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Abstract 

Time series forecasting is essential in many fields, such as climate modeling, healthcare, and 

finance. Because of their interpretability and efficiency in identifying linear patterns, 

traditional statistical models such as the Autoregressive Integrated Moving Average 

(ARIMA) are frequently employed. They have trouble with complex datasets' nonlinear 

dependencies, though. Deep learning models, such as Recurrent Neural Networks (RNN), on 

the other hand, are excellent at learning nonlinear relationships, but they can overfit and need 

a lot of data. This study suggests a hybrid ARIMA-RNN model for better time series 

forecasting to capitalize on the advantages of both methodologies. While RNN models the 

residuals to take nonlinear dependencies into account, ARIMA captures the linear 

components of the data in the suggested framework. To determine the predicted accuracy of 

the hybrid model, it is trained and tested on a variety of real-world datasets. For quantitative 

assessment, performance measurements like Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and Mean Absolute Percentage Error (MAPE) are employed. The ARIMA- 

RNN hybrid performs better than independent ARIMA and RNN models, according to 

experimental results, with reduced error rates and enhanced generalization. The study 

emphasizes how deep learning and statistical techniques work together to produce reliable 

forecasts. According to the results, hybrid models have the potential to be an effective time 

series forecasting tool in dynamic and unpredictable settings. To further improve prediction 

accuracy, future research paths will examine different deep learning architectures and 

incorporate attention mechanisms. 
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I. Introduction 

Time Series Analysis (TSA) is a statistical approach used to analyze data points gathered or 

recorded at defined time intervals. Finding patterns, trends, and dependencies throughout 

time is the aim, frequently to predict future values or comprehend underpinning phenomena 

(Al-Douri et al., 2018). In many disciplines, such as economics, finance, environmental 

science, healthcare, and engineering, Time Series (TS) data—such as stock prices, 

temperature readings, or sales figures—occurs naturally in succession (Alqatawna et al., 

2023). 

The temporal sequence of time series data is a crucial characteristic that sets it apart from 

cross-sectional data. In a TS, every data point is a snapshot taken at a certain moment in time, 

and the connections between successive observations are very important (Al-turaiki et al., 

2021). Analysis of TS data must take into consideration this temporal dependence as well as 

other features like seasonality (regular patterns that reoccur over time) and trends (long-term 

movements). 
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A variety of techniques are used in TSA to model and comprehend the structure of the data, 

ranging from traditional statistical techniques such as Autoregressive Integrated Moving 

Average (ARIMA) models, which capture linear relationships, to more sophisticated 

techniques such as Machine Learning (ML) approaches or state-space models, which can 

handle complicated entities and nonlinear sequences (Bhandari et al., 2017). The 

methodology used depends on the characteristics of the data and the investigation's goals, 

such as predicting future values, figuring out causal relationships, or identifying 

discrepancies (Zhang et al., 2022). 

TSA has numerous and significant applications. It aids analysts in the financial industry in 

forecasting market changes and refining investment plans. It can be used to simulate the 

course of a disease or patient outcomes in the medical field (Borrero et al., 2022). TS models 

are used in climate science to forecast temperature changes and examine the effects of 

environmental variables. Time series analysis is now much more accessible due to the 

increasing availability of high-frequency data and improvements in computing tools, which 

enable more precise forecasts and insights in a variety of fields (Dong et al., 2017). 

II. ARIMA & RNN 

Autoregressive Integrated Moving Average (ARIMA) 

Because it is so good at identifying linear trends in data, ARIMA is one of the most used 

statistical models for time series forecasting. It consists of three parts: Moving Average 

(MA), Integrated (I), and Autoregressive (AR). Temporal dependencies are captured by the 

AR component, which shows the link between a data point and its prior values. 

