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Abstract

In order to acknowledge Singh et al.[6] original concept of Complex
Valued Fuzzy Metric Spaces, we investigated and illustrated a num-
ber of Fixed Point Results in Complex Valued Fuzzy b-Metric Spaces
in this study. Our findings represent important extensions and ex-
pansions of some findings in the current framework. The conclusions
are supported with creative examples and applications, which help to
clarify the established theory.
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1 Introduction and Preliminaries

The concept of fuzzy set was introduced by Zadeh [12] in a noteworthy article
in year 1965. After that many authors have contributed in the concept of
fuzzy sets and fuzzy metric spaces in different ways.
Kramosil and Michalek [4] initiated the conviction of a fuzzy metric space
(FMS) by generalizing the conviction of the probabilistic metric space to
the fuzzy circumstance. Grabiec [3] enlisted the fuzzy version of Banach
contraction principle (BCP) introduced by Kramosil and Michalek. George
and Veeramani [2] generalized the conviction of FMS due to Kramosil and
Michalek [4] and determin the Hausdorff topology of fuzzy metric spaces.
This proved a landmark in fixed point theory (FPT) of FMS and subsequently
many of articles appeared for FPTh in this spaces.
Ramot et al.[5] investigate the innovative concept of complex fuzzy sets by
extended fuzzy sets to complex fuzzy sets. According to Ramot et al.[5],
the complex fuzzy set is depicted by a membership function, whose range is
not delimited to [0, 1] but expanded to the unit circle in the complex plane.
Membership in a complex fuzzy set remains “as fuzzy” as membership in a
traditional fuzzy set.

Definition 1.1. [5] A Complex Fuzzy Set S, defined on the discourse
Universe U , is described by a membership function µs(ă) that allots every
element ă ∈ U , a complex valued grade of membership in S. The values µs(ă)
lie within the unit circle in the complex plane, and are thus of the form

µs(ă) = rs(ă).e
iws(ă), (i =

√
−1),

where rs(ă) and ws(ă) both real-valued, with rs(ă) ∈ [0, 1].
The complex fuzzy set S, may be represented as the set of ordered pairs,
given by

S = {(ă, µs(ă))|ă ∈ U}.

Ramot et al.[5] Given that complex fuzzy sets are extensions of ordinary
fuzzy sets, it is feasible to express every ordinary fuzzy set in terms of a
complex fuzzy set. On the other hand,Bakhtin [7] first proposed the idea of
b-metric space by extended the triangle inequality of metric space from its
weaker form and this conviction was elaborately use by Czerwik [8]. The
concept of quasi b-metric space was proposed by Shah et al.[10] and slightly
modified by Nadaban [11].
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Azam et al.[1] introduced the conviction of complex valued metric spaces
(CVMS). According to them two complex number can be compare by the
following way by endowing partial order relation ′ ≾′ on Complex Numbers
. Let C be the set of complex numbers and z1, z2 ∈ C then

z1 ≾ z2

if and only if
R(z1) ≤ R(z2) and I(z1) ≤ I(z2).

It follows that z1 ≾ z2, if one the following conditions are satisfied:
(C-1) R(z1) = R(z2) and I(z1) = I(z2);
(C-2) R(z2) > R(z1) and I(z2) = I(z1);
(C-3) R(z1) = R(z2) and I(z2) > I(z1);
(C-4) R(z2) > R(z1) and I(z2) > I(z1).

In particular, we write z1 ⋨ z2 if z1 ̸= z2 and one of (C-2), (C-3) and
(C-4) is satisfied while z1 ≺ z2 if only (C-4) is satisfied . Observe that

0 ⪯ z1 ⋨ z2 ⇒ |z1| < |z2|,

z1 ⪯ z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Recently,acknowledging the innovative conviction of complex valued fuzzy
set, Singh et al.[6] proposed the concept of CVFMS and several allied topo-
logical aspects for CVFMS

Definition 1.2. [6] A binary operation ∗ : rs(cosϑ + isinϑ) × rs(cosϑ +
isinϑ) → rs(cosϑ + isinϑ), wherein rs ∈ [0, 1] and a fix ϑ ∈ [0, π

2
], is known

as complex valued continuous triangular norm i.e. t-norm if the following
conditions hold :

(i) ∗ is Associative and Commutative,
(ii) ∗ is Continuous,
(iii) x ∗ (cosϑ + isinϑ) = x,∀x ∈ rs(cosϑ + isinϑ), where rs ∈ [0, 1] and

ϑ ∈ [0, π
2
],

(iv) x ∗ y ⪯ p ∗ q whenever x ⪯ p and y ⪯ q, for all x, y, p, q ∈ rs(cosϑ+
isinϑ) where rs ∈ [0, 1] and a fix ϑ ∈ [0, π

2
].

