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ABSTRACT 

In this study examines a multistate degenerative system with 𝑘-working states having 𝑘-distinct 

rewards and 𝑙-failure states with 𝑙-different repair costs and its maintenance difficulty. The 
long-run average cost of a multistate degenerative system within the bivariate replacement 

polices (𝑇,𝑁), (𝑇+, 𝑁), (𝑈, 𝑁), (𝑈−, 𝑁) with varying cost is assessed. The optimality exists 
under the bivariate replacement policies with partial product process demonstrated. 
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1. INTRODUCTION 

Because of the aging process and cumulative wear, most real-world scenario systems are 

degenerative in the sense that they will continue to operate for shorter periods of time between 

failures, while requiring longer and longer repair durations following failures. Stated otherwise, 

the repair times are stochastically increasing and eventually go to infinity, but the operational 

times are stochastically decreasing and eventually dying out. To use this type of characteristic 

to represent a deteriorating system, Lam (1988) has introduced a Geometric processes and 

studied replacement problems. Stadje and Zuckerman (1990) have introduced a general 

monotone process repair model that generalised Lam’s work other research works on the 

geometric process model include Stadje and Zuckerman (1992), Stanley (1993) for repair 

replacement models, Thangaraj,V., and Sundararajan, R. (1997) for optimal replacement 

policies for stochastic system. 

 

This study derives the long-run average costs for multistate degenerative systems with varying 

cost under four bivariate replacement policies with partial product process:   

 

 (𝑇,𝑁) policy : Replace the system after a fixed cumulative working age 𝑇 or upon 𝑁-th 

failure.  

 (𝑈, 𝑁) policy : Replace the system after cumulative repair time 𝑈 or upon 𝑁-th failure.  

 (𝑇+, 𝑁) policy : Replace the system at the first failure point after cumulative operating time 

exceeds 𝑇 or upon 𝑁-th failure. 

 (𝑈−, 𝑁) policy : Replace the system at the failure point just before total repair time exceeds 

𝑈 or upon 𝑁-th failure.  
 

Reliability theory makes the assumption that every system component either functions 

successfully or fails completely. The fact that a system can have more than two states makes 
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this binary thinking unreliable. For instance, a microwave transmitter may be seen to be fully 

functional, functioning with a reduced transmission range, or malfunctioning entirely. Multiple 

distinct failures in a unique kind of multistate system would be an example of failure 

contribution. Another illustration would be a home security system that is susceptible to 

electrical or mechanical tampering and could activate on false alarms when cats are found 

inside. Lesanovsky (1993) has provided a review of research on systems with dual failure 

modes. Zhang (1994), has introduced a bivariate optimal replacement policy for a two-state 

repairable system. Govindaraju, Rizwan and Thangaraj (2009) have studied bivariate optimal 

replacement policy for varying cost structures. Babu, Govindaraju and Rizwan (2018) 

introduced and studied replacement models where the consecutive repair time follow an 

increasing partial product process. Raajpandiyan, Syed Tahir Hussainy and Rizwan (2022) 

have studied optimal replacement models under partial product process. 

 

Generally speaking, a system can have two different failure states in addition to one working 

state. In a broader sense, the system could have 𝑙 distinct failure states and 𝑘 unique working 
states. This study focuses on a monotone process model for a multi-component system with 
(𝑘 + 𝑙) states, namely 𝑘-working states and 𝑙-failure states. There are several techniques that 

can generate such a model to match the definition of a multistate degenerative system.  

 

The rest of the paper is organized as follows. In Section 2, we give a general preliminaries. In 

Section 3, given model assumptions. We also present the monotone process model of a multi-

component multistate system and the relevant results regrading their probability structure. In 

Section 4, we derive explicit expressions for the long-run average cost per unit time for this 

model under different bivariate replacement policies. Finally, a conclusion in given section 5.  

 

2. PRELIMINARIES 

In this part, we first give some definitions. The multi-component multistate system model is 

then described. We also estimate the conditional probabilities of the operating and failure times 

based on the current state of the system.  

 

Definition 2.1 (Barlow and Proschan, 1965) “A random variable 𝑋 is said to be  

Stochastically Smaller than anther random variable 𝑌, if 𝑃(𝑋 > 𝛼) ≤ 𝑃(𝑌 > 𝛼) , for all real 

𝛼. It is denoted by 𝑋 ≤𝑠𝑡 𝑌."  

  

Definition 2.2 “A stochastic process 𝑋𝑛, 𝑛 = 1,2,⋯ is said to be  Stochastically Increasing, if 

𝑋𝑛 ≤𝑠𝑡 𝑋𝑛+1, for 𝑛 = 1,2,⋯."  
 

Definition 2.3 (Shaked and Shanthikumar, 1994) “A Markov process 𝑋𝑛, 𝑛 = 1,2,⋯ with 

state space 0,1,2, ⋯ is said to be  Stochastically Monotone, if 
 

 (𝑋𝑛+1|𝑋𝑛 = 𝑖1) ≤𝑠𝑡 (𝑋𝑛+1|𝑋𝑛 = 𝑖2), 
for any 0 ≤ 𝑖1 ≤ 𝑖2."  

 

Clearly, the stochastically monotone concept for a Markov process is defined for a Markov 

process and is based on the transition probabilities from one state to another state, conditioning 

on the former state. However, the stochastically monotone concept for a stochastic process 

defined here is for a general process and is based on the conditional distribution of the 

successive random variable in the process.  

 

Definition 2.4 “An integer valued random variable 𝑁 is said to be a  stopping time for the 
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sequence of independent random variables 𝑋1, 𝑋2, ⋯, if the event {𝑁 = 𝑛} is independent of 

𝑋𝑛+1, 𝑋𝑛+2, ⋯,  for all 𝑛 = 1,2, ⋯."  

  

Definition 2.5 (Renewal process) “If the sequence of nonnegative random variable 
{𝑋1, 𝑋2, 𝑋3, ⋯ } is independent and identically distributed, then the counting process 
{𝑁(𝑡), 𝑡 ≥ 0} is said to be a  renewal process."  
  

Definition 2.6 “A life distribution F is said to be  New Better than Used in Expectation 

(NBUE), if 

 

 ∫
∞

0
𝐹(𝑡 + 𝑥)𝑑𝑥 ≤ 𝐹(𝑡) ∫

∞

0
𝐹(𝑥)𝑑𝑥 

 

for all 𝑡 ≥ 0. To say that the life distribution of an item is new better then used in expectation 
is equivalent to saying that the mean life length of a new item is greater than the mean residual 

life length of a non-failed item of age 𝑡 > 0."  

 

Definition 2.7 (Revathy, 1997) “At every failure point, a decision is taken whether it can be 

sent for repair. If the cumulative repair time after this repair is expected to exceed a threshold 

value 𝛿, the repair need not be initiated at that failure time. Such a fictitious repair time is 
called a  Virtual Repair Time."  

  

Definition 2.8 (Babu, Govindaraju and Rizwan, 2018) “Let {𝑋𝑛, 𝑛 = 1,2,3,⋯ } be a sequence 

of independent and non-negative random variables and let 𝐹(𝑋) be the distribution function 

of 𝑋1. Then {𝑋𝑛, 𝑛 = 1,2,3,⋯ } is called  Partial Product Process, if the distribution function of 

𝑋𝑖+1 is 𝐹(𝛼𝑖𝑋) (𝑖 = 1,2,3, ⋯ ), where 𝛼𝑖 > 0 are real constants and 𝛼𝑖 = 𝛼0𝛼1𝛼2 ⋯ 𝛼𝑖−1."  

  

Definition 2.9 “A partial product process is called a  Decreasing Partial Product Process, if 

𝛼0 > 1 and is called an  Increasing Partial Product Process, if 0 < 𝛼0 < 1."  

  

Remark 2.1 It is clear that if 𝛼0 = 1, then the partial product process is a renewal process.  
  

