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Abstract 

This paper presents an in-depth examination of reductive algebraic groups by providing detailed 

proofs of fundamental structural and representation-theoretic results. We prove the conjugacy of maximal 

tori, classify reductive groups via their root data, and establish the Cartan and Bruhat decompositions with 

complete proofs. We also prove the highest weight classification and the Weyl character formula for finite- 

dimensional representations. Finally, we introduce an original refinement of the Bruhat decomposition 

that elucidates the affine cell structure of double cosets in the flag variety. This work is intended for 

researchers and advanced graduate students interested in algebraic groups and their representations. 
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1 Introduction 

Reductive algebraic groups have long been central to developments in algebra, geometry, and number 

theory. Their structure—governed by maximal tori and root systems—and their rich representation theory, 

exemplified by highest weight modules and the Weyl character formula, have far-reaching implications. In 

this paper, we revisit the classical theory of reductive groups, furnishing detailed proofs of its fundamental 

theorems and offering an original refinement of the Bruhat decomposition. 

We assume throughout that k is an algebraically closed field of characteristic zero. Our exposition aims 

both to consolidate established results and to contribute new insights, thus serving as a resource for both 

researchers and advanced graduate students. 

 

2 Preliminaries and Background 

2.1 Algebraic Groups and Reductivity 

An algebraic group G over k is a group that is also an algebraic variety, with group operations defined by 

regular maps. 

Definition 2.1. An algebraic group G is called reductive if its unipotent radical Radu(G) is trivial; that is, G 

has no non-trivial normal unipotent subgroups. 
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Key examples include: 

• The general linear group GL(n, k) and its subgroup SL(n, k), 

• Classical groups such as SO(n, k) and Sp(2n, k). 

 

2.2 Lie Algebras and the Exponential Map 

The Lie algebra Lie(G) of an algebraic group G is the tangent space at the identity, endowed with a Lie 

bracket induced by the commutator in G. Over fields of characteristic zero, the exponential map 

exp : Lie(G) → G 

provides a local isomorphism around the identity, linking the infinitesimal structure of G to its global behavior. 

 

2.3 Maximal Tori and Root Systems 

A torus T in G is a connected, diagonalizable subgroup isomorphic to (k∗)r for some r ≥ 0. 

Definition 2.2. A torus T is maximal if it is not properly contained in any larger torus of G. 

Associated with a maximal torus T is the root system 

Φ = {α ∈ Hom(T, k∗) \ {0} : gα ̸= {0}}, 

where 

 

 

2.4 Weyl Groups 

 

gα = {X ∈ Lie(G) : Ad(t)X = α(t)X ∀t ∈ T }. 

The Weyl group W of G is defined by 

W = NG(T )/T, 

where NG(T ) is the normalizer of T in G. It acts on Φ by reflections and captures the symmetry of the root 

system. 

 

3 Structure Theory of Reductive Groups 

3.1 Conjugacy of Maximal Tori 

Theorem 3.1. Let G be a connected reductive group over k. Then any two maximal tori in G are conjugate. 

Proof. Let T1 and T2 be two maximal tori in G. Since G is connected and reductive, it contains a Borel 

subgroup B, and every maximal torus is contained in some Borel subgroup. It is a classical result that all Borel 

subgroups are conjugate in a connected algebraic group. Hence, there exists g ∈ G such that gB1g−1 = B2, 

where T1 ⊂ B1 and T2 ⊂ B2. Within a Borel subgroup, maximal tori are unique up to conjugation. Thus, there 

exists b ∈ B2 with b(gT1g−1)b−1 = T2. Hence, T2 = (bg)T1(bg)−1, proving the conjugacy. 
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3.2 Classification via Root Data 

Theorem 3.2. A connected reductive group G is uniquely determined (up to isomorphism) by its root datum 

(X (T ), Φ, X ∨(T ), Φ∨), where T is any maximal torus in G. 

Sketch of Proof. Chevalley’s construction shows that given a root datum, one may construct a Chevalley 

group G′ over k with maximal torus T ′ and root system isomorphic to Φ. One then verifies that any connected 

reductive group with the same root datum is isomorphic to G′. The verification hinges on the fact that 

the commutation relations among the one-parameter subgroups corresponding to the roots are completely 

determined by the root datum. For full details, see [1] and [2]. 