Example 1.1. [6] x ∗ y = min(x, y).

Example 1.2. [6] x∗y = max(x+y− (cosϑ+ isinϑ), 0), for a fix θ ∈ [0, π
2
].
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The value of ϑ is considered to be fixed in the interval [0, π
2
] with the

assumption that the complex fuzzy set S = {(x, µs(x))|x ∈ U} interacts with
other complex fuzzy sets through the partial order relation due to Azam et
al.[1].
Complex valued fuzzy metric spaces defined as follows.

Definition 1.3. [6] if X is an arbitrary non empty set, ∗ is a complex valued
continuous t-norm and M : X × X × (0,∞) → rs(cosϑ+ isinϑ) is a complex
valued fuzzy set , then the triplet (X ,M, ∗) is called complex valued fuzzy
meric space space , where rs ∈ [0, 1] and θ ∈ [0, π

2
], satisfying the following

conditions:
(CF − 1) M(ă, b̆, t) ≻ 0,
(CF − 2) M(ă, b̆, t) = cosϑ+ isinϑ for all t > 0 ⇔ ă = b̆,
(CF − 3) M(ă, b̆, t) = M(b̆, ă, t),
(CF − 4) M(ă, b̆, t) ∗M(b̆, c̆, s) ⪯ M(ă, c̆, (t+ s),
(CF − 5) M(ă, b̆, .) : (0,∞) → rs(cosϑ+ isinϑ)

is continuous, for all ă, b̆, c̆ ∈ X , s, t > 0, rs ∈ [0, 1] and ϑ ∈ [0, π
2
] .

Also (M, ∗) is called a complex valued fuzzy metric.

Remark 1.1. It is obvious that at ϑ = 0 , CVFMS becomes real valued FMS.

Example 1.3. [6]Let X = R. We define ă∗ b̆ = min{ă, b̆},∀ă, b̆ ∈ rs(cosϑ+
isinϑ), where rs ∈ [0, 1] and ϑ ∈ [0, π

2
]. Furthermore for all ă, b̆ ∈ X and

t ∈ (0,∞), we define

M(ă, b̆, t) = (cosϑ+ isinϑ)e−
|ă−b̆|

t .

Then (X ,M, ∗) is a CVFMS.

In the fixed point theory (see [14],[15]), it is of interest to investigate the
classes of t-norms ∗ and sequences {ăn} from the interval rs(cosϑ + isinϑ),
where rs ∈ [0, 1] such that lim

n→∞
ăn = (cosϑ+ isinϑ) and

lim
n→∞

∗∞i=năi = lim
n→∞

∗∞i=năn+i = (cosϑ+ isinϑ). (1.1)

Definition 1.4. Let X is an arbitrary non empty set, let κ ≥ 1 be a given
real number and ∗ is a complex valued continuous t-norm and M : X × X ×
(0,∞) → rse

iϑ is a complex valued fuzzy set, where rs ∈ [0, 1] and ϑ ∈ [0, π
2
],
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Then (X ,M, ∗, ∥) is called a CVFbMS if it holding the following conditions:
(CFb-1) M(ă, b̆, t) ≻ 0,
(CFb-2) M(ă, b̆, t) = (cosϑ+ isinϑ) for all t > 0 ⇔ ă = b̆,
(CFb-3) M(ă, b̆, t) = M(b̆, ă, t),
(CFb-4) M(ă, b̆, t) ∗M(b̆, c̆, s)) ⪯ M(ă, c̆, κ(t+ s)),
(CFb-5) M(ă, b̆, .) : (0,∞) → r̆s(cosϑ+ isinϑ)

is continuous,for all ă, b̆, c̆ ∈ X , s, t > 0, rs ∈ [0, 1] and ϑ ∈ [0, π
2
] .

Also (M, ∗, k) is called a CVFbMS.