Remark 2.2 Let 𝐸(𝑌1) = 𝜇, 𝑣𝑎𝑟(𝑌1) = 𝜎2. Then for 𝑗 = 1,2,3,⋯, 

         

𝐸(𝑌𝑗+1)  =
𝜇

𝛽0
2𝑗−1  

and 

𝑉𝑎𝑟(𝑌𝑗+1) =
𝜎2

𝛽0
2𝑗  

where 𝛽0 > 0.  

  

Theorem 2.1 (Wald’s equation) “If 𝑋1, 𝑋2, 𝑋3, ⋯ are independent and identically distribution 

random variables having finite expectations and if 𝑁 is the stopping time for 𝑋1, 𝑋2, ⋯ such 

that 𝐸[𝑁] < ∞, then  

  

𝐸 [∑

𝑁

𝑛=1

𝑋𝑛] = 𝐸[𝑁]𝐸[𝑋1]. " 

  

Theorem 2.2 (Wald’s equation for partial product process) “Suppose that {𝑌𝑛, 𝑛 = 1,2,3,⋯ } 
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forms a partial product process with ratio 𝛽0 and 𝐸[𝑌1] = 𝜇 < ∞, then for 𝑡 > 0, we have  
  

𝐸[𝑉𝜔(𝑡)+1] = 𝜇𝐸 [1 + ∑

𝜔(𝑡)+1

𝑗=2

1

𝛽0
2𝑗−2

], 

where 𝜔(𝑡) is the counting process which represents the number of occurrences of an event up 

to time 𝑡."  
  

3  Model Assumptions 

      We shall now describe the system’s states. A (𝑘 + 𝑙)-state multistate system with 𝑘 

operating states and 𝑙 failure states is considered. When 𝑡 happens, the state of the system is 

given by  

  

𝑆(𝑡) = {
𝑖 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 (𝑖 = 1,2,⋯ , 𝑘)

𝑘 + 𝑗 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 (𝑗 = 1,2,⋯ , 𝑙)
 

 

The state space of a new system is Ω = Ω1 ∪ Ω2 and the working state are Ω1 = {1,2, ⋯ , 𝑘} 
and the failure states are Ω2 = {𝑘 + 1, 𝑘 + 2,⋯ , 𝑘 + 𝑙}. Let’s start with the installation of a 

brand new, operational system at state 1. If the system fails, it will be repaired. Let 𝑠𝑛 be the 

time of the 𝑛-th failure, 𝑛 = 1,2,⋯ and let 𝑡𝑛 be the completion time of the 𝑛-th repair, 𝑛 =
0,1,… with 𝑡0 = 0. Next 
 

𝑡0 < 𝑠1 < 𝑡1 < ⋯ < 𝑠𝑛 < 𝑡𝑛 < ⋯ < 𝑠𝑛+1 < ⋯ 
 

we next describe the probability structure of the model. 

 

Assume that the transition probability from working state 𝑖,  𝑖 = 1,2,⋯ , 𝑘, to failure state 𝑘 +
𝑗, 𝑗 = 1,2, ⋯ , 𝑙, is given by 
 

𝑃(𝑆(𝑠𝑛+1) = 𝑘 + 𝑗|𝑆(𝑡𝑛) = 𝑖) = 𝑞𝑗 

 

with ∑𝑙
𝑗=1 𝑞𝑗 = 1. Moreover, the transition probability from failure state 𝑘 + 𝑗, 𝑗 = 1,2,⋯ , 𝑙, 

to working state 𝑖, 𝑖 = 1,2, ⋯ , 𝑘 is given by 
  

𝑃(𝑆(𝑡𝑛) = 𝑖|𝑆(𝑠𝑛) = 𝑘 + 𝑗) = 𝑝𝑖 

with ∑𝑘
𝑖=1 𝑝𝑖 = 1. 

 

Let 𝑋1 be the system’s running time following installation. Let 𝑌𝑛, 𝑛 = 1,2,… be the repair 

time after 𝑛-th failure and 𝑋𝑛, 𝑛 = 2,3, … be the system’s operating time following (𝑛 − 1)-st 

repair. Assume that 𝑎𝑖 > 0, 𝑖 = 1,2,⋯ , 𝑘, and that there is a life distribution 𝑈1(𝑡) such that 

 

                                                    𝑃(𝑋1 ≤ 𝑡)
= 𝑈1(𝑡)                                                                                   (1) 

                                                                  

 and  

  

                                                   𝑃(𝑋2 ≤ 𝑡|𝑆(𝑡1) = 𝑖)
= 𝑈1(𝑎𝑖𝑡),                                                            (2) 
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 𝑖 = 1,2,⋯ , 𝑘, where 1 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘 . 
 

In gerenal, 𝑖𝑗  𝜖  {1,2,⋯ , 𝑘}, we have  

 

                                 𝑃(𝑋𝑛 ≤ 𝑡|𝑆(𝑡1) = 𝑖1, ⋯ , 𝑆(𝑡𝑛−1) = 𝑖𝑛−1)

= 𝑈1(𝑎𝑖 , ⋯ , 𝑎𝑖𝑛−1
𝑡),                      (3) 

  

𝑗 = 1,2,… , 𝑛 − 1. 
 

Similarly, assume that there exist a life-time distribution 𝑉𝑖(𝑡) and 𝑏𝑖 > 0, 𝑖 = 1,2,⋯ , 𝑙 such 
that 

  

                                                      𝑃(𝑌1 ≤ 𝑡|𝑆(𝑠1) = 𝑘 + 𝑖)
= 𝑉1(𝑏1𝑡)                                                   (4) 

  

 where 1 ≥ 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑙 > 0 and in general, for 𝑖𝑗  𝜖  {1,2,… , 𝑙} 

  

                       𝑃(𝑌𝑛 ≤ 𝑡|𝑆(𝑠1) = 𝑘 + 𝑖1, ⋯ , 𝑆(𝑠𝑛) = 𝑘 + 𝑖𝑛)

= 𝑉1(𝑏𝑖1 ⋯𝑏𝑖𝑛𝑡)                               (5) 

  

 In particular, if 𝑎1 = 𝑏1 = 1, 𝑎2 = ⋯ = 𝑎𝑘 = 𝑎′ and 𝑏2 = ⋯ = 𝑏𝑙 = 𝑏′ then the (𝑘 + 𝑙)-

state system reduces to a two state system. In this case, the equations (3) and (5) become  

  

𝑃(𝑋𝑛 ≤ 𝑡) = 𝑈1((𝑎′)𝑛−1𝑡) 
  

𝑃(𝑌𝑛 ≤ 𝑡) = 𝑉1((𝑏′)𝑛𝑡), 
 

 respectively. Thus the sequence 𝑋𝑛, 𝑛 = 1,2,… from a partial product process with ratio 𝑎′ >
1, while the sequence 𝑌𝑛, 𝑛 = 1,2, … from with ratio 0 < 𝑏′ < 1. In this case, our model 
reduces to the model for the multi component two state system introduced by Babu, 

Govindaraju and Rizwan (2018).  

 

Remarks 

For two working states 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑘, we have  

  

(𝑋2|𝑆(𝑡1) = 𝑖2) ≤𝑠𝑡 (𝑋2|𝑆(𝑡1) = 𝑖1). 
 

Since the system in state 𝑖1 has a stochastically larger operating time than it does in state 𝑖2, 

working state 𝑖1 is therefore superior to working state 𝑖2. Thus, state 1 is the best working state 

and state 𝑘 is the worst working state, with the 𝑘-working states defined in decreasing order. 

An identical exists for two failure states 𝑘 + 𝑖1, 𝑘 + 𝑖2 such that 𝑘 + 1 ≤ 𝑘 + 𝑖1 < 𝑘 + 𝑖2 ≤
𝑘 + 𝑙, we have 

 

(𝑌1|𝑆(𝑠1) = 𝑘 + 𝑖1) ≤𝑠𝑡 (𝑌1|𝑆(𝑠1) + 𝑘 + 𝑖2). 
 

