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ABSTRACT 

This work examines the unstable magnetohydrodynamic free convective flow of a micropolar 

fluid adjacent to a semi-infinite vertical plate. A homogeneous magnetic field is applied 

orthogonally to the plate. The suction/injection on the plate and the permeability of the 

porous material are presumed to fluctuate over time. Disregarding the induced magnetic field, 

the solutions for velocity and temperature are derived using the regular perturbation 

technique. The graphical representation illustrates the impacts of the permeability parameter, 

coupling stress, microrotation parameter, slip flow parameter, and other relevant parameters 

involved in the problem.  
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1. INTRODUCTION 

The micropolar fluid theory, formulated by Eringen [1,2,3], delineates certain physical 

systems that do not conform to the Navier-Stokes equations. This general theory of 

micropolar fluids deviates from that of Newtonian fluid by adding two more variables to the 

velocity. These variables are micro-rotation that is spin and microinertia tensor describing the 

distributions of atoms and molecules inside the microscopic fluid particles. This hypothesis 

may be applied to describe the phenomenon of the flow of colloidal fluids, liquid crystals, 

polymeric suspensions, animal blood etc. An exceptional research of micropolar fluids and 

their applications was reported by Ariman et. Al. [4]. Gorla et.al. [5] have evaluated the 

steady state heat transfer in a micropolar fluid flow over a semi-infinite plate utilizing 

similarity variables analytical variables. Rees and Pop [6] examined free convection 

boundary layer flow of a micropolar fluid from a vertical flat plate. Singh [7] have examined 

free convection movement of micropolar fluid using finite difference technique.  

In the present stage of modern technologies, the study of flow and heat transfer for an 

electrically conducting micropolar fluid under the influence of a magnetic field has caught 

the interest of many investigators due to its vast diversity of applications. These applications 
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include magnetohydrodynamic (MHD) generators, plasma investigations, nuclear reactors, 

oil exploration, geothermal energy extractions and the boundary layer control in the field of 

aerodynamics. Also, the porous media heat transfer problems have various practical 

engineering applications such as crude oil extraction, ground water contamination and 

another many practical uses. Hiremath and Patil [8] studied the effect on free convection 

currents on the oscillatory flow of polar fluid through a porous media, which is constrained 

by vertical flat surface of constant temperature. Unsteady hydromagnetic free convection 

flow of Newtonian and polar fluid has been examined by Helmy [9].  

El-Hakien et.al. [10] studied the effects of viscous and Joule heating on MHD-free 

convection flow with variable plate temperature in a micropolar fluid. El-Amin [11] studied 

the MHD free-convection and mass transfer flow in a micropolar fluid across a stationary 

vertical plate with constant suction. Kim [12] examined unsteady free convection flow of 

micropolar fluid past a vertical plate embedded in porous media and extended his work [13] 

to study the implications of heat and mass transfer in MHD micropolar fluid flow past a 

vertical moving plate.  

At the macroscopic level, it is widely acknowledged that the boundary condition for a viscous 

fluid at a solid wall is one of no-slip, meaning that the fluid velocity equals the solid 

boundary velocity. Although the no-slip condition has been shown to be accurate for a variety 

of macroscopic flows, it is still assumed that it is not founded on physical principles. In many 

real-world situations, a particle near a solid surface no longer absorbs the surface's velocity. 

The tangential velocity of the particle at the surface is constrained. It moves across the 

surface. This influence cannot be disregarded, and the flow regime is known as the slip flow 

regime. Power generators, refrigeration coils, transmission lines, electric transformers, and 

heating elements are only a few of the crucial technical applications for the study of magneto-

micropolar fluid flows in the slip flow regime with heat transfer. The effects of permeability 

variation on MHD unsteady flow of polar fluid through a porous medium in slip flow regime 

over an infinite porous flat plate were investigated by Khandelwal et al. [14]. Sharma and 

Chaudhary [15] studied the effect of altering suction on transient free convective viscous 

incompressible flow via a vertical plate in slip-flow regime. In the slip-flow regime, Sharma 

[16] investigated the effects of periodic temperature and concentration on unsteady free 

convection flow through a vertical plate.  