Remark 1.2. The class of CVFbMS is larger than the class of CVFMS ,
since a CVFbMS is a CVFMS when κ = 1.

Example 1.4. [17] Let M(ă, b̆, t) = eiθe
−|ă−b̆|p

t , where p > 1 is a real number.
Then M is a complex valued fuzzy b-metric with κ = 2p−1.

Example 1.5. Let X be the set of real numbers.We define ă∗ b̆ = ăb̆,∀ă, b̆ ∈
rse

iϑ, where rs ∈ [0, 1] and ϑ ∈ [0, π
2
]. Furthermore for all ă, b̆ ∈ X and

t ∈ (0,∞), we define

M(ă, b̆, t) = eiϑe
−d(ă,b̆)

t .

Then it is not difficult to prove that (X ,M, ∗) is a CVFbMS. Obviously
condition (CFb-1),(CFb-2),(CFb-3),(CFb-5) of Definition 1.4 are satisfied.
For each ă, b̆, c̆ ∈ X , we obtain

M(ă, b̆, κ(t+ s)) = (cosϑ+ isinϑ)e
−d(ă,b̆)
κ(t+s)

⪰ eiϑe−κ
d(ă,c̆)+d(c̆,b̆)

κ(t+s)

= eiϑe−κ
d(ă,c̆)
κ(t+s) .eiϑe−κ

d(c̆,b̆)
κ(t+s)

⪰ eiϑe
−d(ă,b̆)

t .eiϑe
−d(c̆,b̆)

s

= M(ă, c̆, t) ∗M(c̆, b̆, s).

Here condition (CFb-4) of Definition 1.4 is satisfied, hence (X ,M, ∗) is a
CVFbMS.

Definition 1.5. [17] A function f : R → R is called k-non decreasing if
x > ky implies f(x) ≥ f(y) for all x, y ∈ R.

A point ă ∈ X is said to be an interior point of set H ⊂ X , whenever
there exists r̆ ∈ C, 0 ≺ r̆ ≺ (cosϑ+ isinϑ) such that

B(ă, r̆, t) = {y̆ ∈ X : M(ă, b̆, t) ≻ (cosϑ+ isinϑ)− r} ⊂ H,
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where ϑ ∈ [0, π
2
].

The subset H of X is said to be open if each element of H is an interior
point of H.
Topology on X : Assume that (X ,M, ∗) be a CVFbMS. Let µ be the
set of all H ⊂ X : with ă ∈ H if and only if there exists t > 0 and
r̆ ∈ C, 0 ≺ r̆ ≺ (cosϑ+ isinϑ), ϑ ∈ [0, π

2
] such that B(ă, r̆, t) ⊂ H.

Then µ is a topology on X .

Definition 1.6. Let (X ,M, ∗) be a CVFbMS and µ be the topology induced
by complex valued fuzzy metric. Then for a sequence {ăn} ∈ X converges to
x̆ if and only if M(ăn, ă, t) → (cosϑ+ isinϑ) as n → ∞ or |M(ăn, ă, t)| → 1
as n → ∞ for each t > 0.

Definition 1.7. Cauchy sequence: A sequence ăn in a CVFbMS (X ,M, ∗)
is a Cauchy sequence if and only if

lim
n→∞

M(ăn+p, ăn, t) = (cosϑ+ isinϑ), p > 0, t > 0

or
lim
n→∞

|M(ăn+p, ăn, t)| = 1, p > 0, t > 0.

Definition 1.8. A CVFbMS in which every Cauchy sequence is convergent,
is called complex valued complete fuzzy b-metric space.

Definition 1.9. Bounded Set: Let (X ,M, ∗) be a CVFbMS . A subset
′P ′ of X is said to be Fc bounded if and only if there exist t > 0 and
r̆ ∈ C, 0 ≺ r ≺ (cosϑ+ isinϑ) such that

M(ă, b̆, t) ≻ (cosϑ+ isinϑ)− r, for all ă, b̆ ∈ P .

2 Elementary topological concepts:

Definition 2.1. Let ℸ : R → R be a function. Then ℸ is called b-non de-
creasing, if x̆ > b̆y this implies ℸx̆ ≥ ℸy̆ for each x̆, y̆ ∈ R.