The failure state 𝑘 + 𝑖1 is superior to the failure state 𝑘 + 𝑖2 because the system in state 𝑘 + 𝑖1 

has a stochastically smaller repair time than it does in states 𝑘 + 𝑖2. Consequently, the 𝑙 failure 

states are likewise ordered in decreasing order, where 𝑘 + 1 is the best failure state and 𝑘 + 𝑙 
is the worst.  
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Model Assumptions 

Consider the following list of assumptions,  A1 - A8 for a monotone process model of the 

multistate system covered in this section.   

 

A1 At the beginnig,a new easily repairable system is set up. There are (𝑘 + 𝑙) potential states 

for the system, with states 1,2,⋯ , 𝑘 denoting the first working state, the second working 

state,⋯, 𝑘-th working state respectively, and states (𝑘 + 1), (𝑘 + 2), ⋯ , (𝑘 + 𝑙) denoting 

the first failure state, the system’s second failure state,⋯ and the 𝑙-th failure state in that 
order. They are mutually exclusive and stochastically occurring failures. 

 

A2 Whenever the system fails, it will be either repaired or replaced. The system will be 

replaced by an identical new one some times later. 

 

A3  Let the system’s operating time after installation will be 𝑋1.The operating system 𝑋𝑛, 𝑛 =
2,3, … times of the system after the (𝑛 − 1)-st repair in a cycle. It is indicated by the 

distribution of 𝑋𝑛 by 𝐹𝑛(. ). Assume that 𝐸(𝑋1) = 𝜆 > 0. 
 

We let 𝑋𝑖+1 be the operating time after the 𝑖-th repair, for 𝑖 = 1,2,3,⋯. Then the distribution 

function of 𝑋𝑖+1 is 𝐹 (𝛼0
2𝑖−1

𝑥), where 𝛼0(> 1) is a constant. Now  

  

𝐸(𝑋𝑖+1) =
𝜆

𝛼0
2𝑖−1 

for  𝑖 = 1,2,3, ⋯. Let 𝑋𝑛, 𝑛 = 1,2,3, ⋯ be the successive operating time after repair, 

constitute a decreasing partial product process. 

 

A4 let 𝑌1 denote the repair time and 𝐺(𝑦) be its distribution after the first failure function 

of 𝑌1. Assume that 𝐸(𝑌1) = 𝜇 ≥ 0. It means that if 𝜇 = 0, it indicates that the anticipated 

repair time is negligibly small. Let 𝑌𝑗+1 be the repair time after (𝑗 + 1)-st failure for 𝑗 =

1,2,3, ⋯ and 𝐺(𝛽0
𝑗−1𝑦) the distribution function of 𝑌𝑗+1, where 0 < 𝛽0 ≤ 1 is a constant 

and 𝐸(𝑌𝑗+1) =
𝜇

𝛽0
2𝑗−1 for 𝑗 = 1,2,3,⋯. 

The 𝑌𝑗 represent the sequential repair durations from an increasing partial product process 

are {𝑌𝑗 , 𝑗 = 1,2,3,⋯ } 
 

A5 Let r be the reward rate when the system in working state 𝑖 is operating, let c be the 

repair cost when the system in failure state (𝑘 + 1) is repaired, and the replacement cost is 

composed of two parts, one is the basic replacement cost R and the other proportional to 

the replacement time 𝑧 at rate 𝑐𝑝. That is, the replacement cost by 𝑅 + 𝑐𝑝𝑍. 

 

A6 Assume that 1 ≥ 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑙 > 0 and 1 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑘. 
 

A7 Assume that 𝐺𝑛(𝑡) be the cumulative distribution of 𝑀𝑛 = ∑𝑛
𝑖=1  𝑌𝑖 and 𝐹𝑛(𝑡) be the 

cumulative distribution of 𝐿𝑛 = ∑𝑛
𝑖=1 𝑋𝑖. 

 

A8 The replacement time 𝑍, (𝑛 = 1,2,⋯ ) are independent random variables and the repair 

time 𝑌𝑛, the working time 𝑋𝑛.  
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4. BIVARIATE REPLACEMENT POLICIES 

4.1  The Bivariate Policy (𝑻,𝑵) 
This section presents and examines a bivariate replacement policy (𝑇,𝑁) under partial product 

process with varying cost for the multistate degenerative system, where in the system is 

replaced at working age 𝑇 or at the time of 𝑁-th failure, whichever happens first. The problem 

is to determine an optimal replacement policy (𝑇,𝑁)∗ so that the long-run average cost per unit 
time is minimized.  

 

The working age 𝑇 of the system at time 𝑡 is the cumulative life-time given by 

  

𝑇(𝑡) = {
𝑡 − 𝑀𝑛 , :      𝐿𝑛 + 𝑀𝑛 ⩽ 𝑡 < 𝐿𝑛+1 + 𝑀𝑛

𝐿𝑛+1, :          𝐿𝑛+1, +𝑀𝑛 ⩽ 𝑡 < 𝐿𝑛+1 + 𝑀𝑛+1.
 

 

Initially let 𝐿𝑛 = ∑𝑛
𝑖=1 𝑋𝑖 and 𝑀𝑛 = ∑𝑛

𝑗=1 𝑌𝑗 and 𝐿0 = 𝑀0 = 0. 

 

Following Lam (2005), the distribution of the survival time 𝑋𝑛 in  A3 and the distribution of 

the repair time 𝑌𝑛 in  A4 are given by  
  

                       𝑃(𝑋𝑛 ≤ 𝑡)

= ∑

∑𝑘
𝑗=1 𝑖𝑗=𝑛−1

(𝑛 − 1)!

𝑖1! 𝑖2!⋯ 𝑖𝑘!
𝑝1

𝑖1 ⋯ 𝑝𝑘
𝑖𝑘𝑈(𝑎1

𝑖1 ⋯ 𝑎𝑘
𝑖𝑘)𝑡                                     (6) 

  

 where 𝑖1, 𝑖2, ⋯ , 𝑖𝑘𝜖𝑧
+ and 

  

                      𝑃(𝑌𝑛 ≤ 𝑡)

= ∑

∑𝑙
𝑖=1 𝑗𝑖=𝑛

(𝑛)!

𝑗1! 𝑗2!⋯ 𝑗𝑙!
𝑞1

𝑗1 ⋯ 𝑞𝑙
𝑗𝑙𝑉(𝑏1

𝑗1 ⋯ 𝑏𝑙
𝑗𝑙)𝑡                                            (7) 

  

 where 𝑗1, 𝑗2, ⋯ , 𝑗𝑙   ∈   𝑍+ and if 𝐸(𝑋1) = 𝜆, then the mean survival time is  
  

                                                 𝐸(𝑋𝑛)

=
𝜆

𝛼0
2𝑛−1                                                                                             (8) 

  

 for 𝑛 > 1, where  

 

                                                     𝑎

= (∑

𝑘

𝑖=1

𝑝𝑖

𝑎𝑖
)

−1

                                                                                       (9) 

 

 and if 𝐸(𝑌1) = 𝜇, then the mean repair time is  
  

                                             𝐸(𝑌𝑛)

=
𝜇

𝛽0
2𝑛−1                                                                                                (10) 
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 for 𝑛 > 1, where  
  

                                                   𝑏

= (∑

𝑙

𝑗=1

𝑞𝑗

𝑏𝑗
)

−1

.                                                                                    (11) 

  

 Similarly, if 𝑅𝑛 = 𝑟𝑖, where 𝑆(𝑠𝑛−1) = 𝑖, 𝑖 = 1,2,⋯ , 𝑘, represents the reward received after 

the n-th repair, the mean reward received after the (n-1)-st repair is 𝐸(𝑅, 𝑋) = 𝑟𝜆, and for 𝑛 ≥
2, the expected reward after installation is given by  

 

                                             

                                      𝐸(𝑅𝑛𝑋𝑛)

=
𝑟𝜆

𝛼0
2𝑛−1                                                                                                 (12) 

                                                                          

 where 𝑟 = ∑𝑘
𝑖=1

𝑟𝑖𝑝𝑖

𝑎𝑖
, and if 𝐶𝑛 = 𝑐𝑖 where 𝑆(𝑠𝑛) = 𝑘 + 𝑖, 𝑖 = 1,2, ⋯ , 𝑙 shows the cost of 

repairs after the n-th failure, therefore the average cost of repairs after the n-th failure is  

  

                                     𝐸(𝐶𝑛𝑌𝑛)

=
𝑐𝜇

𝛽0
2𝑛−1                                                                                                   (13) 

  

 where 𝑐 = ∑𝑖=1
𝑙

𝑟𝑖𝑞𝑖

𝑏𝑖
. 

