑥2 ∈ [𝑎]𝑇 + [𝑏]𝑇 so that 𝑥1 ∈ [𝑎]𝑇 𝑎𝑛𝑑 𝑥2 ∈ [𝑏]𝑇. 

 

 Then 𝑥1 𝜌𝑇 𝑎 and 𝑥2 𝜌𝑇  𝑏. 
 

 That is, 𝑇(𝑥1) = 𝑇(𝑎) 𝑎𝑛𝑑 𝑇(𝑥2) = 𝑇(𝑏).                           (7) 

 

So, 𝑇(𝑥1 + 𝑥2) = 𝑇(𝑥1) + 𝑇(𝑥2) 

 

 = 𝑇(𝑎) + 𝑇(𝑏) = 𝑇(𝑎 + 𝑏). 
 

Thus, 𝑥1 + 𝑥2 ∈ [𝑎 + 𝑏]𝑇. 

 

Hence [𝑎]𝑇 + [𝑏]𝑇 ⊂ [𝑎 + 𝑏]𝑇.                          (8) 

 

Now assume that T is 1-1. 

 

 Let 𝑥 ∈ [𝑎 + 𝑏]𝑇. Then, 𝑥 𝜌𝑇 (𝑎 + 𝑏). 

 

Hence, 𝑇(𝑥) = 𝑇(𝑎 + 𝑏). 
 

But 𝑇 is 1-1. 

 

So, 𝑥 = 𝑎 + 𝑏 ∈ [𝑎]𝑇 + [𝑏]𝑇, since 𝑎 ∈ [𝑎]𝑇 and 𝑏 ∈ [𝑏]𝑇 

 

Thus, [𝑎 + 𝑏]𝑇 ⊂ [𝑎]𝑇 + [𝑏]𝑇 .                              (9) 

 

From (8) and (9) we get, 

 

 [𝑎 + 𝑏]𝑇 = [𝑎]𝑇 + [𝑏]𝑇 if 𝑇 is 1-1.  
                                                                                                                                                   

2.11 Definition  
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 Let X be a semi vector space over ℝ+. For an element Xa , the semi subspace 

generated by a is the set {𝑟𝑎/𝑟 ∈ ℝ+} and is denoted by ⟨ 𝑎 ].That is  

 ⟨ 𝑎 ] = {𝑟𝑎/𝑟 ∈ ℝ+}                        (10) 

Note  

 ⟨ 𝑎 ] is a semi vector space contained in  X. 

 

2.12 Proposition  

 

(i) For Xa  and  0   ℝ+, ⟨ 𝛼𝑎 ] =  ⟨ 𝑎 ] 

(ii) For 𝑎, 𝑏 ∈ 𝑋,  ⟨ 𝑎 + 𝑏 ]  ⊆  ⟨ 𝑎 ] + ⟨ 𝑏 ]. 

Proof: 

 

 Let  𝑥 𝜖 ⟨ 𝛼𝑎 ]. Then, x = 𝑟 (𝛼𝑎) for some 𝑟 ℝ+ 

     

                                     = (𝑟𝛼) 𝑎 ⟨ 𝑎 ], since 𝑟𝛼  ℝ+. 

 

 Thus, ⟨ 𝛼𝑎 ]  ⊂ ⟨ 𝑎 ].    (11) 

 

Now let 𝑥 𝜖 ⟨ 𝑎 ]. Then, 𝑥 =  𝑟𝑎 for some 𝑟 ℝ+. 

 

Consider, 𝑥 = 𝑟𝑎 =  (𝛼𝛼−1) (𝑟𝑎), since 𝛼   0 
 

 =  𝛼 (𝛼−1 𝑟𝑎) =  (𝛼−1 𝑟) (𝛼𝑎) ⟨ 𝛼𝑎 ]. 
 

So ⟨ 𝑎 ]  ⊂   ⟨ 𝛼𝑎 ].    

                     (12) 

From (11) and (12),  ⟨ 𝑎 ]  =   ⟨ 𝛼𝑎 ].                                                                                       

 

2.13 Definition  

 

 Let T : X →Y be a linear map, where X and Y are semi vector spaces over ℝ+ .  

 

 For Xa , define  

⟨ 𝑎 ]
𝑇

=  {𝑥 ∈ 𝑋 𝑇(𝑥)⁄ ∈ ⟨ 𝑇(𝑎) ] } 

 

  =   {𝑥 ∈ 𝑋 𝑇(𝑥) = 𝑟 𝑇⁄ (𝑎) for some 𝑟 ∈ ℝ+}. 

 

  

2.14 Remark  
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(a)  ⟨ 𝑎 ]0 = X, where 0 is the zero map, Xa  

(b) ⟨ 𝑎 ]I =  ⟨ 𝑎 ] for Y = X, where I is the identity map 

(c)  ⟨ 0 ]𝑇 = 𝑁 (𝑇), the null space of T. 

 

2.15 Theorem  

 ⟨ 𝑎 ]T  is a semi vector space over ℝ+. 

Proof: 

 

 Let 𝑥1, 𝑥2 ∈ ⟨ 𝑎 ]T. 

 

 Then 𝑇(𝑥1)  =  𝑟 𝑇(𝑎) and 𝑇(𝑥2)  =  𝑠𝑇(𝑎) for some r, 𝑠 ℝ+. 

 

 Now,  𝑇(𝑥1 + 𝑥2) = 𝑇(𝑥1) + (𝑥2)  =  𝑟 𝑇(𝑎) +  𝑠 𝑇(𝑎)  =  (𝑟 + 𝑠) 𝑇(𝑎). 

 

 Hence 𝑥1 + 𝑥2 ∈ ⟨ 𝑎 ]T. 

 

Now, let 𝑥 ∈ ⟨ 𝑎 ]T and 𝛼 ℝ+. 

 

Then,  𝑇(𝑥)  =  𝑘𝑇(𝑎) for some 𝑘 ℝ+.  

 

So, 𝑇(𝛼𝑥) =  𝛼 𝑇(𝑥) =  𝛼 𝑘𝑇(𝑎). Hence 𝛼 𝑥 ∈ ⟨ 𝑎 ]T. 

 

Thus ⟨ 𝑎 ]T is a sub semi vector space of X and hence a semi vector space. 
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