Lemma 2.1. Let (X ,M, ∗)be a CVFbMS such that

lim
t→∞

M(ă, b̆, t) = cosϑ+ isinϑ

, for all ă, b̆ ∈ X ,if
M(ă, b̆, t) ⪯ M(ă, b̆, kt)

for all ă, b̆ ∈ X ,0 ≺ k ≺ 1, t ∈ (0,∞), then ă = b̆.
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Proof. Suppose ∃, k ∈ (0, 1) such that

M(ă, b̆, t) ⪯ M(ă, b̆, kt),

∀ă, b̆ ∈X,

t∈ (0,∞) so that

M(ă, b̆,
t

k
) ⪯ M(, ă, b̆, t)

repeated application gives

M(ă, ă
t

kn
) ⪯ M(ă, ă

t

kn−1
) ⪯ M(ă, b̆,

t

kn−2
) ⪯ · · · ⪯ M(ă, b̆

t

k
) ⪯ M(ă, b̆, t)

for some positive integer n,on making n → ∞, reduces to

M(ă, b̆, t) ⪰cosθ + isinθ

This implies M(ă, b̆, t) = cosϑ+ isinϑ. Thus we have ă = b̆.

Lemma 2.2. Assume that ăn be a sequence in a CVFMS (X,M, ∗) with

lim
t→∞

M(ă, b̆, t) = cosϑ+ isinϑ,

for all ă, b̆ ∈ X. If ∃ a number k ∈ (0, 1) such that

M(ăn+1, ăn+2, kt) ⪰ M(ăn, ăn+1, t),∀ t ≻ 0 and n = 1, 2, 3, ...

then {ăn} is a Cauchy sequence.

Proof. For n = 0 we have M
(
ă0, ă1,

t
k

)
⪯ M(ă1, ă2, t) ,∀ t ≻ 0 and k ∈ (0, 1)

By induction one sets

M
(
ăn, ăn+1,

t

kn+1

)
⪯ M(ăn+1, ăn+2, t),∀n

thus for any positive integer p and using (CFb-4) we have

M(ăn, ăn+p, t) ⪰ M
(
ăn, ăn+1,

t

p

)
∗ ...(p− times) ∗M

(
ăn+p−1, ăn+p,

t

p

)
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⪰ M
(
ă0, ă1,

t

pkn

)
∗ ...(p− times) ∗M

(
ă0, ă1,

t

pkn+p−1

)
Which on letting n → ∞ reduces to

lim
n→∞

M(ăn, ăn+p, t) ⪰ (cosϑ+isinϑ)∗(cosϑ+isinϑ)∗(cosϑ+isinϑ)∗...∗(cosϑ+isinϑ)

Since k ≺ 1 and limn→∞M(ă, b̆, t) = (cosϑ+ isinϑ)

lim
n→∞

M(ăn, ăn+p, t) ⪰ (cosϑ+ isinϑ)

This necessitates that {ăn} is Cauchy sequence in X .

3 Main Result

In this section, utilizing the concept of CVFbMS we proved some fixed point
results.

Theorem 3.1. Let (X ,M, ∗) be a CVFbMS ℸ : X → X . Let there exists
λ ∈ (0, 1

k
) such that

M(ℸă,ℸb̆, t) ≿ M
(
ă, b̆,

t

λ

)
, a, b ∈ X t > 0 (3.1)

there exist ă0 ∈ X and v ∈ (0, 1) such that

lim
n→∞

∗∞i=nM
(
ă0,ℸă0,

t

vi

)
= cosϑ+ isinϑ t > 0. (3.2)

Then ℸ posses an unique fixed point in X .

Proof. Let ă0 ∈ X and ℸăn = ăn+1, n is an element of N. If we consider
ăn = ă and ăn−1 = b̆ in (3.1), then we get

M(ăn, ăn+1, t) ≿ M
(
ăn−1, ăn,

t

λ

)
, n ∈ N t > 0 (3.3)

Rest is to prove that sequence {ăn} is a Cauchy sequence.
Let ⅁ ∈ (λk, 1). Then the series ⅁∞

i=1⅁i is tend to a finite point and there
exists n0 ∈ N such that ⅁∞

i=1⅁i < (cosϑ+ isinϑ) for every n > n0.
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Let n > m > n0, since M is a k-non decreasing by (CFb-4) for every t > 0,
we have

M(ăn, ăn+m, t) ≿ M
(
ăn, ăn+m,

t⅁n+m−1
i=n ⅁i

k

)
≿

(
M

(
ăn, ăn+1,

t⅁n

k2

)
∗M

(
ăn+1, ăn+m,

t⅁n+m−1
i=n+1 ⅁i

k2

))
≿

(
M

(
ăn, ăn+1,

t⅁n

k2

)
∗
(
M

(
an+1, an+2,

t⅁n+1

k3

)
∗ · · · ∗M

(
ăn+m−1, ăn+m,

t⅁n+m−1

km

)
, . . .