 

The length of a cycle and its mean 

 

     Then length of a cycle under the bivariate replacement policy (𝑇, 𝑁) with partial product 
process is  

  

𝑤 = (𝑇 + ∑

𝜂

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁>𝑇) + (∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇) + 𝑍, 

 

 where 𝜂 = 1,2,⋯ , 𝑁 − 1 represents the number of failures prior to the system’s working age 

surpassing 𝑇. 

  

𝜒(𝐴) = {
1 : 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠
0 : 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟,

 

  

denote the indicator function and 𝐸[𝜒(𝐴)] = 𝑃(𝐴). 

From Leung (2006), we have 

 

  

              

𝐸[𝜒(𝐿𝑖≤𝑇<𝐿𝑁)] = 𝑃(𝐿𝑖 ≤ 𝑇 < 𝐿𝑁)                                         
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= 𝑃(𝐿𝑖 ≤ 𝑇) − 𝑃(𝐿𝑁 ≤ 𝑇) 
                   

                                   

  = 𝐹𝑖(𝑇) − 𝐹𝑁(𝑇).                    
  

Lemma 4.1 The mean length of a cycle under the policy (𝑇, 𝑁) is 
 

                             𝐸(𝑊)

= ∫
𝑇

0

𝐹𝑁(𝑢)𝑑𝑢 + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1 𝐹𝑖(𝑇) + 𝜏.                                                       (14) 

  

Proof.  Examine 

  

𝐸(𝑤) = 𝐸 [(𝑇 + ∑

𝜂

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁>𝑇)] + 𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇)] + 𝐸(𝑍) 

             

                          = 𝐸 [𝑇𝜒(𝐿𝑛>𝑇)
] + 𝐸 [(∑

𝜂

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁>𝑇)]

+                                                                         

    𝐸 {𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇)|𝐿𝑁 = 𝑢]} + 𝐸(𝑍) 

  

= 𝑇𝐹𝑁(𝑇) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1     𝐸[𝜒(𝐿𝑖≤𝑇<𝐿𝑁)] + ∫

𝑇

0

𝑢𝑑𝐹𝑁(𝑢) + ∫
𝑇

0

∑

𝑁−1

𝑖=1

(𝑌𝑖)𝑑𝐹𝑁(𝑢) + 𝜏 

  

= 𝑇𝐹𝑁(𝑇) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝑃(𝐿𝑖 < 𝑇 < 𝐿𝑁) + ∫

𝑇

𝑜

𝑢𝑑𝐹𝑁(𝑢) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝐹𝑁(𝑇) + 𝜏 

  

= 𝑇𝐹𝑁(𝑇) + ∫
𝑇

𝑜

𝑢𝑑𝐹𝑁(𝑢) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝐹𝑁(𝑇) + 𝜏 

            

             = ∫
𝑇

0

𝐹𝑁(𝑢)𝑑𝑢 + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝐹𝑖(𝑇) + 𝜏, 

 

 as intended and the lemma’s proof is now complete.                                                                        ◼  
 

Lemma 4.2 If 𝐿𝑁 ≤ 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  

  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0

𝑢𝑑𝐹𝑁(𝑢). 
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Proof.  Examine  

  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)] = 𝐸 {𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)|𝐿𝑁]}                            

    

                      = ∫
𝑇

0

𝐸 (∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛|𝐿𝑁 = 𝑢)𝑑𝐹𝑁(𝑢) 

  

= ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0

𝑢𝑑𝐹𝑁(𝑢) 

  

Lemma 4.3 If 𝐿𝑁 > 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  
  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁>𝑇)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)]. 

  

 Proof.  Examine  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁>𝑇)] = 𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁<𝑇<𝐿𝑁)]                                               

  

= ∑

𝑁

𝑛=2

𝐸(𝑅𝑛𝑋𝑛)𝐸[𝜒(𝐿𝑁<𝑇<𝐿𝑁)] 

  

= ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)], 

 

Lemma 4.4 If 𝐿𝑁 ≤ 𝑇, then the expected repair cost is  
  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁≤𝑇)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐹𝑁(𝑇). 

  

 Proof.  Examine  

  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁≤𝑇)] = 𝐸 [𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝐿𝑁 = 𝑢)𝜒(𝐿𝑁≤𝑇)]                                              

  

= ∫
𝑇

0

𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝐿𝑁 = 𝑢)𝑑𝐹𝑁(𝑢) 
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= ∫
𝑇

0

∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝑑𝐹𝑁(𝑢),                   

 

Lemma 4.5 If 𝐿𝑁 > 𝑇, then the expected repair cost is  
  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁>𝑇)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)]. 

  

Proof.  Examine  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁>𝑇)] = 𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑛<𝑇<𝐿𝑁)]                                     

  

= ∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝐸[𝜒(𝐿𝑛<𝑇<𝐿𝑁)] 

  

= ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝑃[𝐿𝑛 < 𝑇 < 𝐿𝑁] 

  

= ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)], 

 

The long-run average cost under policy (𝑻, 𝑵) 

 

      Assume that 𝑇1 is the initial replacement time and that the interval between the (𝑛 − 1)-st 

and 𝑛-th replacements is 𝑇𝑛(𝑛 ≤ 2). A renewal process is then formed by the sequence 𝑇𝑛, 𝑛 =
1,2,…. A renewal cycle is the inter arrival time between two successive replacements. The 

long-run average cost per unit of time for a multistate degenerative system with varying cost 

structures under the multistate bivariate replacement policy (𝑇,𝑁) with partial product process 

is determined by the renewal reward theorem by Ross (1996).  
  

𝒞(𝑇,𝑁) =
the expected cost incurred in a cycle

the expected length of a cycle
 

  

=
[𝐸{(∑𝜂

𝑛=1 𝐶𝑛𝑌𝑛 − 𝑇 ∑𝜂
𝑛=1 𝑅𝑛)𝜒(𝐿𝑁>𝑇) + 𝑐𝑝𝐸(𝑍)} + 𝐸{(∑𝑁−1

𝑛=1 𝐶𝑛𝑌𝑛 − ∑𝑁
𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)} + 𝑅]

𝐸(𝑊)
 

 

 

 Using Lemmas 4.1 to 4.5, we obtain  
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𝒞(𝑇,𝑁) =
[
 
 
 ∑𝑁−1

𝑛=1
𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)] − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)] + 𝑟1𝑇

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐹𝑁(𝑇) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0
𝑢𝑑𝐹𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅 − 𝑟1𝜆

]
 
 
 

∫
𝑇

0
𝐹𝑁(𝑢)𝑑𝑢 + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 𝐹𝑖(𝑇) + 𝜏

 

 

 After combining the aforementioned facts, we arrive at the following conclusion.  

 

Theorem 4.1 The long run average cost per unit time for a multistate degenerative systemwith 

varying cost structures under the bivariate replacement policy (𝑇,𝑁) with partial product 

process for the model presented in section 3 under the  A1 through  A8 is provided by. 

  

                   𝒞(𝑇,𝑁)

=
[
 
 
 ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)] − 𝑟1(𝜆 + 𝑇)

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐹𝑁(𝑇) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0
𝑢𝑑𝐹𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅

]
 
 
 

∫
𝑇

0
𝐹𝑁(𝑢)𝑑𝑢 + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 𝐹𝑖(𝑇) + 𝜏

               (15) 

  

Deductions 

 

    The long-run average cost 𝒞(𝑇,𝑁) is a bivariate function in 𝑇 and 𝑁. Obviously, when 𝑁 is 

fixed, 𝒞(𝑇, 𝑁) is a function of 𝑇. For fixed 𝑁 = 𝑚, it can be written as 
  

𝒞(𝑇, 𝑁) = 𝒞𝑚(𝑇), 𝑚 = 1,2, ⋯. 
 