Differentiating the data to make it stationary—that is, to ensure that its statistical 

characteristics, such as mean and variance, don't change over time—is the I component. The 

MA component smoothes out data noise by taking into consideration the link between 

observation and previous error terms. The standard representation of the ARIMA model is 

called ARIMA(p, d, q), where p is the number of lag observations in the AR term, d is the 

number of times differencing is used, and q is the moving average window size. Finding the 

ideal values of (p) and (q) is aided by methods such as the Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF), which are frequently used to guide model 

selection. ARIMA works well with time series data that show seasonal patterns and trends, 

but it has trouble with highly nonlinear connections and abrupt structural changes. 

Notwithstanding its benefits, ARIMA has several drawbacks that need to be taken into 

account. The assumption of stationarity, which necessitates changing the data through 

differencing if patterns or seasonality exist, is one of the main obstacles. Despite extending 

the model to explicitly handle seasonality, Seasonal ARIMA (SARIMA) still makes 

predetermined assumptions about the behavior of the data. Furthermore, ARIMA can be 

computationally demanding when working with large datasets or high-order models, and it is 

sensitive to missing variables. Its failure to identify intricate nonlinear connections in the 

data, which are frequently found in real-world applications like healthcare analytics, financial 

markets, and climate forecasts, is another drawback. Hybrid techniques that integrate ARIMA 

with deep learning or ML models, including Recurrent Neural Networks (RNN), have 

become more and more popular as a solution to these problems. These hybrid models can 

greatly increase forecasting accuracy by letting ARIMA analyze the linear aspects of the data 

and using an RNN to identify the nonlinear trends. Ultimately, combining ARIMA with more 
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sophisticated methods helps get beyond its drawbacks and improves predictive performance 

in complicated datasets, even though it is still a strong tool for time series forecasting. 

Recurrent Neural Networks (RNN) 

An artificial neural network class called Recurrent Neural Networks (RNNs) was created 

especially for the processing of time series and sequential data. RNNs, in contrast to 

conventional feedforward neural networks, feature a special architecture that preserves a 

hidden state, allowing information to persist over time steps. RNNs are very useful for 

applications like speech recognition, language modeling, and time series forecasting because 

of their recurrent structure, which allows them to identify patterns and temporal connections 

in sequential data. An RNN's fundamental working principle is looping connections, in which 

a neuron's output at a particular time step depends on both its prior hidden state and its 

current input. Mathematically, the hidden state at time (t) is computed as 

h_t = f(Whht-1 + Wxxt + b) 

where 

• (Wh) and (Wx) are weight matrices 

• (b) is the bias, and 

• (f) is an activation function such as tanh or ReLU. 

RNNs are well-suited for time-dependent problems because they can remember past 

information. However, typical RNNs have problems with vanishing and exploding gradients 

when working with lengthy sequences, which reduces their capacity to capture long-term 

dependencies. 

Advanced RNN variants including Long Short-Term Memory (LSTM) and Gated Recurrent 

Units (GRU) were created to overcome these difficulties. Input, output, and forget gates are 

specific gating mechanisms introduced by LSTMs that control information flow and enable 

the network to learn which data to retain or discard over extended time steps. Long-term 

dependencies in data can be preserved by LSTMs thanks to this architecture, which also 

successfully addresses the vanishing gradient issue. A less complicated option to LSTMs, 

GRUs employ fewer gates while achieving similar performance with less computing 

complexity. Because they can represent intricate nonlinear patterns and seasonality that 

conventional statistical techniques, like ARIMA, find difficult to capture, RNNs—in 

particular, LSTMs and GRUs—have found extensive use in time series forecasting. RNNs 

are computationally expensive, though, because they need a lot of data and intensive training. 

They may also overfit if improperly regularized, and they are susceptible to hyperparameter 

adjustment. Notwithstanding these difficulties, RNNs are still an effective tool for modeling 

sequential data, and by utilizing both linear and nonlinear patterns in time series data, their 

combination with statistical models such as ARIMA can improve forecasting accuracy even 

more. 