))
From (3.3) it follows that

M(ăn, ăn+1, t) ≿ M
(
ă0, ă1,

t

λn

)
, n ∈ N, t > 0.

Since n > m and k > 1, we have

M(ăn, ăn+m, t) ≿
(
M

(
a0, a1,

t⅁n

k2λn

)
∗
(
M

(
ă0, ă1,

t⅁n+1

k3λn+1

)
,

∗ · · · ∗M
(
ă0, ă1,

t⅁n+m−1

km+1λn+m−1

)
, . . .

))
≿ ∗n+m−1

i=n M
(
ă0, ă1,

t⅁i

ki−n+2λi

)
≿ ∗n+m−1

i=n M
(
ă0, ă1,

t⅁i

kiλi

)
≿ ∗∞i=nM

(
ă0, ă1,

t

vi

)
.

Where v = kλ
⅁ , since v = (0, 1) by lemma 2.2 we concluded that {ăn} is a

Cauchy sequence. Since(X ,M, ∗) is complete, hence ∃ ă ∈ X such that

lim
n→∞

ăn = ă and lim
n→∞

M(ℸă, ăn, t) = cosϑ+ isinϑ t > 0. (3.4)

(3.1) and (CFb-4) are used to show that ă is a fixed point for ℸ:

M(ℸă, ă, t) ≿
(
M

(
ℸă, ăn,

t

2k

)
∗M

(
ăn, ă,

t

2k

))
≿

(
M

(
ă, ăn−1,

t

2kλ

)
∗M

(
ăn, a,

t

2k
λ
))
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for all t > 0. By 3.4 as n → ∞, we get

M(ℸă, ă, t) ≿ (cosϑ+ isinϑ) ∗ (cosϑ+ isinϑ)) = (cosϑ+ isinϑ).

Suppose that ă and b̆ are fixed point of ℸ. By (3.1) we have

M(ă, b̆, t) = M(ℸă,ℸb̆, t) ≿ M
(
ă, b̆,

t

λ

)
, t > 0

and ?? implies that

M(ă, b̆, t) ≿ M
(
ă, b̆,

t

λn

)
n ∈ N, t > 0

Now

M(ă, b̆, t) ≿ lim
n→∞

M
(
ă, b̆,

t

λn

)
= (cosϑ+ isinϑ), t > 0

and by (CFb-2) it follows that ă = b̆.

Example 3.1. Let X = [0, 1]. By Example 4, for p = 2, it follows that
(X ,M, ∗) is a CVFbMS with k = 2 and complex valued fuzzy b-metric

M(ℸă, b̆, t) = (cosϑ+ isinϑ)e
−(ă−b̆)2

t ă, b̆ ∈ X , t > 0.

Let ℸă = µă, µ < 1√
3
, ă ∈ X. Then

M(ℸă,ℸb̆, t) = (cosϑ+ isinϑ)e
−µ2(ă−b̆)2

t

≿ (cosϑ+ isinϑ)e
−λ(ă−b̆)2

t

= M
(
ă,ℸă,

t

λ

)
, ă, b̆ ∈ X , t > 0,

for 1
k
> λ > µ2. So, equation (3.1) of Theorem 1 is fulfilled, and f has a

unique fixed point in X .

Theorem 3.2. Let (X ,M, T ) is a complex valued complete fuzzy b-metric
space, and let ℸ : X → X . Suppose that there exists λ ∈ (0, 1

k
) such that

M(ℸă,ℸb̆, t) ≿ min
{
M

(
ă, b̆,

t

λ

)
,M

(
ℸă, b̆,

t

λ

)
,M

(
ℸb̆, b̆,

t

λ

)}
(3.5)

for all ă, b̆ ∈ X, t > 0, and there exist ă0 ∈ X and v ∈ (0, 1) such that

lim
n→∞

∗∞i=nM
(
ă0,ℸă0,

t

vi

)
= eiϑ (3.6)

for all t > 0. Then ℸ has a unique fixed point inX .