Thus, for a fixed 𝑚, we can find 𝑇𝑚
∗  by analytical or numerical methods such that 𝒞𝑚(𝑇𝑚

∗ ) is 

minimised. That is, when 𝑁 = 1,2,⋯ , 𝑚,⋯, we can find 𝑇1
∗, 𝑇2

∗, ⋯ , 𝑇𝑚
∗ , ⋯, respectively, such 

that the corresponding, 𝐶1(𝑇1
∗), 𝐶2(𝑇2

∗),⋯ , 𝐶𝑚(𝑇𝑚
∗ ),⋯, are minimised. Because the total 

lifetime of a multistate degenerative system is limited, the minimum of the long-run average 

cost per unit time exists. So we can determine the minimum of the long-run average cost per 

unit time based on 𝐶1(𝑇1
∗), 𝐶2(𝑇2

∗),⋯ , 𝐶𝑚(𝑇𝑚
∗ ),⋯. Then, if the is denoted by 𝒞𝑛(𝑇𝑛

∗), we obtain 

the bivariate optimal replacement policy (𝑇,𝑁)∗ such that 
 

𝒞((𝑇,𝑁)∗) = min
𝑛

𝐶𝑛(𝑇𝑛
∗)                                 

  

= min
𝑛

[min
𝑇

𝒞(𝑇,𝑁)] 

  

≤ 𝒞(∞,𝑁)                  
  

= 𝐶(𝑁∗)                     
 

    The optimal policy (𝑇, 𝑁)∗ is better than the optimal policy 𝑁∗. Moreover, under some mild 

conditions the optimal replacement policy 𝑁∗ is better than the optimal policy 𝑇∗. So under the 

same conditions, an optimal policy (𝑇,𝑁)∗ is better than the optimal replacement policies 𝑁∗ 

and 𝑇∗. 
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4.2  The Bivariate Policy (𝑼,𝑵) 

      The bivariate replacement policy (𝑈,𝑁) with partial product process for the multistate 

degenerative system with varying cost is defined and examined here. The system is replaced 

when it reaches its 𝑁-th failure or when the overall period of time to repair surpasses 𝑈, 

whichever occurs first. Choosing the optimal replacement policy (𝑈, 𝑁)∗ to minimize the long-
run average cost per unit of time over the problem. 

 

 

4.2.1  The length of a cycle and its mean 

     The length of a cycle 𝑊 under the bivariate replacement policy (𝑈,𝑁) with partial product 

process is  

  

𝑊 = (∑

𝜂

𝑖=1

𝑋𝑖 + 𝑈)𝜒(𝑀𝑁>𝑈) + (∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝑀𝑁≤𝑈) + 𝑍, 

 

 where 𝜂 = 1,2,⋯ , 𝑁 − 1 represents the number of failures prior to the system’s overall repair 

time surpassing 𝑈 and 𝜒(.) denote the indicator function. 

 

 𝜒(𝐴) = {
1 : 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑜𝑐𝑐𝑢𝑟𝑠
0 : 𝑖𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟.

 

  

Lemma 4.6 The mean length of the cycle under policy the (𝑈,𝑁) is  
  

                 𝐸(𝑊)

= ∫
𝑈

0

𝐺𝑁(𝑢)𝑑𝑢 +
𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   𝐺𝑖−1(𝑈)

+ 𝜏.                            (16) 
  

Proof.  Examine  

  

𝐸(𝑤) = [(∑

𝜂

𝑖=1

𝑋𝑖 + 𝑈)𝜒(𝑀𝑁>𝑈)] + 𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝑀𝑁≤𝑈)] + 𝐸(𝑍) 

  

                          = 𝐸 [(∑

𝜂

𝑖=1

𝑋𝑖)𝜒(𝑀𝑁>𝑈)] + 𝐸 [𝑈𝜒(𝑀𝑁>𝑈)
] 

 

                       +𝐸 {𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝑀𝑁≤𝑈)|𝑀𝑁 = 𝑢]} + 𝐸(𝑍) 

  

         = 𝐸 (∑

𝑁

𝑖=1

𝑋𝑖)   𝐸[𝜒(𝑀𝑁≤𝑈)] + ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁−1

𝑖=1

𝐸(𝑋𝑖) 𝐸[𝜒(𝑀𝑖−1≤𝑈<𝑀𝑁)] 
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    +𝑈𝐸[𝜒(𝑀𝑁>𝑈)] + 𝜏                               
  

                        = ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝐸(𝑋𝑖) 𝑃(𝑀𝑖−1 ≤ 𝑈 < 𝑀𝑁)

+ 𝑈𝐺𝑁(𝑈) + 𝜏 
  

                     = ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   [𝐺𝑖−1(𝑈) − 𝐺𝑁(𝑈)]

+ 𝑈𝐺𝑁(𝑈) + 𝜏, 
 

 as intended and the lemma’s proof is now complete.                                                                          ◼  

 

Lemma 4.7 If 𝑀𝑁 ≤ 𝑈 and 𝑛 ≥ 2, then the expected reward earned is  
  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0

𝑢𝑑𝐺𝑁(𝑢). 

  

Proof.  Examine  

  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)] = 𝐸 {𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)|𝑀𝑁]}                                     

  

               = ∫
𝑈

0

𝐸 (∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛|𝑈𝑁 = 𝑢)𝑑𝐺𝑁(𝑢) 

  

= ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0

𝑢𝑑𝐺𝑁(𝑢)        

  

Lemma 4.8 If 𝑀𝑁 > 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)] = ∑

𝑁−1

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)]. 

  

Proof.  Examine  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)] = 𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁<𝑈<𝑀𝑁)]                                                 

  

= ∑

𝑁

𝑛=2

𝐸(𝑅𝑛𝑋𝑛)𝐸[𝜒(𝑀𝑁<𝑈<𝑀𝑁)] 
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= ∑

𝑁−1

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)], 

 

 

Lemma 4.9 If 𝑀𝑁 ≤ 𝑈, then the expected repair cost is  
  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁≤𝑈)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐺𝑁(𝑈). 

  

 Proof.  Examine  

  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁≤𝑈)] = 𝐸 [𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝑀𝑁 = 𝑢)𝜒(𝑀𝑁≤𝑈)] 

  

= ∫
𝑈

0

𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝑀𝑁 = 𝑢)𝑑𝐺𝑁(𝑢) 

  

= ∫
𝑈

0

∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝑑𝐺𝑁(𝑢), 

 

Lemma 4.10 If 𝑀𝑁 > 𝑈, then the expected repair cost is  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁>𝑈)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)]. 

 Proof.  Examine  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁>𝑈)] = 𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑛<𝑈<𝑀𝑁)]                                   

  

              = ∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝐸[𝜒(𝑀𝑛<𝑈<𝑀𝑁)] 

  

             = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)], 

 

 

 

The long-run average cost under policy (𝑼,𝑵) 
     

       Assume that 𝑈1 is the initial replacement time and that the interval between the (𝑛 − 1)-
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st and 𝑛-th replacements is 𝑈𝑛(𝑛 ≤ 2). A renewal process is then formed by the sequence 𝑈𝑛, 

𝑛 = 1,2, …. A renewal cycle is the inter arrival time between two successive replacements. The 

long-run average cost per unit of time for a multistate degenerative system with varying cost 

structures under the multistate bivariate replacement policy (𝑈, 𝑁) with partial product process 
is.  