III. Significance of TSA 

Because TSA can reveal important insights from data that change over time, it is extremely 

important in many different fields. The ability to model and forecast future values based on 

past trends, patterns, and seasonal behaviors is one of its main advantages. TSA may produce 



 
Journal of Computational Analysis and Applications                                                              VOL. 33, NO. 8, 2024 

 

 

                                                                   22675                                                       Harpinder Kaur et al 2672-2682 

precise forecasts by examining historical data, which are crucial for making decisions in 

fields like supply chain management, finance, and economics (Ensafi et al., 2022). 

Businesses and governments may effectively manage resources, make well-informed 

investments, and reduce risks thanks to this predictive power (Hwang, 2024). 

Its ability to recognize and comprehend the fundamental trends in the data is another 

important factor. Trends, seasonal cycles, and irregular changes that could otherwise go 

overlooked can be found using time series analysis (García-Ferrer et al., 2003). Retailers, for 

instance, might improve inventory levels and marketing tactics by identifying seasonal peaks 

in sales data over time. In a similar vein, it can help scientists better comprehend climate 

change by detecting long-term variations in rainfall or temperature. It is crucial to identify 

these trends to develop proactive tactics that adapt to changes throughout time (Jain et al., 

2018). 

Additionally, anomaly identification and system monitoring depend heavily on time series 

analysis. It is simpler to spot outliers or odd occurrences that might point to issues when a 

baseline comprehension of normal behavior is established (Imai et al., 2015). Time series 

analysis, for example, can assist in identifying anomalous trends that indicate equipment 

breakdown or market volatility in financial markets or industrial operations. Early detection 

of these irregularities can result in more rapid reactions, reducing losses and increasing 

operational effectiveness (Ullrich et al., 2021). 

Lastly, the significance of time series analysis is underscored by its adaptability in various 

domains. Economic forecasting, weather forecasting, financial market evaluation, healthcare 

monitoring, and even sports analysis of results are just a few of the many uses for it (Yuan et 

al., 2024). Applying time series techniques to a variety of fields highlights how valuable they 

are as a tool for practitioners looking to better understand temporal data and make better 

decisions by identifying behaviors and patterns (Katris, 2021). 

IV. Performance Evaluation Parameters 

Mean Squared Error (MSE) 

The average squared difference between actual and projected values is measured by MSE, a 

crucial performance indicator in time series analysis (TSA) (Lee et al., 2021). Each time 

point's squared errors are added up and divided by the total number of observations to 

determine it. The formula is 

MSE = (1/n) ∑(yᵢ - ŷᵢ)² 

where 

• yᵢ: Refers to the actual value 

• ŷᵢ: Refers to the predicted value 

• n: Refers to the number of data points 

 

MSE is extremely sensitive to outliers since it penalizes greater errors more than smaller ones 

because of squaring. A better-fitting model is indicated by a lower MSE, although it can be 

challenging to interpret because of its squared unit. To ensure accurate forecasting in time 

series applications, it is frequently used to assess models such as ARIMA, RNN, and hybrid 

techniques. 

Root Mean Squared Error (RMSE) 
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One often used statistic for assessing the precision of regression models is the RMSE. It 

calculates the typical size of the discrepancies between expected and actual values. The 

square root of the mean of the squared discrepancies between predictions and actual 

observations is used to compute RMSE. Larger errors are penalized more severely than 

smaller ones, and the squaring assures that all errors are positive (Mahsin et al., 2012). Better 

model performance is indicated by a lower RMSE value. Because RMSE uses the same unit 

as the target variable, it is simple to understand. Because of the squaring procedure, it is 

susceptible to outliers. RMSE does not show the direction of bias, but it does provide an idea 

of overall inaccuracy (Saleem Latteef Mohammed et al., 2019). It is defined as the square 

root of the mean of the squared differences between predicted and actual values. 