Khandelwal et al. [17] investigated how slip factors affected the radiative unsteady MHD free 

convection. Free magnetopolar fluid with a temperature-dependent heat source in the slip 
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flow regime was studied by Kumar and Tak [18]. In the slip-flow regime, Chaudhary and Jha 

[19] talked about MHD micropolar fluid flow past a vertical plate. Singh [20] talked about 

the Free Convective Flow of Magneto-Polar Fluid in Non-Homogeneous Porous Medium in 

Slip Flow Regime. Unsteady magnetohydrodynamic boundary layer slip flow past a with 

thermal radiation was perturbed and analyzed by Pal and Talukdar [21]. Sengupta and Ahmed 

[22] have determined the free convective low of a dissipative fluid with thermal diffusion and 

changing wall temperature in velocity slip regime. In the presence of a transverse magnetic 

field, boundary layer flow nea with slip has been investigated by Yakubu and Makinde [23]. 

In the presence of heat radiation, Choudhary et al. [24] demonstrated MHD free convective 

slip flow of polar and Newtonian fluids across porous media. 

2. FORMULATION OF THE PROBLEM 

We examine the free convective unstable laminar flow of an electrically conducting, 

incompressible micropolar fluid in the slip flow regime, where a transverse magnetic field 

and radiation are present, across an infinite porous vertical flat plate buried in a non-

homogeneous porous medium. We made the assumption that the plate was porous and that 

the suction/injection velocity was falling exponentially over time, with a constant mean that 

was not zero.  In cartesian co-ordinate system, the 𝑥∗-axis is chosen along the porous plate, 

which moves with uniform velocity 𝑢∗ = 𝑢0(1 + 𝜀𝑒−𝑛∗𝑡∗
) and 𝑦∗-axis normal to it. Besides, 

the analysis is based on the following assumptions:  

(i) The homogeneous magnetic field with modest magnetic Reynolds number works 

transversely to the direction of flow. 

(ii) The induced magnetic field is insignificant since the Reynolds number of the 

magnetic field is low. 

(iii) The viscous dissipation effect, the polarization effect, and the Hall effect are 

disregarded. 

(iv) The size of holes in the porous plate is significantly greater than the characteristics 

tiny length scale of the micropolar fluid to ease formulation of the boundary 

conditions. 

(v) Because of the infinite plate assumption, the flow variables are just functions of time 

𝑡∗and normal distance 𝑦∗ . 

(vi) Ohmic heating and viscous dissipation effects are disregarded.  
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(vii) By simulating the Boussinesq approximation, density changes are only visible in the 

momentum equation's normal buoyancy parts. 

(viii) It is assumed that the suction/injection velocity and the porous medium's permeability 

have the following forms: 𝐾∗(𝑡) = 𝐾0
∗(1 + 𝜀𝑒−𝑛∗𝑡∗

) and 𝑣∗(𝑡) = 𝑣0
∗(1 + 𝜀𝑒−𝑛∗𝑡∗

) 

respectively.     

Under the present configuration, the equations governing the flow are: 

    
𝜕𝑣∗

𝜕𝑦∗ = 0                                                                                                                (1) 

  
𝜕𝑢∗

𝜕𝑡∗
− 𝑣0(1 + 𝜀𝑒−𝑛∗𝑡∗

)
𝜕𝑢∗

𝜕𝑦∗
 =  (𝜈 + 𝜈𝑟)

𝜕2𝑢∗

𝜕𝑦∗2 + 𝑔𝛽(𝑇∗ − 𝑇∞
∗ ) − 

 
𝜈

𝐾0
∗(1+𝜀𝑒−𝑛∗𝑡∗

)
𝑢∗ −

𝜎

𝜌
𝐵0

2𝑢∗ + 2𝜈𝑟
𝜕𝜔∗

𝜕𝑦∗                                                                   (2) 