  

𝒞(𝑈, 𝑁) =
the expected cost incurred in a cycle

the expected length of a cycle
 

  

                                       =

[
𝐸{(𝑈 ∑𝜂

𝑛=1 𝐶𝑛 − ∑𝜂
𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)} + 𝑐𝑝𝐸(𝑍)

+𝐸{(∑𝑁−1
𝑛=1 𝐶𝑛𝑌𝑛 − ∑𝑁

𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)} + 𝑅
]

𝐸(𝑊)
 

 

 Using Lemmas 4.6 to 4.10, we obtain  

  

𝒞(𝑈, 𝑁) =
[
 
 
 ∑𝑁−1

𝑛=1
𝑐𝜆

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)] − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)] + 𝑟1𝑈

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐺𝑁(𝑈) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0
𝑢𝑑𝐺𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅 − 𝑟1𝜆

]
 
 
 

∫
𝑈

0
𝐺𝑁(𝑢)𝑑𝑢 +

𝜆

𝛼0
2𝑁−1 𝐺𝑁(𝑈) + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 𝐺𝑖(𝑈) + 𝜏

 

  

After combining the aforementioned facts, we arrive at the following conclusion. 

 

Theorem 4.2 The long run average cost per unit time for a multistate degenerative systemwith 

varying cost structures under the bivariate replacement policy (𝑈, 𝑁) with partial product 

process for the model presented in section 3 under the  A1 through  A8 is provided by. 

  

           𝒞(𝑇, 𝑁)

=
[
 
 
 ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)] − 𝑟1(𝜆 + 𝑈)

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐺𝑁(𝑈) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0
𝑢𝑑𝐺𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅

]
 
 
 

∫
𝑈

0
𝐺𝑁(𝑢)𝑑𝑢 +

𝜆

𝛼0
2𝑁−1 𝐺𝑁(𝑈) + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 𝐺𝑖(𝑈) + 𝜏

                     (17) 

  

Deductions 

 

      The long-run average cost 𝒞(𝑈, 𝑁) is a bivariate function in 𝑈 and 𝑁. Obviously, when 𝑁 

is fixed, 𝒞(𝑈,𝑁) is a function of 𝑈. For fixed 𝑁 = 𝑚, it can be written as  
  

𝒞(𝑈, 𝑁) = 𝒞𝑚(𝑈), 𝑚 = 1,2,⋯. 
 

Thus, for a fixed 𝑚, we can find 𝑈𝑚
∗  by analytical or numerical methods such that 𝒞𝑚(𝑈𝑚

∗ ) is 

minimised. That is, when 𝑁 = 1,2,⋯ , 𝑚,⋯, we can find 𝑈1
∗, 𝑈2

∗, ⋯ , 𝑈𝑚
∗ , ⋯, respectively, such 

that the corresponding, 𝐶1(𝑈1
∗), 𝐶2(𝑈2

∗),⋯ , 𝐶𝑚(𝑈𝑚
∗ ),⋯, are minimised. Because the total 

lifetime of a multistate degenerative system is limited, the minimum of the long-run average 

cost per unit time exists. So we can determine the minimum of the long-run average cost per 
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unit time based on 𝐶1(𝑈1
∗), 𝐶2(𝑈2

∗),⋯ , 𝐶𝑚(𝑈𝑚
∗ ),⋯. Then, if the is denoted by 𝒞𝑛(𝑈𝑛

∗), we 

obtain the bivariate optimal replacement policy (𝑈,𝑁)∗ such that  

  

𝒞((𝑈, 𝑁)∗) = min
𝑚

𝐶𝑚(𝑈𝑚
∗ )                        

  

= [min
𝑈

𝒞(𝑈,𝑁)] 

  

≤ 𝒞(∞, 𝑁)          
  

= 𝐶(𝑁∗)            
 

 The optimal policy (𝑈,𝑁)∗ is better than the optimal policy 𝑁∗. Moreover, under some mild 

conditions the optimal replacement policy 𝑁∗ is better than the optimal policy 𝑈∗. So under the 

same conditions, an optimal policy (𝑈,𝑁)∗ is better than the optimal replacement policies 𝑁∗ 

and 𝑈∗. 
  

4.3  The Bivariate Policy (𝑻+, 𝑵) 

 

      This policy involves a multistate degenerative system with varying cost that is replaced at 

the first failure point when the cumulative operating time exceeds 𝑇 or when the 𝑁-th failure 
occurs, whichever occurs first. Muth (1977) used this method of replacing the system at the 

first failure point once the total operating time higher than a specified value.  

 

4.3.1  The length of a cycle and its mean 

      

     The length of a cycle 𝑊 under the bivariate replacement policy (𝑇+, 𝑁) with partial product 
process is  

  

𝑊 = (∑

𝜂

𝑖=1

𝑋𝑖 + 𝑌𝑖−1)𝜒(𝐿𝑁>𝑇) + (∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇) + 𝑍, 

 

 where 𝜂 = 1,2,⋯ , 𝑁 − 1 represents the number of failures prior to the system’s working age 

surpassing 𝑇. 

 

𝑃(𝜂 = 𝑗) = 𝑃(𝑋1 ≤ 𝑇,𝑋2 ≤ 𝑇,⋯ , 𝑋𝜂−1 ≤ 𝑇,𝑋𝜂 > 𝑇);   𝑗 = 1,2,⋯ 

  

                                             = 𝐹𝑗−1𝐹(𝑇). 
 

 Since 𝜂 is a random variable,   
 

𝐸(𝜂 − 1) = ∑

∞

𝑗=1

(𝑗 − 1)𝑝(𝜂 = 𝑗) 

  

                            = 𝐹𝑗−1(𝑇)∑

∞

𝑗=1

(𝑗 − 1)𝐹(𝑇)    
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                                                                           =
𝐹(𝑇)

𝐹(𝑇)
. 

   

Lemma 4.11 The mean length of the cycle under policy the (𝑇+, 𝑁) is  
  

𝐸(𝑊) = ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   [(1 − 𝑏)𝐹𝑁(𝑇) + 𝑏𝐹𝑖(𝑇)] +

𝐹(𝑇)

𝐹(𝑇)
∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   [(𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] 

                                              +∫
𝑇

0

𝑢𝑑𝐹𝑁(𝑢)

+ 𝜏.                                                                                      (18) 
  

Proof.  Examine  

  

𝐸(𝑤) = 𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇)] + 𝐸 [(∑

𝜂

𝑖=1

𝑋𝑖 + ∑

𝜂

𝑖=1

𝑌𝑖−1)𝜒(𝐿𝑁>𝑇)] + 𝐸(𝑍) 

  

                      = 𝐸 {𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝐿𝑁≤𝑇)|𝐿𝑁 = 𝑢]} 

  

    +𝐸 [(∑

𝜂

𝑖=1

𝑋𝑖)𝜒(𝐿𝑁>𝑇)] + 𝐸 [(∑

𝜂

𝑖=1

𝑌𝑖−1)𝜒(𝐿𝑁>𝑇)] + 𝐸(𝑍) 

  

= ∫
𝑇

𝑜

𝑢𝑑𝐹𝑁(𝑢) + ∫
𝑇

𝑜

∑

𝑁−1

𝑖=1

𝐸(𝑌𝑖)𝑑𝐹𝑁(𝑢) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝑃(𝐿𝑖 < 𝑇 < 𝐿𝑁)      

  

                         + ∑

𝑁−1

𝑖=1

𝐸(𝑋𝑖|𝜂 = 𝑁 − 1) 𝑃(𝐿𝑖 ≤ 𝑇 < 𝐿𝑁) + ∑

𝑁−1

𝑖=1

𝐸(𝑌𝑖−1) 𝐸[𝜒(𝐿𝑖≤𝑇<𝐿𝑁)] + 𝜏 

  

= ∫
𝑇

𝑜

𝑢𝑑𝐹𝑁(𝑢) + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   𝐹𝑁(𝑇) +

𝐹(𝑇)

𝐹(𝑇)
∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] 

  

                                   + ∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] + 𝜏, 

 

as intended and the lemma’s proof is now complete.                                                                           ◼  

 

Lemma 4.12 If 𝐿𝑁 ≤ 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  
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𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0

𝑢𝑑𝐹𝑁(𝑢). 

