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Abstract 
A graph with the server represented by its vertex and the link between its edges 

is commonly used to depict the topology of an interconnection network. An 

essential foundation for evaluating and assessing the dependability of 

interconnection networks is the dominating parameters. If <V-D> is 

connected, then a dominating set D ⃀ V(G) is considered nonsplit dominating 

set. A minimal nonsplit dominating set of G is denoted by D. With regard to 

D, let D' be the smallest inverse nonsplit dominating set of G. In the event that 

the induced subgraph <V-D'> is connected, D' is referred to be an inverse 

nonsplit dominating set of G. In this study, we define the inverse nonsplit 

domination number, give certain properties of mesh and torus networks, and 

calculate the inverse nonsplit domination number of two-dimensional mesh 

networks, generalized hypercube networks, and torus networks. 

 

Keywords: Interconnection network, mesh, torus, generalized hypercube, 

nonsplit, inverse nonsplit. 
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1 Introduction: 

A graph with the server represented by its vertex and the link between its edges 

is commonly used to depict the topology of an interconnection network. Let G be a 

connected graph with vertex set V(G) and edge set E(G) that is a finite graph. 

In order to connect processors (or nodes) with a supercomputer, mesh and Torus networks are 

frequently utilised. These networks are usually distinguished by the way switches and nodes are 

arranged, which is crucial for reducing latency and optimising bandwidth throughout the 
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network. Data center networks may also be designed using the generalized hypercube network 

architecture, which combines hypercube, mesh, and torus networks. 

Graph domination theory is widely used in the research field of graph theory itself. The 

application of domination parameters as a tool in communication networks and monitoring 

systems is also developing and deepening. For example, literature [3,5,6] studies the 

domination of some interconnection networks. 

A set of vertices is called independent in a graph where no two vertices in the set are connected 

by an edge. It is denoted by 𝛽(𝐺). A vertex cover in a graph is a set of vertices such that every 

edge in the graph has at least one endpoint in the set. The vertex cover number is the minimum 

size of any vertex cover in the graph. It is denoted by 𝛼(𝐺). The chromatic number of a graph 

is the smallest number of colors needed to color the vertices of the graph so that no two adjacent 

vertices share the same color, often denoted as χ(G) 

In recent years, various domination concepts have been produced and the research results have 

been enriched. Here consider the problem of selecting two disjoint sets of transmitting stations 

D1 (D2) has a link with at least one station in D1 (D2), where | D1| and |D1∪D2| are minimum 

among all the pairs of disjoint transmitting stations. This led Kulli et al. [7] to define the inverse 

domination number. K. Ameenal Bibi and R. Selva Kumar [2] introduced the concept of inverse 

nonsplit domination in graphs. 

Since the problem of determining the domination parameters of graphs in an NPC problem, 

most scholars mainly study the upper and lower bounds of domination parameters and exact 

values of domination parameters of special graphs while the inverse domination numbers of 

many complex network topologies are less studied. In this paper, we found the inverse nonsplit 

domination number of mesh, torus and generalized hypercube network. 

A set of vertices D ⃀ V(G) is a dominating set of a graph G if each vertex in V is either in D or is 

adjacent to at least one vertex in D. Let D be a minimum dominating set of G. If V-D contains a 

dominating set say D’ of G, then D’ is called an inverse dominating set of G with respect to D. 

The inverse domination number γ’(G) is the order of a smallest inverse dominating set of G. A 

dominating set D ⃀ V(G) is said to be nonsplit dominating set if <V-D> is connected. 

One of the important and simple ways to construct a topological network is the Cartesian 

product, where both generalized and hypercube networks derive two important classes of 

Cayley graphs via Cartesian products. 

The cartesian product G1 ×G2 is defined as follows: Let a = (a1, a2) and b = (b1, b2) be in V1×V2. 

If ab is an edge in G1 ×G2, whenever a1 = b1 and a2 is adjacent to b2 or a2 = b2 and a1 is adjacent 

to b1. 