Mathematically, RMSE is given by the formula: 

RMSE = [(1/n) ∑(yᵢ - ŷᵢ)²]1/2 

where 

• yᵢ: Refers to the actual value 

• ŷᵢ: Refers to the predicted value 

• n: Refers to the number of data points 

 

Mean Absolute Percentage Error (MAPE) 

One metric used to assess the precision of regression models, particularly in forecasting, is 

MAPE. The average percentage difference between expected and actual values is measured 

(Mubasher Hassan et al., 2021). The mean of the absolute percentage errors for each data 

point is known as MAPE. 
 

where 

• yᵢ: Refers to the actual value 

• ŷᵢ: Refers to the predicted value 

• n: Refers to the number of data points 

Table 1 summarizes the features of performance metrics. 
Table 1. Performance metrics 

Performance 

Metrics 

 

Advantages 

 

Disadvantages 

 

Best use 

MSE 

Penalizes large 

errors, useful for 

optimizing models 

Hard to interpret due 

to squared units 

Benchmarking model 

performance 

RMSE 
Interpretable, same 

unit as data 
Sensitive to outliers 

Comparing different 

models (ARIMA, 

RNN, Hybrid) 

MAPE 
Scale-independent, 

percentage-based 

Undefined for zero 

values 

Business forecasting, 

demand prediction 
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V. Impact of Learning Models in TSA 

Due to its potential to increase forecasting accuracy, the hybridization of contemporary 

ML algorithms with conventional TS models, such as ARIMA, has attracted a lot of attention 

lately. By modeling the temporal dependencies using AutoRegressive (AR) and Moving 

Average (MA) components, ARIMA is a well-known technique for evaluating and 

forecasting stationary time series data (Nayak et al., 2021). Although ARIMA is good at 

capturing linear correlations, it is not very good at handling large-scale datasets, seasonality, 

or complex, non-linear patterns. ML approaches are useful in this situation because they 

provide sophisticated capabilities for learning from big datasets, discovering non-linear 

correlations, and extrapolating well to unknown data (Olsavszky et al., 2020). 

A stronger model can be created by fusing ML methods with ARIMA. In a typical hybrid 

strategy, the linear connections in the data are first captured using ARIMA, and the residuals 

or mistakes left by the ARIMA model are then modeled using ML algorithms. For example, 

the residuals—the disparity between the actual and anticipated values—can be fed into 

ML algorithms like Support Vector Machines (SVM), Random Forests, or Artificial Neural 

Networks (ANN) once ARIMA has produced its projections. Any irregularities, seasonality, 

or other complex interactions that ARIMA could overlook might be fixed by these 

ML models, which can learn from patterns that appear in the residuals (Permatasari et al., 

2018). Before using ARIMA, the hybrid model may occasionally include incorporating ML 

methods into the feature engineering phase. To find important characteristics or undetectable 

trends in the time series data, for instance, ML algorithms such as decision trees, K-Nearest 

Neighbors (KNN), or clustering approaches can be applied (Rate et al., 2020). For more 

precise forecasting, these traits are subsequently fed into time series models such as ARIMA. 

Furthermore, ARIMA can be used with deep learning models, like Long Short-Term Memory 

(LSTM) networks, to model both ongoing dependencies in the data using the recurrent neural 

network architecture of LSTM and short-term relationships acquired by ARIMA. Such hybrid 

models have the advantage of being able to address the drawbacks of individual approaches. 

ML's prowess in handling complicated interactions and non-linear relationships within the 

data can be used to supplement ARIMA's capacity to handle autocorrelations and linear 

relationships. Furthermore, hybrid models frequently lead to better generalization to unknown 

data, stronger forecasting performance, and resilience to overfitting. These hybrid models are 

especially helpful in applications like forecasting consumer demand, energy consumption 

research, and predicting stock markets where it's important to effectively represent both the 

linear structure and the complicated, non-linear behavior of time series data. The 

hybridization of ML and ARIMA algorithms, in reality, necessitates meticulous validation 

and adjustment. To compare the hybrid model's effectiveness to that of conventional ARIMA 

or ML techniques alone, researchers and practitioners frequently experiment with various 

combinations of ARIMA and ML models. The effectiveness of the hybrid model hinges on 

several factors, including feature selection, hyperparameter tuning, and managing problems 

such as seasonality or data outliers, in addition to choosing the right ML methods. 