  

 Proof.  Examine  

  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)] = 𝐸 {𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛) 𝜒(𝐿𝑁≤𝑇)|𝐿𝑁]} 

  

                                                   = ∫
𝑇

0

𝐸 (∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛|𝐿𝑁 = 𝑢)𝑑𝐹𝑁(𝑢) 

  

                            = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0

𝑢𝑑𝐹𝑁(𝑢) 

  

Lemma 4.13 If 𝐿𝑁 > 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁>𝑇)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)]. 

  

Proof.  Examine  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁>𝑇)] = 𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁<𝑇<𝐿𝑁)] 

  

                                            = ∑

𝑁

𝑛=2

𝐸(𝑅𝑛𝑋𝑛)𝐸[𝜒(𝐿𝑁<𝑇<𝐿𝑁)] 

  

                                       = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)], 

 

Lemma 4.14 If 𝐿𝑁 ≤ 𝑇, then the expected repair cost is  

  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁≤𝑇)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐹𝑁(𝑇). 

  

Proof.  Examine  

  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛) 𝜒(𝐿𝑁≤𝑇)] = 𝐸 [𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝐿𝑁 = 𝑢)𝜒(𝐿𝑁≤𝑇)] 
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                                              = ∫
𝑇

0

𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝐿𝑁 = 𝑢)𝑑𝐹𝑁(𝑢) 

  

                            = ∫
𝑇

0

∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝑑𝐹𝑁(𝑢), 

 

Lemma 4.15 If 𝐿𝑁 > 𝑇, then the expected repair cost is  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁>𝑇)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)]. 

  

Proof.  Examine  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑁>𝑇)] = 𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝐿𝑛<𝑇<𝐿𝑁)] 

  

                                           = ∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝐸[𝜒(𝐿𝑛<𝑇<𝐿𝑁)] 

  

                                          = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)], 

  

The long-run average cost under policy (𝑻+, 𝑵) 

 

       The long-run average cost per unit of time for a multistate degenerative system with 

varying cost structures under the multistate bivariate replacement policy (𝑇+, 𝑁) with partial 
product process is  

  

𝒞(𝑇+, 𝑁) =
the expected cost incurred in a cycle

the expected length of a cycle
 

  

                                       =

[
𝐸{(∑𝜂

𝑛=1 𝐶𝑛𝑌𝑛 − ∑𝜂
𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁>𝑇) + 𝑐𝑝𝐸(𝑍)}

+𝐸{(∑𝑁−1
𝑛=1 𝐶𝑛𝑌𝑛 − ∑𝑁

𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝐿𝑁≤𝑇)} + 𝑅
]

𝐸(𝑊)
 

  

Using Lemmas 4.10 to 4.15, we obtain  
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𝒞(𝑇,𝑁) =
[
 
 
 ∑𝑁−1

𝑛=1
𝑐𝜇

𝛽0
2𝑛−1 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)] − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐹𝑛(𝑇) − 𝐹𝑁(𝑇)] + 𝑟1𝑇

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐹𝑁(𝑇) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑇

0
𝑢𝑑𝐹𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅 − 𝑟1𝜆

]
 
 
 

[
 
 
 ∫

𝑇

𝑜
𝑢𝑑𝐹𝑁(𝑢) + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1   𝐹𝑁(𝑇) +

𝐹(𝑇)

𝐹(𝑇)
∑𝑁−1

𝑖=1
𝜆

𝛼0
2𝑖−1   [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)]

+∑𝑁−1
𝑖=1

𝜇

𝛽0
2𝑖−1   [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] + 𝜏

]
 
 
 

 

 

 After combining the aforementioned facts, we arrive at the following conclusion. 

 

Theorem 4.3 The long run average cost per unit time for a multistate degenerative systemwith 

varying cost structures under the bivariate replacement policy (𝑇+, 𝑁) with partial product 
process for the model presented in section 3 under the  A1 through  A8 is provided by. 

 

       𝒞(𝑇+, 𝑁)

=
[
 
 
 𝑐 ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 [(1 − 𝑏)𝐹𝑁(𝑇) + 𝑏𝐹𝑖(𝑇)]

+  𝑟 ∫
𝑇

0
𝑢𝑑𝐹𝑁(𝑢) +

𝐹(𝑇)

𝐹(𝑇)
∑𝑁−1

𝑖=1
𝜆

𝛼0
2𝑖−1 [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)] + 𝑐𝑝𝜏 + 𝑅

]
 
 
 

[
 
 
 ∫

𝑇

𝑜
𝑢𝑑𝐹𝑁(𝑢) +

𝐹(𝑇)

𝐹(𝑇)
∑𝑁−1

𝑖=1
𝜆

𝛼0
2𝑖−1 [𝐹𝑖(𝑇) − 𝐹𝑁(𝑇)]

+∑𝑁−1
𝑖=1

𝜇

𝛽0
2𝑖−1 [(1 − 𝑏)𝐹𝑁(𝑇) + 𝑏𝐹𝑖(𝑇)] + 𝜏

]
 
 
 

.             (19) 

  

 The process used to determine the optimal policy (𝑇, 𝑁)∗ is also employed to obtain the 

bivariate optimal replacement policy (𝑇+, 𝑁)∗ with partial product process.  

  

4.4  The Bivariate Policy (𝑼−, 𝑵) 

      The multistate degenerative system will be replaced at the failure point in accordance with 

policy (𝑈−, 𝑁), either when the 𝑁-th failure occurs, whichever occurs first, or shortly before 

the overall repair time surpasses 𝑈.  

  

4.4.1  Virtual Repair Times 

         There may be an optimal policy in the policy (𝑈−, 𝑁), that requires replacing the system 
in the middle of the repair time. Since we might have been able to save cost on repairs, the 

question of whether it would have been cheaper to replace the system at the point of failure 

itself naturally comes up. In fact, Stadje and Zuckerman (1992) demonstrated for their policy 

𝑈 that there is an optimal replacement policy that does not replace during a repair period if 𝑌𝑠 
are new better then used in expectation. The strategy of not replacing system components in 

the middle of the operating cycle is cost-effective because our policies do not impose additional 

costs for replacement in the event of failure. 

 

4.4.2  The length of a cycle and its mean 

         The length of a cycle 𝑊 under the bivariate replacement policy (𝑈−, 𝑁) with partial 
product process is  
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𝑊 = (∑

𝜂

𝑖=1

𝑋𝑖 + ∑

𝑣

𝑖=𝑜

𝑌𝑖)𝜒(𝑀𝑁>𝑈) + (∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝑀𝑁≤𝑈) + 𝑍, 

  

where 𝜂 = 1,2,⋯ , 𝑁 − 1 represents the number of failures prior to the system’s overall repair 

time surpassing 𝑈 and 𝜒(.) And the number of repairs before the overall repair time above 𝑈 is 

denoted by 𝑉 = 0,1,2,⋯ , 𝑁 − 1. If 𝑀𝑖 ≤ 𝑈 < 𝑀𝑖+1 for 𝑖 = 1,2,⋯ ,𝑁 − 1, then 𝑈 − 𝑀𝑖 will 
be the virtual repair time.  