559 Om Prakash Chauhan et al. 550-567



Proof. Let ă0 ∈ N and ăn+1 = făn, n ∈ N . By (3.5) with ăn = ă and
ăn−1 = b̆, using (CFb4) and the assumption that T = Tmin for every n ∈ N
and every t > 0, we have

M(ăn+1, ăn, t) ≿ min
{
M

(
ăn, ăn−1,

t

λ

)
,M

(
ăn+1, ăn,

t

λ

)
,M

(
ăn, ăn−1,

t

λ

)}
≿ min

{
M

(
ăn+1, ăn,

t

kλ

)
,M

(
ăn, ăn−1,

t

kλ

)
,M

(
ăn, ăn,

t

λ

)}
≿ min

{
M

(
ăn, ăn−1,

t

kλ

)
,M

(
ăn+1, ăn,

t

kλ

)}
.

If M(ăn+1, ăn, t) ≿ M
(
ăn+1, ăn,

t
λ

)
, n ∈ N, t > 0 then by Lemma (??) it

follows that ăn = ăn+1, n ∈ N . So

M(ăn+1, ăn, t) ≿ M
(
ăn, ăn−1,

t

λ

)
, n ∈ N, t > 0

and by Lemma 2.2 we have that {ăn} is a Cauchy sequence. Hence there
exists ă ∈ X such that

lim
n→∞

ăn = ă and lim
n→∞

M(ă, ăn, t) = eiϑ, t > 0(3.7)

Let us prove that ă is a fixed point for ℸ. Let ⅁1 ∈ (λk, 1) and ⅁2 = 1−⅁1.
By (3.5) we have

M(ℸă, ă, t) ≿
(
M

(
ℸă,ℸăn,

t⅁1

k

)
∗M

(
ăn+1, ă,

t⅁2

k

))
≿

(
min

{
M

(
ă, ăn,

t⅁1

kλ

)
,M

(
ă,ℸă,

t⅁1

kλ

)
,M

(
ăn, ăn+1,

t⅁1

kλ

)}
∗

M
(
ăn+1, ă,

t⅁2

k

))
.

Taking n → ∞ and using (3), we get

M(ℸă, ă, t) ≿
(
min cosϑ+ isinϑ),M

(
ă,ℸă,

tσ1

kλ

)
, (cosϑ+ isinϑ)

}
∗ (cosϑ+ isinϑ)

)
=

(
M

(
ă,ℸă,

tσ1

kλ

)
∗ (cosϑ+ isinϑ)

)
= M

(
ă,ℸă,

t

v

)
, t > 0,

where kλ
⅁1

∈ (0, 1). So

M(ℸă, ă, t) ≿ M
(
ă,ℸă,

t

v

)
, t > 0,
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and by Lemma 2.1 it follows that ℸă = ă.
Suppose that ă and b̆ are fixed points for ℸ, that is, ℸă = ă and ℸb̆ = b̆. By
condition (3.5) we get

M(ℸă,ℸb̆, t) ≿
{
M

(
ă, b̆,

t

λ

)
,M

(
ă,ℸă,

t

λ

)
,M

(
ă,ℸb̆,

t

λ

)}
,

=
{
M

(
ă, b̆,

t

λ

)
, (cosϑ+ isinϑ), (cosϑ+ isinϑ)

}
= M

(
ă, b̆),

t

λ

)
= M

(
ℸă,ℸb̆,

t

λ

)
.

for t > 0, and by Lemma 2.1 it follows that ℸă = ℸb̆, that is, ă = b̆.

Theorem 3.3. Let (X ,M, T ) is a complex valued complete fuzzy b-metric
space, and let ℸ : X → X . Suppose that there exists λ ∈ (0, 1

k
) such that

M(ℸă,ℸb̆, t) ≿ min
{
M

(
ă, b̆,

t

λ

)
,M

(
ℸă,ℸb,

t

λ

)
,M

(
ℸă, b̆,

t

λ

)}
(3.8)

for all ă, b̆ ∈ X, t > 0, and there exist ă0 ∈ X and v ∈ (0, 1) such that

lim
n→∞

∗∞i=nM
(
ă0,ℸă0,

t

vi

)
= eiϑ (3.9)

for all t > 0. Then ℸ has a unique fixed point in X.