𝜕𝜔∗

𝜕𝑡∗ − 𝑣0(1 + 𝜀𝑒−𝑛∗𝑡∗
)

𝜕𝜔∗

𝜕𝑦∗  =  
𝛾

𝜌𝑗
 
𝜕2𝜔∗

𝜕𝑦∗2                                                                (3) 

 

𝜕𝑇∗

𝜕𝑡∗ − 𝑣0(1 + 𝜀𝑒−𝑛∗𝑡∗
)

𝜕𝑇∗

𝜕𝑦∗  =  
𝑘

𝜌𝐶𝑝
 
𝜕2𝑇∗

𝜕𝑦∗2 −
1

𝜌𝐶𝑝
 
𝜕𝑞𝑟

∗

𝜕𝑦∗                                               (4) 

The proper boundary conditions of the problem are: - 

𝑢∗ = 𝑢0(1 + 𝜀𝑒−𝑛∗𝑡∗
) +

(2 − 𝑚1)𝐿

𝑚1
 
𝜕𝑢∗

𝜕𝑦∗
 ,

𝜕𝜔∗

𝜕𝑦∗
= −

𝜕2𝑢∗

𝜕𝑦∗2  , 

 𝑇∗ = 𝑇𝑤
∗ + 𝜀(𝑇𝑤

∗ − 𝑇∞
∗ )𝑒−𝑛∗𝑡∗

+
(2−𝑚1)

𝑚1

2𝛾

(𝛾+1)
  

𝐿

𝑃𝑟
(

𝜕𝑇∗

𝜕𝑦∗)  at   𝑦∗ = 0                   

𝑢∗ → 0,        𝜔∗ → 0,         𝑇∗ → 0   as    𝑦∗ → ∞                                            (5)  

The following non-dimensional quantities are introduced in order to solve the equations 

governing the flow: 

𝑢 =
𝑢∗

𝑢0 
, 𝑣 =

𝑣

𝑣0
, 𝑦 =

𝑣0𝑦∗

𝜈
, 𝑡 =

𝑡∗𝑣0
2

𝜈
, 𝑛 =

𝑛∗𝜈

𝑣0
2 , 𝜔∗ =

𝜔𝑢0𝑣0

𝜈
, 𝑇 =

𝑇∗−𝑇∞
∗

𝑇𝑤
∗ −𝑇∞

∗    

Considering above specified non-dimensional quantities in equations (1)-(4), we get:  

𝜕𝑢

𝜕𝑡
− (1 + 𝜀𝑒−𝑛𝑡)

𝜕𝑢

𝜕𝑦
= (1 + 𝛼)

𝜕2𝑢

𝜕𝑦2 + 𝐺𝑟𝑇 −
1

𝐾0(1+𝜀𝑒−𝑛𝑡)
𝑢 − 𝑀2𝑢 + 2𝛼

𝜕𝜔

𝜕𝑦
      (6)    

𝜕𝜔

𝜕𝑡
− (1 + 𝜀𝑒−𝑛𝑡)

𝜕𝜔

𝜕𝑦
=

1

𝜆

𝜕2𝜔

𝜕𝑦2
                                                (7) 
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𝜕𝑇

𝜕𝑡
− (1 + 𝜀𝑒−𝑛𝑡)

𝜕𝑇

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝑇

𝜕𝑦2 − 𝐹𝑇                                     (8) 

Where  𝛼 =
𝜈𝑟

𝜈
  (Kinematic rotational viscosity parameter) 

 𝐺𝑟 =
𝑔𝛽𝜈(𝑇𝑤

∗ −𝑇∞
∗ )

𝑢0𝑣0
2   (Buoyancy parameter), 𝐾0 =

𝐾0
∗𝑣0

2

𝜈2   (Permeability parameter) 