 

Lemma 4.16 The mean length of the cycle under policy (𝑈−, 𝑁) is  

 

  

𝐸(𝑊) = ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) +
𝐺(𝑈)

𝐺(𝑈)
∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   [𝐺𝑖(𝑈) − 𝐺𝑁(𝑈)] + ∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   𝐺𝑖−1(𝑈) 

                                                     +
𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈)

+ 𝜏                                                                             (20) 
  

 Proof.  Examine  

  

𝐸(𝑊) = [(∑

𝜂

𝑖=1

𝑋𝑖 + ∑

𝑣

𝑖=𝑜

𝑌𝑖)𝜒(𝑀𝑁>𝑈)] + 𝐸 [(∑

𝑁

𝑖=1

𝑋𝑖 + ∑

𝑁−1

𝑖=1

𝑌𝑖)𝜒(𝑀𝑁≤𝑈)] + 𝐸(𝑍) 

  

                          = ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + 𝐸 [∑

𝜂

𝑖=1

𝑋𝑖𝜒(𝑀𝑁>𝑈)
] + 𝐸 [∑

𝑣

𝑖=0

𝑌𝑖𝜒(𝑀𝑁>𝑈)
]

+ 𝐸(𝑍) 
  

= ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝐸(𝑋𝑖) 𝑃[𝑀𝑖−1 ≤ 𝑈 < 𝑀𝑁] 

 

    + ∑

𝑁−1

𝑖=0

𝐸(𝑌𝑖|𝑣) 𝑃[𝑀𝑖 ≤ 𝑈 < 𝑀𝑁] + 𝐸(𝑍) 

  

= ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) + ∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   [𝐺𝑖−1(𝑈) − 𝐺𝑁(𝑈)] 

  

    + ∑

𝑁−1

𝑖=0

𝐸(𝑌𝑖)𝐸(𝑣 − 1) [𝐺𝑖(𝑈) − 𝐺𝑁(𝑈)] + 𝜏 

  

                       = ∫
𝑈

0

𝑢𝑑𝐺𝑁(𝑢) +
𝐺(𝑈)

𝐺(𝑈)
∑

𝑁−1

𝑖=1

𝜇

𝛽0
2𝑖−1   [𝐺𝑖(𝑈) − 𝐺𝑁(𝑈)] 
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    +∑

𝑁

𝑖=1

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∑

𝑁−1

𝑖=1

𝜆

𝛼0
2𝑖−1   [𝐺𝑖−1(𝑈) − 𝐺𝑁(𝑈)] + 𝜏, 

 

 as desired and this completes the proof of the lemma.                                                                              ◼  

 

Lemma 4.17 If 𝑀𝑁 ≤ 𝑈 and 𝑛 ≥ 2, then the expected reward earned is  
  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)] = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0

𝑢𝑑𝐺𝑁(𝑢). 

  

Proof.  Examine  

  

𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛) 𝜒(𝑀𝑁≤𝑈)] = 𝐸 {𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)|𝑀𝑁]} 

  

                                                  = ∫
𝑈

0

𝐸 (∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛|𝑈𝑁 = 𝑢)𝑑𝐺𝑁(𝑢) 

  

                            = ∑

𝑁

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0

𝑢𝑑𝐺𝑁(𝑢) 

  

Lemma 4.18 If 𝑀𝑁 > 𝑇 and 𝑛 ≥ 2, then the expected reward earned is  
  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)] = ∑

𝑁−1

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)]. 

 Proof.  Examine  

  

𝐸 [(∑

𝜂

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)] = 𝐸 [(∑

𝑁

𝑛=2

𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁<𝑈<𝑀𝑁)]              

  

                                                      = ∑

𝑁

𝑛=2

𝐸(𝑅𝑛𝑋𝑛)𝐸[𝜒(𝑀𝑁<𝑈<𝑀𝑁)]                    

                                                    

                                                                             = ∑

𝑁−1

𝑛=2

𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)],                                 

 

Lemma 4.19 If 𝑀𝑁 ≤ 𝑈, then the expected repair cost is  
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𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁≤𝑈)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐺𝑁(𝑈).                                

 Proof.  Examine  

  

𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁≤𝑈)] = 𝐸 [𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝑀𝑁 = 𝑢)𝜒(𝑀𝑁≤𝑈)] 

  

                                             = ∫
𝑈

0

𝐸 (∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛|𝑀𝑁 = 𝑢)𝑑𝐺𝑁(𝑢) 

  

                          = ∫
𝑈

0

∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝑑𝐺𝑁(𝑢), 

 

Lemma 4.20 If 𝑀𝑁 > 𝑈, then the expected repair cost is  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁>𝑈)] = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)]. 

  

 Proof.  Examine  

  

𝐸 [(∑

𝜂−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑁>𝑈)] = 𝐸 [(∑

𝑁−1

𝑛=1

𝐶𝑛𝑌𝑛)𝜒(𝑀𝑛<𝑈<𝑀𝑁)] 

  

                                             = ∑

𝑁−1

𝑛=1

𝐸(𝐶𝑛𝑌𝑛)𝐸[𝜒(𝑀𝑛<𝑈<𝑀𝑁)] 

  

                                            = ∑

𝑁−1

𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)], 

 
 

The long-run average cost under policy (𝑼−, 𝑵) 

      The long-run average cost per unit of time for a multistate degenerative system with varying 

cost structures under the multistate bivariate replacement policy (𝑈−, 𝑁) with partial product 
process is.  

  

𝒞(𝑈, 𝑁) =
the expected cost incurred in a cycle

the expected length of a cycle
 

 

  



Journal of Computational Analysis and Applications                         VOL. 33, NO. 7, 2024 

 

1867                                     Affan Ahmed .J et al 1843-1868 

         =

[
𝐸{(∑𝜂

𝑛=1 𝐶𝑛𝑌𝑛 − 𝑈 ∑𝜂
𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁>𝑈)} + 𝑐𝑝𝐸(𝑍)

+𝐸{(∑𝑁−1
𝑛=1 𝐶𝑛𝑌𝑛 − ∑𝑁

𝑛=1 𝑅𝑛𝑋𝑛)𝜒(𝑀𝑁≤𝑈)} + 𝑅
]

𝐸(𝑊)
       

 

 Using Lemmas 4.16 to 4.20, we obtain  

  

𝒞(𝑈, 𝑁) =
[
 
 
 ∑𝑁−1

𝑛=1
𝑐𝜇

𝛽0
2𝑛−1 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)] − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 [𝐺𝑛(𝑈) − 𝐺𝑁(𝑈)] + 𝑟1𝑈

+∑𝑁−1
𝑛=1

𝑐𝜇

𝛽0
2𝑛−1 𝐺𝑁(𝑈) − ∑𝑁

𝑛=2
𝑟𝜆

𝛼0
2𝑛−2 ∫

𝑈

0
𝑢𝑑𝐺𝑁(𝑢) + 𝑐𝑝𝜏 + 𝑅 − 𝑟1𝜆

]
 
 
 

∫
𝑈

0
𝐺𝑁(𝑢)𝑑𝑢 +

𝜆

𝛼0
2𝑁−1 𝐺𝑁(𝑈) + ∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1 𝐺𝑖(𝑈) + 𝜏

 

 

After combining the aforementioned facts, we arrive at the following conclusion. 

 

Theorem 4.4 The long run average cost per unit time for a multistate degenerative systemwith 

varying cost structures under the bivariate replacement policy (𝑈−, 𝑁) with partial product 
process for the model presented in section 3 under the  A1 through  A8 is provided by. 

  

              𝒞(𝑈−, 𝑁)

=
[
 
 
 
 𝑐 ∫

𝑈

0
𝑢𝑑𝐺𝑁(𝑢) +

𝐺(𝑈)

𝐺(𝑈)
∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1   [𝐺𝑖(𝑈) − 𝐺𝑁(𝑈)]

−  𝑟 ∑𝑁−1
𝑖=1

𝜆

𝛼0
2𝑖−1   𝐺𝑖−1(𝑈) +

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + 𝑐𝑝𝜏 + 𝑅

]
 
 
 
 

[
 
 
 
 ∑𝑁−1

𝑖=1
𝜆

𝛼0
2𝑖−1   𝐺𝑖−1(𝑈) +

𝜆

𝛼0
2𝑁−1   𝐺𝑁(𝑈) + ∫

𝑈

0
𝑢𝑑𝐺𝑁(𝑢)

+
𝐺(𝑈)

𝐺(𝑈)
∑𝑁−1

𝑖=1
𝜇

𝛽0
2𝑖−1   [𝐺𝑖(𝑈) − 𝐺𝑁(𝑈)] + 𝜏

]
 
 
 
 

.                         (21) 

  

5. CONCLUSION 

By considering a repairable system for a monotone process model of a multi component 

multistate degenerative system varying cost structures, explicit expressions for the long-run 

average cost per unit time under a bivariate replacement policies (𝑇,𝑁), (𝑈,𝑁), (𝑇+, 𝑁) and 
(𝑈−, 𝑁) with partial product process have been derived. Existence of optimal value of has been 

deduced. 
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