Proof. Let ă0 ∈ N and ăn+1 = ℸăn, n ∈ N . By (3.8) with ăn = ă and
ăn−1 = b̆, for every n ∈ N and every t > 0, we have

M(ăn+1, ăn, t) ≿ min
{
M

(
ăn, ăn−1,

t

λ

)
,M

(
ăn+1, ăn,

t

λ

)
,M

(
ăn, ăn−1,

t

λ

)}
≿ min

{
M

(
ăn, ăn−1,

t

λ

)
,M

(
ăn+1, ăn,

t

λ

)}
.

If M(ăn+1, ăn, t) ≿ M
(
ăn+1, ă,

t
λ

)
, n ∈ N, t > 0 then by Lemma 2.2 it

follows that ăn = ăn+1, n ∈ N . So

M(ăn+1, ăn, t) ≿ M
(
ăn, ăn−1,

t

λ

)
, n ∈ N, t > 0

and by Lemma 2.2 we have that {ăn} is a Cauchy sequence. Hence there
exists ă ∈ X such that

lim
n→∞

ăn = ă and lim
n→∞

M(ă, ăn, t) = (cosϑ+ isinϑ), t > o (3.10)
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Let us prove that ă is a fixed point for ℸ. Let ⅁1 ∈ (λk, 1) and ⅁2 = 1− ⅁1.
By (3.8) we have

M(ℸă, ă, t) ≿
(
M

(
ℸă,ℸăn,

t⅁1

k

)
∗M

(
ăn+1, ă,

t⅁2

k

))
≿

(
min

{
M

(
ă, ăn,

t⅁1

kλ

)
,M

(
ă, ℸ̆a,

t⅁1

kλ

)
,M

(
ăn, ăn+1,

t⅁1

kλ

)}
,

∗M
(
ăn+1, ă,

t⅁2

k

))
.

Taking n → ∞ and using 3.10, we get

M(ℸă, ă, t) ≿
(
min

{
(cosϑ+ isinϑ),M

(
ă,ℸă,

tσ1

kλ

)
, (cosϑ+ isinϑ)

}
∗ (cosϑ+ isinϑ)

)
=

(
M

(
ă,ℸă,

tσ1

kλ

)
∗ (cosϑ+ isinϑ)

)
= M

(
ă,ℸă,

t

v

)
, t > 0,

where kλ
σ1

∈ (0, 1). So

M(ℸă, ă, t) ≿ M
(
ă,ℸă,

t

v

)
, t > 0,

and by Lemma 2.1 it follows that ℸă = ă.
Suppose that ă and b̆ are fixed points for ℸ, that is, ℸă = ă and ℸb̆ = b̆. By
condition 3.5 we get

M(ℸă,ℸb̆, t) ≿ min
{
M

(
ă, b̆,

t

λ

)
,M

(
ă,ℸă,

t

λ

)
,M

(
b̆,ℸb̆,

t

λ

)}
,

= min
{
M

(
ă, b̆,

t

λ

)
, (cosϑ+ isinϑ), (cosϑ+ isinϑ)

}
= M

(
ă, b̆,

t

λ

)
= M

(
ℸă,ℸb̆,

t

λ

)
.

for t > 0, and by Lemma 2.1 it follows that ℸă = ℸb̆, that is, ă = b̆.

Example 3.2. Let X = (0, 2),M (ă, b̆, t) = (cosϑ + isinϑ)e
−|ă−b̆y|2

t , ∗ = ∗p,
Then (X ,M, ∗) is a complex valued complete b-fuzzy metric space with k = 2.
Let

ℸ(ă) =
{

2− ă, if ă ∈ (0, 1),
(cosϑ+ isinϑ), if ă ∈ [1, 2), ϑ ∈ [0, π

2
]
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Case 1. If ă, b̆ ∈ [1, 2), then M(fă, f b̆, t) = cosϑ + isinϑ, t > 0, and
conditions (3.8) are trivially fulfilled.

Case 2. If ă ∈ [1, 2) and b̆ ∈ (0, 1), then, for λ ∈
(

1
4
, 1
2

)
, we have

M(ℸă,ℸb̆, t) = (cosϑ+isinϑ)e
−(1−ă)2

t ≿ (cosϑ+isinϑ)e
−4λ(1−b̆)2

t = M
(
ℸă, b̆,

t

λ

)
, t > 0.