𝑀2 =
𝜎𝜈𝐵0

2

𝜌𝑣0
2   (Magnetic parameter),  𝜆 =

𝜇𝑗

𝛾
  (Microrotation parameter) 

𝑃𝑟 =
𝜈𝜌𝐶𝑝

𝑘
   (Prandtl number),  𝐹 =

4𝜈𝐼′

𝜌𝐶𝑝𝑣0
2  (Radiation parameter)  

𝜕𝑞𝑟
∗

𝜕𝑦∗
= 4(𝑇𝑤

∗ − 𝑇∞
∗ )𝐼′  where 𝐼′ = ∫ 𝑘𝜆𝑤

∞

0

𝜕𝑒𝑏𝜆

𝜕𝑇∗
𝑑𝜆 ,  𝑘𝜆𝑤 is absorption coefficient at the wall 

and Planck's function is represented by ebλ . 

The non-dimensional form of the boundary conditions in (5) is as follows: 

𝑢 = 1 + 𝜀𝑒−𝑛𝑡 + ℎ1
𝜕𝑢

𝜕𝑦
,   

𝜕𝜔

𝜕𝑦
= −

𝜕2𝑢

𝜕𝑦2 ,   𝑇 = 1 + 𝜀𝑒−𝑛𝑡 + ℎ2
𝜕𝑇

𝜕𝑦
  at  𝑦 = 0 

𝑢 → 0,     𝜔 → 0,     𝑇 → 0      as   𝑦 → ∞            (9)  

Where   ℎ1 =
(2−𝑚1)𝐿𝑣0

𝑚1𝜈
  (Refraction parameter) and 

ℎ2 =
(2−𝑚1)

𝑚1

2𝛾

(𝛾+1)

𝐿𝑣0

𝑃𝑟𝜈
   (Temperature jump parameter) 

3. SOLUTION OF THE PROBLEM 

In order to solve differential equations (6)-(8), we assume that 𝑢, 𝜔 and 𝑇(𝜀 ≪ 1) have the 

following solutions. 

𝑢(𝑦, 𝑡) = 𝑢0(𝑦) + 𝜀𝑢1(𝑦)𝑒−𝑛𝑡 + 0(𝜀2)

𝜔(𝑦, 𝑡) = 𝜔0(𝑦) + 𝜀𝜔1(𝑦)𝑒−𝑛𝑡 + 0(𝜀2)

𝑇(𝑦, 𝑡) = 𝑇0(𝑦) + 𝜀𝑇1(𝑦)𝑒−𝑛𝑡 + 0(𝜀2)

}                                                       (10)         

Introducing (10) into the non-dimensional differential equations (6)-(8) and comparing the 

coefficient of ε0 and ε1, neglecting the coefficient of ε2 and higher powers, we obtain: 

(1 + 𝛼)
𝜕2𝑢0

𝜕𝑦2
+

𝜕𝑢0

𝜕𝑦
− 𝑀1𝑢0 = −𝐺𝑟𝑇0 − 2𝛼

𝜕𝜔0

𝜕𝑦
                                                    (11) 

(1 + 𝛼)
𝜕2𝑢1

𝜕𝑦2
+

𝜕𝑢1

𝜕𝑦
− 𝑀2𝑢1 = −𝐺𝑟𝑇1 − 2𝛼

𝜕𝜔1

𝜕𝑦
−

𝜕𝑢0

𝜕𝑦
−

1

𝐾0
𝑢0                              (12)  
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𝜕2𝜔0

𝜕𝑦2 + 𝜆
𝜕𝜔0

𝜕𝑦
= 0                                                                                                      (13) 

𝜕2𝜔1

𝜕𝑦2 + 𝜆
𝜕𝜔1

𝜕𝑦
+ 𝑛𝜆𝜔1 = −𝜆

𝜕𝜔0

𝜕𝑦
                                                                               (14) 