VI. Hybridized ARIMA-RNN model 

By utilizing the advantages of both statistical and deep learning models, hybridization in 

TSA, specifically with ARIMA and RNN, improves the precision of forecasting. ARIMA 

works well with structured time series data because it can effectively capture seasonality and 

linear relationships. Long-term dependencies and intricate relationships that are not linear are 

difficult for it to handle, though. Conversely, RNN-based models, such as LSTMs and GRUs, 

are excellent at spotting complex patterns and nonlinear dependencies, but they can also have 

problems like vanishing gradients and need a lot of training data. Hybrid models improve 
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predictive performance by balancing the structured forecasting of ARIMA with the deep 

learning capabilities of RNN. Research has demonstrated that hybrid models perform better 

than standalone RNN or ARIMA models, particularly when handling highly nonlinear or 

volatile time series data. The method lowers overall forecasting errors by first modeling the 

basic linear patterns using ARIMA and then refining residual errors with RNN. Because 

RNN adjusts to anomalies and ARIMA stabilizes the predictions, this technique also 

improves resilience. However, appropriate model calibration, enough data availability, and 

computational resources are necessary for hybridization to be effective. Notwithstanding 

these difficulties, hybrid ARIMA-RNN models are frequently used in fields where precision 

and flexibility are essential, such as demand forecasting, weather forecasting, and finance. A 

hybridized TSA using ARIMA and RNN combines statistical and deep learning methods for 

improved forecasting accuracy. The procedure starts with data preparation, which deals with 

missing values and normalizes the dataset. ARIMA is then used to model the time series' 

linear components. This means using differencing if necessary, using the Augmented Dickey- 

Fuller (ADF) test to confirm stationarity, and utilizing autocorrelation and partial 

autocorrelation functions to determine the optimal ARIMA(p,d,q) parameters. The residuals, 

or variables that cannot be explained, are extracted from the initial forecast that ARIMA 

generates after training to do further modeling. The residuals are then sent into an RNN- 

based model, such as LSTM or GRU, which represents the nonlinear patterns that ARIMA 

failed to detect. The RNN, which learns complex temporal relationships and predicts future 

residual values, is trained using these residuals. The final forecast is obtained by combining 

the ARIMA forecasts with the anticipated residuals from the RNN. Performance is evaluated 

using error metrics like RMSE, MSE, and MAPE, and the hyperparameters of both models 

are changed to increase accuracy. This hybrid approach leverages ARIMA's ability to 

describe linear correlations and RNN's ability to capture nonlinearity to generate more 

accurate and dependable TS forecasting. Fig. 1 shows the flowchart of the hybridized model. 
 

Fig. 1 Hybridized ARIMA-RNN model 
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VII. Results 

Numerous studies and experiments have demonstrated that combining ARIMA and RNN 

improves forecasting accuracy, particularly for time series data with nonlinear patterns. 

While ARIMA alone performs well for linear and stationary time series, it struggles to 

capture complex dependencies. In contrast, the hybrid ARIMA-RNN model lowers prediction 

errors by first using ARIMA to remove linear trends and then using RNN to model residual 

nonlinearities. The research is performed on 5 sample datasets covering different TS 

scenarios where the Hybrid ARIMA-RNN model can be applied as demonstrated in Table 2 

below. 
Table 2. Samples Description 

 

Sample Dataset 

 

Sample Name 

 

Type 

 

Detail 

 

Sample 1 

 

Stock Prices 

 

Financial time series 

with volatility 

Daily closing 

prices of a stock 

over 2 years 

 

Sample 2 

 

Weather Data 

 

Seasonal data with 

long-term trends 

Monthly average 

temperature for 10 

years 

 

Sample 3 

 

Sales Data 

Business performance 

data with seasonal 

peaks 

Quarterly sales 

data of an e- 

commerce store 

 

Sample 4 

 

Energy Usage 

High-frequency data 

with daily and weekly 

cycles 

Hourly energy 

consumption over 

1 year 

 

