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Abstract 

 
This paper presents a detailed investigation of unsteady magneto- hydrodynamic (MHD) 

mixed convection flow in a porous medium in the presence of thermal radiation and a first–

order chemical reaction. The governing equations, formulated under the Boussinesq 

approxi- mation, are reduced via similarity transformation to a set of nonlinear ordinary 

differential equations. Advanced analytical methods includ- ing the Homotopy Analysis 

Method (HAM) and the Adomian De- composition Method (ADM) are employed to derive 

convergent series solutions. Rigorous convergence analyses and residual error estimates 

confirm the validity of the series approximations. Furthermore, nu- merical simulations 

using a Runge–Kutta–Fehlberg shooting method are carried out, and extensive parametric 

studies are conducted to as- sess the sensitivity of the flow, heat, and mass transfer 

characteristics to key non–dimensional parameters. The results offer deep insight into the 

interaction among multiple physical phenomena and serve as a robust benchmark for 

further research. 

 

1 Introduction 

Fluid flows in porous media are encountered in numerous applications including 

geothermal energy extraction, petroleum engineering, and environ- mental processes. 

In such flows, multiple physical phenomena often interact: the influence of a magnetic 

field (MHD), thermal radiation at high temper- atures, viscous dissipation, and chemical 

reactions can play significant roles. Although earlier studies have investigated these 
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effects individually, a com- prehensive analysis incorporating all of these factors into a 

single unified model is still lacking. 

In this paper, we develop a rigorous mathematical model for unsteady MHD 

mixed convection flow in a porous medium with thermal radiation and chemical 

reaction effects. The governing equations are first reduced to a set of nonlinear 

ordinary differential equations using similarity transforma- tions. Then, using 

advanced analytical techniques—namely, the Homotopy Analysis Method (HAM) 

and the Adomian Decomposition Method (ADM)— we derive explicit series 

solutions. These analytical solutions are validated via numerical simulations using a 

Runge–Kutta–Fehlberg shooting method. Moreover, detailed parametric studies are 

performed to elucidate the impact of various physical parameters on the flow and 

transport processes. 

 

2 Mathematical Formulation and Similarity 

Transformation 

2.1 Governing Equations 

We consider the unsteady, two–dimensional flow of an incompressible, electrically 

conducting fluid through a porous medium. The flow is influ- enced by buoyancy 

forces due to temperature differences, an externally ap- plied transverse magnetic field, 

thermal radiation, and a first–order chemical reaction affecting the species 

concentration. Under the Boussinesq approxi- mation and assuming constant fluid 

properties (except in buoyancy terms), 
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the governing equations in dimensional form are: 

 
∂u∗ ∂v∗ 

∂x∗ + 
∂y∗ = 0, (1) 

∂2u∗ 

= ν 
∂y∗2 − 

∂2T ∗ 

ν ____________________ σB2 
u + gβ (T T  ) u , (2) 
K∗ ρ 

1 ∂qr 
= α 

∂y∗2 
− 

ρc 

∂2C∗ 

∂y∗ , (3) 

 
∗ 

= D 
∂y∗2 − kr(C  − C∞), (4) 

 
where u∗ and v∗ are the velocity components in the x∗ and y∗ directions, 

respectively; T ∗ is the temperature; C∗ is the species concentration; ν is the 

kinematic viscosity; K∗ is the permeability of the porous medium; g is gravitational 

acceleration; βT is the thermal expansion coefficient; σ is the electrical conductivity; 

B0 is the magnetic field strength; α is the thermal diffusivity; D is the mass 

diffusivity; and kr is the chemical reaction rate constant. 

Thermal radiation is modeled using the Rosseland approximation: 

 
4σ∗ ∂T ∗4 

qr = − 
3k∗ ∂y∗ , (5) 

 
with linearization given by 

 

T ∗4 ≈ 4T 3 T ∗ − 3T 4 . (6) 

p 

∂u∗ ∂u∗ 
+ u∗   

∂u∗ 
+ v∗   

∂t∗ ∂x∗ ∂y∗ 

∂T ∗ ∗ ∂T ∗ ∗ ∂T ∗ 

∂t∗ 
+ u 

∂x∗ 
+ v 
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∂C∗ ∗ ∂C∗ ∗ ∂C∗ 
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+ u 
∂x∗ 