𝜕2𝑇0

𝜕𝑦2 + 𝑃𝑟
𝜕𝑇0

𝜕𝑦
− 𝐹𝑃𝑟𝑇0 = 0                                                                                      (15)  

𝜕2𝑇1

𝜕𝑦2
+ 𝑃𝑟

𝜕𝑇1

𝜕𝑦
+ (𝑃𝑟𝑛 − 𝐹𝑃𝑟)𝑇1 = −𝑃𝑟

𝜕𝑇0

𝜕𝑦
                                                            (16) 

Introducing (10), the boundary conditions (9) transform to the following form: 

𝑢0 = 1 + ℎ1
𝜕𝑢0

𝜕𝑦
, 𝑢1 = 1 + ℎ1

𝜕𝑢1

𝜕𝑦
,

𝜕𝜔0

𝜕𝑦
= −

𝜕2𝑢0

𝜕𝑦2 ,
𝜕𝜔1

𝜕𝑦
= −

𝜕2𝑢1

𝜕𝑦2 ,  

 𝑇0 = 1 + ℎ2
𝜕𝑇0

𝜕𝑦
, 𝑇1 = 1 + ℎ2

𝜕𝑇1

𝜕𝑦
    at   𝑦 = 0   

𝑢0 → 0, 𝑢1 → 0, 𝜔0 → 0, 𝜔1 → 0, 𝑇0 → 0, 𝑇1 → 0, as  𝑦 → ∞                              (17) 

Solutions of differential equations (11)-(16) satisfying boundary conditions (17)  

are obtained as follows: 

𝜔0 = 𝐶1𝑒−𝜆𝑦                                                                                                           (18) 

𝜔1 = 𝐶2𝑒−𝑚1𝑦 +
𝜆

𝑛
𝐶1𝑒−𝜆𝑦                                                                                     (19) 

𝑇0 = 𝐶0𝑒−𝑚0𝑦                                                                                                          (20) 

𝑇1 = 𝐶3𝑒−𝑚2𝑦 + 𝐵𝑒−𝑚0𝑦                                                                                       (21) 

𝑢0 = 𝐶4𝑒−𝑚3𝑦 + 𝐴1𝐶0𝑒−𝑚0𝑦 + 𝐴2𝐶1𝑒−𝜆𝑦                                                             (22) 

 𝑢1 = 𝐶5𝑒−𝑚4𝑦 + 𝐴3𝐶2𝑒−𝑚1𝑦 + 𝐴4𝐶3𝑒−𝑚2𝑦 + 𝐴5𝐶4𝑒−𝑚3𝑦 + 𝐴6𝑒−𝑚0𝑦 

                                                              +𝐴7𝐶1𝑒−𝜆𝑦                                                 (23) 

 

SKIN-FRICTION AND RATE OF HEAT TRANSFER 

The non-dimensional skin-friction (τ) at the plate is given by:  

𝜏 = (1 + 𝛼) (
𝜕𝑢

𝜕𝑦
)

𝑦=0

= (1 + 𝛼) (
𝜕𝑢0

𝜕𝑦
)

𝑦=0

+ 𝜀(1 + 𝛼) (
𝜕𝑢1

𝜕𝑦
)

𝑦=0

𝑒−𝑛𝑡 
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    = (1 + 𝛼)(−𝑚3𝐶4 − 𝑚0𝐴1𝐶0 − 𝜆𝐴2𝐶1) + 𝜀(1 + 𝛼)(−𝑚4𝐶5 − 𝑚1𝐴3𝐶2 

           −𝑚2𝐴4𝐶3 − 𝑚3𝐴5𝐶4 − 𝑚0𝐴6 − 𝜆𝐴7𝐶1) 𝑒−𝑛𝑡                                      (24)  

The non-dimensional rate of heat transfer in terms of Nusselt number (𝑁𝑢) is given by: 

𝑁𝑢 = (
𝜕𝑇

𝜕𝑦
)

𝑦=0

= (
𝜕𝑇0

𝜕𝑦
)