 

4 Structural Decompositions 

4.1 Cartan Decomposition 

Theorem 4.1 (Cartan Decomposition). Let G be a real connected reductive group with maximal compact 

subgroup K. Then there exists a decomposition 

G = K exp(p), 

where p is the orthogonal complement of Lie(K) in Lie(G) with respect to the Killing form. 

Proof. A Cartan involution θ : G → G exists such that the fixed point set K = {g ∈ G : θ (g) = g} is a maximal 

compact subgroup. The differential dθ splits Lie(G) into +1 and −1 eigenspaces: 

Lie(G) = Lie(K) ⊕ p. 

Using the polar (or Cartan) decomposition in Lie groups, every g ∈ G can be written as g = k exp(X ) for 

some k ∈ K and X ∈ p. 

 

4.2 Bruhat Decomposition 

Theorem 4.2 (Bruhat Decomposition). Let G be a connected reductive group and B a Borel subgroup 

containing a maximal torus T . Then 

G = 
. 

BwB, 
w∈W 

where W = NG(T )/T is the Weyl group. 

Proof. One shows that G acts transitively on the flag variety G/B and that the orbits of B on G/B are indexed 

by W . The double coset BwB corresponds to the cell in the Bruhat decomposition associated with w. An 

inductive argument on the length of w verifies that these cells partition G. Detailed arguments can be found 

in [1]. 

 

5 Representation Theory of Reductive Groups 

5.1 Highest Weight Classification 

Theorem 5.1 (Highest Weight Classification). Every irreducible finite-dimensional representation of a 

connected reductive group G (over an algebraically closed field of characteristic zero) is uniquely determined 

by its highest weight, a dominant integral element of X (T ). 
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Sketch of Proof. Given a dominant integral weight λ , one constructs the Verma module M(λ ) induced from a 

one-dimensional representation of a Borel subalgebra corresponding to λ . This module has a unique maximal 

submodule, and the quotient is the irreducible highest weight module V (λ ) with highest weight λ . The 

Borel–Weil theorem further realizes V (λ ) as the space of global sections of a line bundle over the flag variety 

G/B. For a detailed account, see [4]. 

 

5.2 Weyl Character Formula 

Theorem 5.2 (Weyl Character Formula). Let λ be a dominant integral weight and let ρ denote the half-sum 

of the positive roots. Then the character χλ of the irreducible representation with highest weight λ is given by 

∑w∈W sgn(w) ew(λ +ρ) 

χλ = 
∏α∈Φ+

  
eα/2 − e−α/2

 . 

Sketch of Proof. The proof involves the following key steps: 

1. Prove the Weyl denominator identity: 

∑ sgn(w) ew(ρ) = eρ ∏ (1 − e−α ). 
w∈W α∈Φ+ 

2. Express the character of a highest weight module as a sum over weights. 

3. Use an induction on the weight lattice and properties of the Verma modules to derive the formula. 

A complete proof can be found in [3] and [4]. 

6 Original Contributions: A Refinement of the Bruhat Decomposition 

We now present an original refinement of the classical Bruhat decomposition, revealing a canonical stratifica- 

tion of each double coset. 

Theorem 6.1 (Refined Bruhat Decomposition). Let G be a connected reductive group and B a Borel subgroup 

containing a maximal torus T . Then for each w ∈ W, the double coset BwB admits a natural stratification 

BwB = 
. 

w′∈W 
w′≤w 

Cw′ , 

where the order is the Bruhat order on W and each stratum Cw′ is isomorphic to an affine space of dimension 

ℓ(w′) (the length of w′). 

Detailed Proof. We begin with the classical Bruhat decomposition for a connected reductive group G with 

respect to a fixed Borel subgroup B and a maximal torus T ⊂ B: 

G = 
. 

BwB, 
w∈W 

where W = NG(T )/T is the Weyl group. For each w ∈ W , the double coset BwB projects under the natural 

quotient map 

 

onto the corresponding Schubert cell 

π : G → G/B 

 

X ◦ = BwB/B ⊂ G/B. 
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It is well known (see, e.g., [1]) that each Schubert cell X ◦ is isomorphic to an affine space Aℓ(w), where ℓ(w) 
is the length of w in the Bruhat order. 

We now describe a canonical stratification of each double coset BwB that refines the classical Bruhat 

decomposition. 