Definition:1.1 

Let D be a minimum nonsplit dominating set of G. Let D’ be the minimum inverse nonsplit 

dominating set of G with respect to D. Then D’ is called an inverse nonsplit dominating set of G 

if the induced subgraph <V-D’> is connected. The inverse nonsplit domination number γns’(G) 

is the order of a smallest inverse dominating set of G. 
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2 Main Results: 

Definition:2.1 

We denote n- dimensional generalized mesh network as M (𝑑1 ,𝑑2, … , 𝑑𝑛 ), 

𝑑𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , 𝑑𝑖 ≥ 2, i = 1, 2, …., n. We can easily describe it as M 

(𝑑1, 𝑑2, … . , 𝑑𝑛 ) = 𝑃𝑑1 
× 𝑃𝑑2 

× … × 𝑃𝑑𝑛. The vertex set V = {𝑎1𝑎2 . . . 𝑎𝑛 : 𝑎𝑖 ∈ 

{0,1, … , 𝑑𝑖 − 1}. The vertices a = 𝑎1𝑎2 … . . 𝑎𝑛 and 𝑏1𝑏2 … . . 𝑏𝑛 are adjacent if and 

only if ∑𝑛 |𝑎𝑖−𝑏𝑖| =1. 

Example:2.1.1 

    

 

 

 

 

 

 

 

 

 

 

Figure 1: Two dimensional Mesh Network M(6,7) 

 
Theorem:2.2 

For n=2, the vertex cover number α (M(d1, d2)) = └ 
𝑑1𝑑2 ┘. 

2 

Proof: 
 

Let S be the vertex cover set of M(d1, d2). The Structural characteristics of the n- dimensional 

mesh network M(d1, d2) = 𝑃𝑑1 × 𝑃𝑑2. The vertex set is {0a: a ∈ {0,1, … , (𝑑2 − 1)}} ∪ {1a: a ∈

{0,1, … , (𝑑2 − 1)}} ∪……..∪ {(𝑑1 −1)a: a ∈ {0,1, … , (𝑑2 − 1)}}. The vertex set can form a 

𝑑1  × 𝑑2 matrix.  

It is clear that there is a second coordinate difference in each row’s vertices. So each row can 

generate a path graph 𝑃𝑑2 . If d1 <d2 , now to create a minimal vertex cover set S, it is sufficient 

to choose non adjacent vertices in each matrix row. Since the number of rows is minimum. |S| = 

⋃ ⋃ {𝑖𝑗}
𝑑2−1
𝑗=0

 
𝑑1−1

𝑖=0
 = └

𝑑1𝑑2

2
┘. 

 

It is clear that there is a first coordinate difference in each column’s vertices. So each column can 

generate a path graph 𝑃𝑑1 . If d1 > d2, now to create a minimal vertex cover set S, it is sufficient  
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to choose non adjacent vertices in each matrix column. Since the number of column is minimum.  

|S| = ⋃ ⋃ {𝑖𝑗}
𝑑2−1
𝑗=0

 
𝑑1−1

𝑖=0
 = └

𝑑1𝑑2

2
┘. 

If d1 = d2, choose non adjacent vertices from every row or column and collect the vertices in S 

such that |S| = ⋃ ⋃ {𝑖𝑗}
𝑑1−1
𝑗=0

 
𝑑1−1

𝑖=0
 = └

𝑑1
2

2
┘. 

 
Theorem:2.3 

For n ≥ 2 , the chromatic Number of n- dimensional Mesh Network is ꭓ( M (𝑑1𝑑2, … . . , 𝑑𝑛 ) )  

= 2. 