𝑦=0

+ 𝜀 (
𝜕𝑇1

𝜕𝑦
)

𝑦=0

𝑒−𝑛𝑡 

       = −𝐶0𝑚0 + 𝜀(−𝑚2𝐶3 − 𝑚0𝐵) 𝑒−𝑛𝑡                                                        (25) 

 

4. RESULT AND DISCUSSION 

In the preceding section, solutions for the microrotation velocity (ω), temperature (T) and the 

velocity (u) are derived and illustrated in (18)-(23). In order to acquire physical insight into 

the problem and establish the impacts of different parameters on the microrotation velocity, 

the flow field and temperature distribution of the micropolar fluid, numerical calculations are 

done and displayed graphically. These figures show that the stream-wise velocity and micro-

rotation (which comprises entirely the rotations about the centroid of the mass element) as 

well as temperature profiles for the micropolar fluid with the fixed flow conditions ε= 0.01 n 

= 0.1 and t = 1 , while Grashof number (Gr), Prandtl number (Pr), magnetic parameter (M), 

permeability parameter (K0), slip flow parameter (h1), temperature jump parameter (h2) and 

viscosity ratio (α) are varied over a range which are listed in figure captions. To be realistic, 

the values of Prandtl number (Pr) are chosen to be Pr = 0.71 (air), Pr = 0.025 (mercury), Pr = 

1 (electrolyte solutions) and Pr = 7 (water at 20°C), at one atmospheric pressure. The values 

of the perturbation parameter (ε), frequency parameter (n) and time parameter (t) are fixed 

and non-zero, therefore in all situations, the unsteady flow of the micropolar fluid with 

suction velocity, variation in permeability, slip flow and jump in temperature is explored. 

 

Figure 1 exhibits variations in the velocity profiles against y for varied numerical values of 

magnetic field parameter (M) and permeability parameter (K0) and perturbation parameter (ε) 

for fixed values of n = 0.1, t = 1.0, α= 0.2, h1 = 0.02, h2 = 0.5 Pr = 1, γ= 2.0 and Gr = 5.0. It is 

noticed that the increasing values of magnetic field parameter leads in a decreased velocity 

dispersion throughout the boundary layer. Also, when K0 grows, the velocity boundary layer 

tends to increase in the velocity of the plate and afterward decays gradually towards the y-

axis. Furthermore, we note that in case of homogeneous porous medium (case of Kumar and 
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Tak [18]), the velocity attains peak value more rapidly as compared to non-homogeneous 

porous medium (present case), but for higher values of y-coordinate, the profiles fall more 

rapidly for homogeneous porous medium than non-homogeneous porous medium. Thus, to 

sustain the velocity, non-homogeneous porous material is more effective in comparison to 

homogeneous one. 

 

Figure 2 represents the variations in the velocity profiles for different values of Grashof 

number (Gr), kinematic rotational viscosity parameter (α) for the cooling case (Gr > 0) of the 

moving plate at the fixed values of n = 0.1, t = 1.0, ε= 0.02, λ= 2.0. h2 = 0.5, h1 = 0.02, Pr = 

1.0, M = 0.5 and K0= 10.0. Figure clearly shows that in the case of cooling of the plate, 

velocity increase with an increase of thermal Grashof number (Gr). From the numerical 

results, we also observed e that the velocity is less for the Newtonian fluid (α= 0) with the 

same flow conditions and fluid properties, compared to the micropolar fluid. When the 

kinematic rotational viscosity parameter is less than 1.0, the velocity increases in the vicinity 

of the plate and after attaining a peak value it decreases smoothly with increase in y. 