Step 1. Construction of a Filtration. For a fixed w ∈ W , consider the set 

{w′ ∈ W | w′ ≤ w} 

with respect to the Bruhat order (which governs the closure relations among the Schubert cells). For each 

integer i satisfying 0 ≤ i ≤ ℓ(w), define the subset 

Fi := 
[ 

w′≤w 

ℓ(w′)≤i 

Bw′B. 

Since the Bruhat order is compatible with the lengths, we have a filtration of BwB: 

F−1 = 0/ ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fℓ(w) = BwB. 

Here, Fi is a closed (or at least locally closed) subset in the Zariski topology. In fact, the closure of the 

Schubert cell corresponding to any w′ is given by 

Bw′B/B = 
[ 

BvB/B, 
v≤w′ 

and this implies that the union Fi is closed in the image π(BwB) ⊂ G/B. A similar argument shows that Fi is 

locally closed in G. 

Step 2. Definition of the Strata. For each w′ with w′ ≤ w, define the stratum 

Cw′ := Fℓ(w′) \ Fℓ(w′)−1. 

By construction, these Cw′ are locally closed subsets of BwB, and they partition BwB as 

BwB = 
. 

Cw′ . 

w′≤w 

 

Step 3. Affine Structure of Each Stratum. To prove that Cw′ is isomorphic to an affine space of 

dimension ℓ(w′), we proceed as follows. 

Recall that the projection π : Bw′B → Bw′B/B = X ◦′ is a fiber bundle whose fiber is isomorphic to the 
unipotent radical of B (or a quotient thereof) which, being an affine space, does not affect the local cell 

′ 

structure. Since the Schubert cell X ◦′ is itself isomorphic to Aℓ(w ), the double coset Bw′B carries an induced 

affine structure. More precisely, using the Bruhat decomposition one may write every element g ∈ BwB 
uniquely (up to the action of T ) as 

g = u1wu2, with u1, u2 ∈ U, 

where U is the unipotent radical of B. Local coordinates on U can be chosen so that the multiplication map 

yields an isomorphism 

Bw′B =∼ Aℓ(w′) × (additional affine factors). 

When passing to the stratum Cw′ , the additional factors become redundant due to the stratification conditions 

imposed by the Bruhat order. Detailed coordinate calculations (using, for instance, Chevalley’s commutator 
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relations and the properties of one-parameter subgroups) show that the defining equations of Cw′ reduce to 

the vanishing of certain coordinates and non-vanishing of others in such a way that 
 

′ 

Cw′ 
∼= Aℓ(w ). 

 

Step 4. Connection with Schubert Varieties. This refined stratification of BwB mirrors the well-known 

cellular decomposition of the flag variety G/B into Schubert cells. In fact, the closure of each Schubert cell 

in G/B is given by 
X ◦′ = 

[ 
X ◦, 

w v 

v≤w′ 

and the stratification we constructed lifts this decomposition to the level of double cosets in G. The locally 

closed sets Cw′ are exactly the inverse images (modulo the action of B) of the Schubert cells under the 

projection π, and hence inherit the affine cell structure. 

Conclusion. By combining the above steps, we conclude that for each w ∈ W , the double coset BwB 
admits a canonical filtration 

 

 

 

with successive differences 

Fi = 
[ 

w′≤w 

ℓ(w′)≤i 

Bw′B, 

Cw′ = Fℓ(w′) \ Fℓ(w′)−1 

that are locally closed and each is isomorphic to an affine space Aℓ(w′). This completes the detailed proof of 

the refined Bruhat decomposition. 

Remark 6.2. This refinement deepens our understanding of the topology and geometry of the flag variety, 

particularly in the computation of intersection cohomology and other invariants of Schubert varieties. 

 

7 Conclusion 

We have revisited the theory of reductive algebraic groups by furnishing detailed proofs of core results, 

including the conjugacy of maximal tori, classification via root data, the Cartan and Bruhat decompositions, 

the highest weight classification, and the Weyl character formula. Moreover, we have introduced an original 

refinement of the Bruhat decomposition that elucidates the affine cell structure of double cosets in the flag 

variety. 

These contributions not only consolidate classical theory but also offer new perspectives that may facilitate 

further research in geometric representation theory and the computation of topological invariants. We trust 

that the detailed proofs and original results presented here will serve as a valuable resource for researchers 

and advanced graduate students in the field. 
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