Proof: 

Using mathematical induction we can prove this result. For n =2, M (𝑑1, 𝑑2) = 𝑃𝑑1 
× 𝑃𝑑2 

. Clearly, 

the vertex set can form a 𝑑1 × 𝑑2 matrix. Suppose d1 ≤ d2 or d1 > d2 both the cases , ꭓ( M 

(𝑑1, 𝑑2) = 2. For n = 3, M (𝑑1, 𝑑2, 𝑑3) = 𝑃𝑑1 
× 𝑃𝑑2 

× 𝑃𝑑3 
. First consider the partition, 𝑃𝑑2 

× 𝑃𝑑3 
. 

Previous case, ꭓ(M (𝑑2, 𝑑3)) = 2. Now V(M(𝑑1, 𝑑2, 𝑑3)) = {0a: a ∈ {0,1, … , (𝑑3 − 1)}} ∪ {1a: 

a ∈ {0,1, … , (𝑑3 − 1)}} ∪   ∪ {(𝑑2 −1)a: a ∈ {0,1, … , (𝑑3 − 1)}}. The vertex set can form 

𝑑1 times 𝑑2 × 𝑑3 matrix. Since every row and every column form a path graph 𝑃𝑑3 and 𝑃𝑑2 . So 

Assign colour 1 and 2 to the non adjacent vertices of V(M(𝑑1, 𝑑2, 𝑑3)). Proceeding like this, we 

get ꭓ( M (𝑑1𝑑2, … . . , 𝑑𝑛 ) ) = 2. 

 

Lemma:2.4 
 

Let D’ be a minimum inverse nonsplit dominating set of M(d1, d2) with (ai ,bj) ∈ D’ where i ∈ 

d1, j ∈ d2. Then D’ contains at least |D’| - 
𝑑2

4
 odd vertices in ai. 

 

Proof :  

 

Case (i): d1 is odd, d2 is odd or even 

In this case, consider ⋃ ⋃ (𝑎𝑖 ,
𝑑2
𝑗=1

𝑑1
𝑖=1 𝑏𝑗 ) ∈ D’ where i is odd and j is even (or) odd. 

Thus |D’| contains at most d2 odd vertices. 

Case (ii): d1 is even, d2 is odd (or) even  

In this case, suppose |D’| = ┌ 
𝑑2+1

4
┐even vertices. Take a, b be any alternate vertices in D1’ 

where a is even and b is odd. Consider another inverse nonsplit dominating set  

D’’ = 
𝐷1′

𝑏
  which becomes a disconnected or is not a minimum. So D1’ > D’. which is a 

contradiction. Thus D’ contains ┌
𝑑2

4
┐number of even vertices. 

 
Theorem : 2.5 

Let G be an 2 dimensional M(d1, d2) mesh network, Then 

(i) γns’(M (d1, 3)) = d1. 

(ii) γns’(M (d1, 4)) = d1 +1. 
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Proof: 

(i) Let V(M(d1, d2)) = {(ai, bj) / 1 ≤ i ≤ d1 , 1 ≤ j ≤ 3}. The inverse nonsplit dominating set D’ of 

M(d1, d2) is D’ = {(ai, bj) / 1 ≤ i ≤ d1 , i is even } ∪ {(ai, b3) / 1 ≤ i ≤ d1 , i is odd}. And so |D’| = 

d1. Thus γns’(M (d1, 3)) = d1. 

(ii)Let V(M(d1, d2)) = {(ai, bj) / 1 ≤ i ≤ d1 , 1 ≤ j ≤ 4}.  By Previous Lemma, 

Let X = {a1, a5, a9, a13, a17, ……} and Y= {a3, a7, a11, a15, …….} are the set of odd vertices in D’. 

If d1 is odd, Dns’(M(d1,4)) = {⋃ ⋃ (𝑎𝑖
4
𝑗=1

𝑑1
𝑖=1 , 𝑏𝑗) / ai ∈  𝑋, 𝑗 𝑖𝑠 𝑜𝑑𝑑} ∪ {⋃ ⋃ (𝑎𝑖

4
𝑗=1

𝑑1
𝑖=1 , 𝑏𝑗) / ai ∈

 𝑌, 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛}. And so |D’| = d1 + 1. Thus γns’(M (d1, 4)) = d1 +1. 