Sample 5 

 

Traffic Flow 

 

Data with periodic 

patterns and anomalies 

Daily vehicle 

count on a 

highway for 6 

months 

 

Table 3 shows the RMSE values obtained after executing ARIMA, RNN, and Hybridized 

ARIMA-RNN on the five samples mentioned in Table 2. 
Table 3. RMSE values 

 

Sample Dataset 

 

ARIMA 

 

RNN 
Hybridized 

ARIMA-RNN 

Improvement 

% 

Sample 1 1.32 1.15 0.89 22.61 

Sample 2 1.45 1.28 0.92 28.32 
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Sample 3 1.21 1.09 0.85 21.98 

Sample 4 1.56 1.39 1.01 27.34 

Sample 5 1.30 1.14 0.88 23.08 

 

Table 4 shows the MSE values obtained after executing ARIMA, RNN, and Hybridized 

ARIMA-RNN on the five samples mentioned in Table 2. 
Table 4. MSE values 

 

Sample Dataset 

 

ARIMA 

 

RNN 
Hybridized 

ARIMA-RNN 

Improvement 

% 

Sample 1 0.0215 0.0180 0.0125 30.56% 

Sample 2 0.0198 0.0165 0.0119 27.88 

Sample 3 0.0152 0.0130 0.0098 24.62 

Sample 4 0.0250 0.0214 0.0156 27.10 

Sample 5 0.0187 0.0159 0.0109 31.45 

 

Table 5 shows the MAPE values obtained after executing ARIMA, RNN, and Hybridized 

ARIMA-RNN on the five samples mentioned in Table 2. 
Table 5. MAPE values 

 

Sample Dataset 

 

ARIMA 

 

RNN 
Hybridized 

ARIMA-RNN 

Improvement 

% 

Sample 1 4.35 3.92 2.87 26.78 

Sample 2 3.89 3.47 2.65 23.63 

Sample 3 5.12 4.58 3.21 30.04 
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Sample 4 4.78 4.21 3.05 27.55 

Sample 5 4.05 3.68 2.75 25.27 

 

The Hybrid ARIMA-RNN approach outperforms standalone ARIMA and RNN models on 

five sample datasets, according to RMSE, MSE, and MAPE performance metrics. The 

Hybrid ARIMA-RNN regularly outperforms both models, with average improvements of 25- 

30% across all three criteria. The RMSE findings revealed significant error reduction, with 

the hybrid model producing the lowest error values across stock prices, weather data, sales 

data, energy consumption, and traffic flow datasets. Similarly, MSE findings demonstrated 

the hybrid model's capacity to reduce squared errors, considerably improving accuracy. The 

MAPE results reinforced the model's reliability, with lower percentage errors in all datasets, 

particularly sales data, which improved by 30.04%. Overall, the Hybrid ARIMA-RNN 

performs well in TSA, with higher precision and resilience than individual ARIMA and RNN 

models. 

 

VIII. Conclusion & Future Scope 

Using the advantages of both models, this study investigated the hybridization of ARIMA 

and RNN for time series forecasting. A more reliable and accurate forecasting framework 

was produced by RNN handling nonlinear dependencies and ARIMA successfully capturing 

linear trends. According to experimental results, the hybrid model performed better in terms 

of RMSE and MAPE than solo ARIMA and RNN models, suggesting better generalization 

and predictive ability. The results demonstrate how integrating deep learning and statistical 

methods can improve forecasting accuracy, especially in dynamic and complicated contexts. 

A promising avenue for the advancement of time series analysis is provided by hybrid 

models. Improvements including incorporating attention mechanisms, refining model 

topologies, and using the method on a variety of datasets can be investigated in future studies. 

Furthermore, the practical impact of hybrid models can be expanded through additional 

research into explainability and real-time forecasting applications. All things considered, the 

ARIMA-RNN hybridization offers a useful framework for enhancing time series forecasting 

across a range of industries, including healthcare and finance. 
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