However, when a takes values greater than 1.0, i.e., the gyro-viscosity is larger than the 

translational viscosity, the velocity distribution shows a decelerating nature near the porous 

plate. It is observed that agreement with the result obtained by Jain and Gupta [25] is 

excellent. 
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Figure 3 depicts the variations in the velocity profile for different values of slip flow 

parameter (h1) and temperature jump parameter (h2) with fixed values of ε= 0.02, n = 0.1, 

t=1.0, Pr = 1.0, M = 0.5, K0 = 10.0, Gr = 5.0 and α= 0.2. Figure clearly shows that an increase 

in h1 increases the velocity, while reverse phenomenon is observed for h2. This is due to the 

fact that increase in the slip flow results in less friction at the porous plate, which enhances 

the velocity. Contrast to this fact, increase in temperature jump parameter increases the 

friction at the plate due to increased denseness of the fluid, which ultimately reduces the 

velocity. These findings are similar to those obtained by Khandelwal and Jain [17]. 
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Figure 4 presents velocity profiles against span wise coordinate y for different values of 

Prandtl number (Pr) and at the fixed values of ε= 0.02, n = 0.1, t = 1.0, h1=0.02, h2=0.5, 

M=0.5, K0=10.0, Gr=5.0 and α=0.2. The results show that the effect of increasing value of Pr 

results in a decreasing velocity, which implies that the fluid with lower Pr values is 

favourable to reduce decay in the velocity distribution. In fact, in the light of the definition of 

Prandtl number, higher Pr-values fluid transfer heat less effectively in comparison with the 

lower Pr-value fluids. Therefore, the denseness of the fluid particles is more for higher Pr-

value fluids than lower Pr-value fluids, which results in decreasing velocity with increasing 

Prandtl number. 
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In figure 5, the velocity profiles for different values of the radiation parameter are displayed 

for the fixed values of ε= 0.02, n = 0.1, t = 1.0, h1=0.02, h2=0.5, M=0.5, K0=10.0, Gr=5.0 and 

α=0.2. It is clear that velocity decreases with increasing value of radiation parameter. This is 

due to the fact that an increase in radiation parameter means increase in mean absorption 

coefficient. 
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The temperature profiles versus y for different values of Prandtl number (Pr) at fixed values 

of ε=0.02, n =0.1, t=1.0, and h2 = 0.5 are shown in figure 6. It is observed that an increase of 

Prandtl number, leads to a decrease in temperature, which implies a decrease in thermal 

boundary layer thickness. This result explains the fact that smaller values of Pr are equivalent 

to increasing the thermal conductivities so that heat is able to diffuse away from the surface 

more rapidly. Hence, decay in much less in lower Pr-value fluids as compared to higher Pr-

value fluid.  
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Figure 7 and 8 illustrates variations in the temperature distribution due to change in the 

temperature jump parameter (h2)  and radiation parameter at fixed values of ε=0.02, n=0.1, 

t=1.0 and Pr=1.From figure 7, We  observed that an increase in temperature jump parameter 

(h2) increases the temperature field with given flow conditions and material parameters 

because an increase in temperature jump parameter (h2) results in a decreasing thermal 

boundary layer thickness and less uniform temperature distribution across the boundary layer, 

so that temperature decreases with increase in temperature jump parameter. Figure 8 clearly 

shows that temperature decreases with increases with increasing values of radiation 

parameter. The reason is that the thermal boundary layer was found to thicken in the presence 

of radiation. 
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Figure 9 shows the effect of micro-rotation parameter (λ) on the microrotation velocity (ω) 

versus y for fixed captioned values of ε=0.02, n=0.1, t=1.0, h1=0.02, h2=0.5, Pr=1.0, Gr=5, 
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α=0.2, M=0.5, and K0=10.0. It is observed that the microrotation velocity is less for laminar 

flow of Newtonian fluid (λ=0) for the same fixed values of the parameters. As the value of λ 

increases microrotation velocity increases near the plate and becomes asymptotic to y-axis as 

y increases. However, for λ >1, the microrotation velocity changes its nature and decreases in 

the vicinity of the plate and shows asymptotic nature towards y-axis with increase in y-

coordinate. 