Case 3. As in the previous case, for λ ∈
(

1
4
, 1
2

)
we have

M(ℸă,ℸb̆, t) ≿ M
(
ℸă,ℸb̆,

t

λ

)
, ă ∈ (0, 1) b̆ ∈ [1, 2), t > 0.

If ă ∈ (0, 1) then, forλ ∈
(

1
4
, 1
2

)
,

M(ℸă,ℸb̆, t) = (cosϑ+ isinϑ)e
−(ă−b̆)2

t

≿ (cosϑ+ isinϑ)e
−(1−b̆)2

t

≿ (cosϑ+ isinϑ)e
−4λ(1−b̆)2

t

= M
(
ℸb̆, b̆,

t

λ

)
, ă > b̆.

and

M(ℸă,ℸb̆, t) ≿ M
(
ℸă, ă,

t

λ

)
, ă < b̆, t > 0

So conditions (3.5) are satisfied for all ă, b̆ ∈ X , t > 0, and by Lemma 2.1 it
follows that ă = 1 is a unique fixed point for ℸ.

4 Application

In this part, we apply a fixed point theorem to guarantee that a Fredholm
integral problem has only one unique solution.[18]

x(t) =

∫ b

a

𭟋(t, s)h(x(s))ds+ g(t), (4.1)

for all t ∈ I = [a, b], where 𭟋 ∈ C(IXI,R) and g, h ∈ C(I,R). Our next
result ensures the existence of a unique solution to the Eq.4.1.
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Theorem 4.1. Suppose the following statements are true
(p1) There exists k ∈ (0, 1√

2
)such that for all x̆, y̆ ∈ C(I,R)

|h(x̆)− h(y̆)| ⪯
√
k|x̆− y̆|

(p2)

sup
t∈I

∫ b

a

𭟋2(t, s)ds = λ ≺ 1√
2
.

Then, Eq (4.1) has a unique solution.

Proof. let X = C(I,R).For all ⅁,℧ ∈ X ,take

d(⅁,℧) = sup
t∈I

|⅁(t)− ℧(t)|2.

Choose a ∗ c = ac for all c ∈ rs(cosϑ+ isinϑ) where rs ∈ [0, 1] and ϑ ∈ [0, π
2
]

and M(⅁,℧, t) = (cosϑ + isinϑ) t
t+d(⅁,℧) for ⅁,℧ ∈ Xand t ≻ 0. Obviously,

(X ,M, ∗,=
¯
2) is a complete fuzzy b-metric space. Define

f : X → X

by

f⅁(t) =
∫ b

a

𭟋(t, s)h(⅁(s))ds+ g(t),

for all ⅁,℧ ∈ X , we have

f⅁(t)− f℧(t) =
∫ b

a

𭟋(t, s)(h(⅁(s))− h(℧(s)))ds

⪯
√
k

∫ b

a

𭟋(t, s)|⅁(s)− ℧(s)|ds

⪯
√
k
[ ∫ b

a

𭟋2(t, s)ds
] 1

2
[ ∫ b

a

((|⅁(s)− ℧(s)|)2ds
] 1

2

⪯
√
k
√
λ(d(⅁,℧))

1
2

we deduce for all ⅁,℧ ∈ X,

d(f⅁, f℧) ⪰ kλd(⅁,℧)
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This inequality is equivalent to

M(f⅁, f℧, t) ⪰ M(⅁,℧,
t

λ
).

Hence all hypotheses of Theorem 3.1 are full-filled and the solution of equa-
tion 4.1 is unique.

5 Conclusion

In this paper, we researched and demonstrated various Fixed Point Results
in Complex Valued Fuzzy b-Metric Spaces, acknowledging the novel notion
of Complex Valued Fuzzy Metric Spaces. Our results are significant exten-
sion generalizations of some results in the existing theory.To support our new
finding, in the Application part the solution of a Fedholm Integral equation
is given. For further research the question may arrise that can we use this
result in other important field of non-linear analysis ?. Like to solve non liner
diffrential and Fractional Integral equations.

Conflict of Interest:- The authors declare that they have no con-
flict of interest.
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[14] . Hadžić, O., Pap, E.: Fixed Point Theory in Probabilistic Metric
Spaces. Kluwer Academic, Dordrecht (2001)
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