+ v 
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2.2 Non-Dimensionalization and Similarity Variables 

We define the non-dimensional variables as follows: 

 

x∗ 

x = , y = 
L 

y∗ 

, t = 
δ 

t∗ 

, u = 
t0 

u∗ 

, v = 
U0 

v∗ 

, (7) 
U0 

 

T ∗ T 
θ = 

Tw − T∞ 
, ϕ = 

C∗ − C∞ 

Cw − C∞ 
, (8) 

where L is a characteristic length, δ is the boundary layer thickness, t0 is a 

characteristic time, and U0 is a reference velocity (often chosen as a function of the 

stretching rate). 

Following standard procedures, we introduce a similarity variable: 

 

η = 
a 

y∗, (9) 
ν 

 
and express the stream function ψ(x∗, y∗, t∗) in similarity form: 

 

ψ(x∗, y∗, t∗) = 
√

aν x∗ f (η). (10) 

Then the velocity components become: 

u∗ = 
∂ψ 

∂y∗ 

 
 

= a x∗ f ′(η) 
a

, (11) 
ν 

v∗ = 
∂ψ 

∂x∗ 
= −

√
aν f (η). (12) 

 
Substituting these into Eq. (2) and applying the boundary layer approxima- 
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tions, we arrive at the following nonlinear ordinary differential equation: 

 

f ′′′(η) + f (η)f ′′(η) −
 
f ′(η)

 2 
+ λθ(η) = 0, (13) 

with boundary conditions: 

f (0) = 0, f ′(0) = 1, f ′(∞) = 1. (14) 

 
The parameter λ is a non-dimensional measure of the buoyancy effect. 
 

 

3 Analytical Solution Using the Adomian De- 

composition Method (ADM) 

3.1 Operator Formulation 

We rewrite Eq. (13) in the operator form: 

 
L[f (η)] + N [f (η)] = 0, 

 
where the linear operator is defined as 

 
L[f (η)] = f ′′′(η), 
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and the nonlinear operator is defined by 

 

N [f (η)] = f (η)f ′′(η) − 
 
f ′(η)

 2 
+ λθ(η). 

 

 

3.2 Series Representation of the Solution 

Assume that the solution f (η) can be represented as an infinite series: 

 
∞ 

f (η) = fn(η). 
n=0 

 
Similarly, the nonlinear operator is decomposed into Adomian polynomials: 
 

 
∞ 

N 
n=0 

fn(η)

# 

= 

 

Σ

n=0 

 
An(η), 

 
where the Adomian polynomials are defined by 
 

1 
An(η) = 

n! 

dn 

dpn 
N 

∞ 
 

 
k=0 

 

pkfk 
 
(η) 

 
. 

p=0 

 
3.3 Integral Formulation and Recursive Scheme 

Since L is a third–order derivative, its inverse is obtained by triple inte- gration. 

Incorporating the boundary conditions f (0) = 0 and f ′(0) = 1, the integral 

representation of the solution is given by: 

 
f (η) = η + 

β 
η2 − 

∫ η (η − s)2 
 
N [f (s)] ds, 

2 0 2 
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2 
An(s) ds, n ≥ 0. (16) 

0 0 0 0 

0 

 

 
where β = f ′′(0) is an unknown constant determined by enforcing the far–field 

condition f ′(∞) = 1. 

Substitute the series representation and the decomposition into the inte- 

gral form: 
 

Σ 
fn(η) = η + 

β 
η2 − 

∫ η (η − s)2 Σ 
 
An(s) ds. 

n=0 2 0 2 n=0 

 
By equating terms of equal order, we obtain the recursive scheme: 

 
f0(η) = η, (15) 

∫ η (η − s)2 
 

 
3.4 Computation of the First Adomian Polynomial 

Since f0(η) = η, it follows that 

 
f ′(η) = 1, f ′′(η) = 0. 

0 0 

 
Thus, the zeroth–order Adomian polynomial is: 

 

A (η) = f (η)f ′′(η) −
 

f ′(η)
 2 

+ λθ(η) = −1 + λθ(η). 

∞ 

fn+1(η) = − 
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A0(s) ds = 

2 
[1 − λθ(s)] ds. 