 

Figure 10 represents variations of the surface skin-friction (τ) versus slip velocity parameter 

(h1) for various values of magnetic parameter (M). It is observed the effect of increasing 

values of slip velocity parameter (h1) lead to an increasing surface skin-friction (τ) on the 

porous plate. It is also observed that at increase in increases the skin-friction. 
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Figure 11 illustrates the variation of surface heat transfer (Nu) with the temperature jump 

parameter (h2) for different values of Prandtl number (Pr). It is observed that, as Pr is 

increased, the surface heat transfer increases. Moreover, the surface heat transfer from the 

porous plate tends to decrease slightly on increasing the magnitude of temperature jump 

parameter. 
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5. CONCLUSIONS 

The problem of velocity slip and temperature jump parameter on unsteady convective flow of 

a micropolar fluid along a uniformly moving vertical porous plate with time dependent 

suction velocity and non-homogeneous porous medium is investigated. Main conclusions of 

the study cooling case (Gr > 0) are as follows: 

1. The velocity (u) increases rapidly near the plate and after attaining peak value and 

then starts decreasing uniformly. 

2. The velocity (u) increases with increase in Grashof number (Gr), kinematical 

viscosity parameter (α) or permeability parameter (K0) or slip flow parameter (h1) 

while reverse effects are observed for magnetic parameter (M) or Prandtl number (Pr) 

or temperature jump parameter (h2) increases. 

3. The temperature (T) decreases as Prandtl number (Pr) increases but increases with 

increase in temperature jump parameter.  

4. The microrotation velocity (ω) increases with increase in microrotation parameter (λ) 

and changes its nature when λ exceeds the numerical value unity. 

5. Increasing values of slip velocity parameter leads to a decreasing (h1) skin-friction on 

the porous plate but effect is noted for increasing magnetic induction. 
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6. The heat transfer rate (Nu) increases as Prandtl number (Pr) increases but decreases 

with increase in temperature jump parameter.  

7. An increase in temperature jump parameter (h2) decreases the temperature. 

APPENDIX 

𝑀1 = 𝑀2 +
1
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NOMENCLATURE 

B0 -   Uniform magnetic field 

Cp -   Specific heat at constant pressure 

Gr -    Grashof number 

g -   Acceleration due to gravity 

j′ -   Dimensional micro-inertia 

j -   non-dimensional micro-inertia 

k -   Effective thermal conductivity 

kc -   Absorption coefficient 

K0 - Mean permeability of the medium 

L -   Mean free path 

m1 - Maxwell’s reflection coefficient 

n* - Dimensional exponential index 

n -   non-dimensional exponential index 

Pr -   Prandtl number 

T* -   Dimensional temperature of the fluid 

T -    non-dimensional temperature of the fluid 

T*
∞ -   Temperature of the free stream 

T*
w -   Temperature of the plate 

t * -     Dimensional time 

t -     non-dimensional time 

u0     Scale of free stream velocity 

u*, v* - Dimensional components of velocity 

along x′ and y′-directions 

 

 

u, v - along non-dimensional components of 

velocity x′ and y′-directions 

v0 - Scale of suction velocity 

x*, y* - Dimensional spatial coordinates 

along and normal to the plate 

x, y - non-dimensional spatial coordinates 

along and normal to the plate 

GREEK SYMBOLS 

α - Effective thermal diffusivity of the fluid 

β - Coefficient of volumetric expansion of 

the fluid 

γ1 - Specific heat ratio 

ε - Perturbation parameter (<<1) 

ρ -Density of the fluid 

σ - Electrical conductivity of the fluid 

λ - Microrotation parameter 

μ - Dynamic viscosity 

ν - Kinematic viscosity of the fluid 

νr - Kinematic rotational viscosity of the 

fluid 

ω* - Dimensional microrotation variable 

ω - non-dimensional microrotation variable 

γ* -Dimensional spin gradient viscosity 

γ - non-dimensional spin gradient viscosity 
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