If d1 is even, Dns’(M(d1, 4)) = {⋃ ⋃ (𝑎𝑖
4
𝑗=1

𝑑1
𝑖=1 , 𝑏𝑗) / ai ∈  𝑋, 𝑗 𝑖𝑠 𝑜𝑑𝑑} ∪ {⋃ ⋃ (𝑎𝑖

4
𝑗=1

𝑑1
𝑖=1 , 𝑏𝑗) /

 ai ∈  𝑌, 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛} ∪ {(𝑎𝑛, 𝑏𝑗) / 𝑎𝑛−1 ∈ 𝑋 𝑎𝑛𝑑 𝑗 =  2 }.  And so |D’| = d1 + 1.  

Thus γns’(M (d1, 4)) = d1 +1. 

 

 

Theorem :2.6 

 
Let G be any M (d1, d2) mesh network with d1, d2 ≥ 2 and d1, d2 ≠ 3. 1 ≤  𝑖 ≤  𝑑1 Then  

   γns’(M(d1, d2))   =       

{
 
 

 
 |𝑋|  × └

𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐     𝑖𝑓 𝑑1 𝑖𝑠 𝑜𝑑𝑑

|𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2−1

4
 ┐𝑖𝑓 𝑑1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑖 ∈ 𝐴

|𝑋|  ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ + ┌

𝑑2

4
 ┐ 𝑖𝑓 𝑑1 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑖 ∈ 𝐵   

 

Proof:  

 
Let V (M (d1, d2)) = {(ai, bj) / 1≤ i, j ≤ 𝑑1}. Consider X = {a1, a5, a9, a13, a17, ……} and Y= {a3, 

a7, a11, a15, …….} are the collection of odd vertices in D’. 

 

Case (i): d1 is odd and d2 is even or odd 

Consider the inverse nonsplit dominating set D’ of M (d1, d2). 

Dns’(M(d1,d2)) = {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (ai

d2
j=1

d1
i=1 , bj) / ai ∈  Y,

j is even}.  Then D’ = |X| × {odd vertices in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2}  

Therefore D’ = |X|  × └
𝑑2

2
┘ + |𝑌| × ┌

𝑑2

2
┐. 

 

Case (ii): d1 is even and d2 is even or odd 

Without loss of generality, assume that A = {a2, a6, a10, a14, a18, ….} and B = {a4, a8, a12, a16, a20,  

….} are the collection of even vertices in 𝑃𝑑1 . 

subcase (i): 

Suppose A = {a2, a6, a10, a14, a18, ….} and d2 is odd then the inverse nonsplit dominating set D’.  

Dns’(M(d1,d2)) = {⋃ ⋃ (aI
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (aI

d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y,

j is even}  ∪ {(𝑎𝑑1 , 𝑏𝑗 )/ 𝑎𝑑1  ∈  𝑋 𝑎𝑛𝑑 𝑗 =  3,7,11,15,… . . 𝑑2 –  2}..  Then D’ = |X| × {odd 

vertices in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2} .Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌| × ┌

𝑑2

2
 ┐ +  
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𝑖=1 𝑖=1 

 

┌
𝑑2 −1

4
 ┐.Thus γns’(M(d1, d2))  = |𝑋| ×  └

𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2 −1

4
 ┐.        

If d2 is even then the inverse nonsplit dominating set D’. Dns’(M(d1,d2)) = {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai 

∈  X, j is odd} ∪ {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y, j is even}  ∪ {(𝑎𝑛 , 𝑏𝑗 )/ 𝑎𝑛  ∈  𝑋 𝑎𝑛𝑑 𝑗 =

 3,7,11, . . . . . 𝑑2  − 1}.   Then D’ = |X| × {odd vertices in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2} 

.Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2−1

4
 ┐.Thus γns’(M(d1, d2))  = |𝑋| ×

 └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2 −1

4
 ┐.    