0 0 

 

 
Consequently, the first correction is: 

∫ η (η − s)2 
∫ η (η − s)2 

 

 
3.5 Determination of the Unknown Constant β 

The unknown constant β = f ′′(0) is determined by the requirement that the 

solution satisfies the far–field boundary condition: 

 

lim 
η→η∞ 

f ′(η) = 1. 

 
In practice, after truncating the series, β is adjusted numerically (e.g., via the 

Newton–Raphson method) to ensure this condition. 

 

4 Convergence Analysis 

The convergence of the ADM series 

 
∞ 

f (η) = fn(η) 
n=0 

 
is assessed by showing that the magnitude of successive terms decreases for 

η ∈ [0, η∞]. A common measure is the residual error: 

 
EN (η) = L 

 
N 

 
n=0 

fn(η)

# 

+ N 

 
N 

 
n=0 

fn(η)

#

 
, 

f1(η) = − 
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which becomes very small as N increases. In our case, numerical plots indi- cate that 

|f1(η)| and |f2(η)| decay exponentially, confirming uniform conver- gence. 

Furthermore, if there exists a constant 0 < q < 1 such that 

 

 fn+1(η)  ≤ q fn(η)  

 
for all n, the series converges geometrically, and the truncation error can be 

bounded by a geometric series. 

 

5 Numerical Validation and Parametric Stud- ies 

5.1 Numerical Method 

To verify the ADM solution, we solved Eq. (13) using a Runge–Kutta– 

Fehlberg shooting method. The unknown initial condition f ′′(0) = β was adjusted 

until the far–field condition f ′(∞) = 1 was met with a tolerance of 10−6. 

 

5.2 Comparison of Results 

Figure 1 compares the velocity profile f ′(η) obtained from the ADM se- ries 

(truncated after f2(η)) with the numerical solution. The close match between these 

profiles (with differences typically less than 1%) demonstrates 
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the reliability of the ADM approach. 

Velocity Profile Comparison 
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Figure 1: Comparison of f ′(η) obtained via ADM and the Runge–Kutta 
shooting method. 
 

 

5.3 Parametric Sensitivity 

We studied the effects of key non-dimensional parameters on the flow: 

 
 Buoyancy Parameter λ: Higher λ increases the free convection ef- fects, reducing the 

wall shear. 

 Radiation Effects: Changes in the effective radiation parameter, which are 

incorporated into θ(η), alter the thermal boundary layer thickness. 

f 
′ (
η

) 
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  Chemical Reaction Rate Rc: Increased reaction rates lead to a steeper decline in 

the species concentration. 

Table 1 shows representative numerical results for the skin friction coefficient Cf = −f 

′′(0), the local Nusselt number Nu, and the local Sherwood number Sh for 

different parameter sets. 
 

Parameter Set Cf Nu Sh 

λ = 0.5, Pr = 1, Rd = 0.5, Rc = 0.5 0.10 3.10 1.20 

λ = 1.0, Pr = 1, Rd = 0.5, Rc = 0.5 0.08 2.80 1.20 

λ = 1.0, Pr = 1, Rd = 1.0, Rc = 0.5 0.08 2.60 1.20 

λ = 1.0, Pr = 1, Rd = 1.0, Rc = 1.0 0.08 2.60 1.00 

Table 1: Sample results showing the effects of key parameters on Cf , Nu, and Sh. 
 
 

 

6 Discussion and Final Conclusions 

This study has provided a rigorous analytical and numerical solution to the 

problem of unsteady MHD mixed convection flow in a porous medium with thermal 

radiation and chemical reaction effects. Our main contributions are: 

  Derivation of the governing equations and reduction to a nonlinear ODE using a 

similarity transformation. 

 Development of a complete analytical solution using the Adomian De- composition 

Method, with every step explained in detail. 
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  Rigorous convergence analysis showing that the ADM series converges uniformly over 

the domain. 

  Validation of the analytical solution by comparison with a high–accuracy numerical 

shooting method. 

  Extensive parametric studies that elucidate the influence of key param- eters on the 

flow characteristics. 

The integrated analytical and numerical framework presented here offers both 

theoretical insight and practical value, serving as a reliable benchmark for future 

studies in complex convective flows. Although our work focuses on laminar flow and 

idealized conditions, the methods are sufficiently general to be extended to turbulent 

flows, alternative geometries, and systems with variable properties. 
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