Subcase (ii): 

Suppose B = {a4, a8, a12, a16, ….} and d2 is even then the inverse nonsplit dominating set D’.  

Dns’(M(d1,d2)) = {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (ai

d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y,

j is even}  ∪ {(𝑎𝑑1 , 𝑏𝑗 )/ 𝑎𝑑1  ∈  𝑋 𝑎𝑛𝑑 𝑗 =  2,6,10, . . . . . 𝑑2 − 2. Then D’ = |X| × {odd vertices 

in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2} .Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐. 

Thus γns’(M(d1, d2))  = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐.    

If d2 is odd then the inverse nonsplit dominating set D’. Dns’(M(d1,d2)) = {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai 

∈  X, j is odd} ∪ {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y, j is even}  ∪ {(𝑎𝑑1 , 𝑏𝑗 )/ 𝑎𝑑1  ∈  𝑋 𝑎𝑛𝑑 𝑗 =

 2,6,10, . . . . . 𝑑2 − 1}. Then D’ = |X| × {odd vertices in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2} 

.Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐.Thus γns’(M(d1, d2))  = |𝑋| ×  └

𝑑2

2
 ┘ +

|𝑌|  × ┌
𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐.      

 

 

Definition:2.7 

We denote n- dimensional generalized Torus network as T(𝑑1𝑑2, … . . , 𝑑𝑛 ), 

𝑑𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , 𝑑𝑖 ≥ 2, I = 1, 2, …., n. We can easily describe it as T 

(𝑑1𝑑2, … . . , 𝑑𝑛 ) = 𝐶𝑑1 × 𝐶𝑑2  × … × 𝐶𝑑𝑛. The vertex set V = {𝑎1𝑎2 … . . 𝑎𝑛 : 𝑎𝑖 ∈ 

{0,1, … , 𝑑𝑖 − 1}. The vertices a = 𝑎1𝑎2 … . . 𝑎𝑛 and 𝑏1𝑏2 … . . 𝑏𝑛 are adjacent if and 

only if the following conditions are holds (i) ∑𝑛 |𝑎𝑖−𝑏𝑖| =1 and (ii) ∑𝑛 |𝑎𝑖−𝑏𝑖| 

= 𝑑𝑖-1 for i = 1,2, n. 
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Using the above theorem 2.6 , we obtain the value of the inverse nonsplit domination number 

of 2D Mesh Network for 2 ≤ d1 ≤ d2 ≤ 20 as shown in Table 1. 

 
 

    

                 Table 1: Inverse Nonsplit Domination Number of 2D Mesh Network 
 

Example:2.7.1 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 2: Two dimensional Torus Network T (6,7) 

 

d1d2 2 3 4 5 6 7            8 9 10 11 12 13 14 15 16 17 18 19 20 

2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 

3  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4   5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

5    7 9 10 11 12 14 15 16 17 19 20 21 22 24 25 26 

6     11 12 14 15 17 18 20 21 23 24 26 27 29 30 32 

7      14 16 17 19 21 23 24 26 28 30 31 33 35 37 

8       18 20 22 24 26 28 30 32 34 36 38 40 42 

9        22 25 27 29 31 34 36 38 40 43 45 47 

10         28 30 33 35 38 40 43 45 48 50 53 

11          33 36 38 41 44 47 49 52 55 58 

12           39 42 45 48 51 54 57 60 63 

13            45 49 52 55 58 62 65 68 

14             53 56 60 63 67 70 74 

15              60 64 67 71 75 79 

16               68 72 76 80 84 

17                76 81 85 89 

18                 86 90 95 

19                  95 100 

20                   105 
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Theorem:2.8 

For n=2, Independent number of T (d1, d2) torus network is   

𝛽0(T (d1, d2)) = {
𝑑2   𝑖𝑓   𝑑1 < 𝑑2 
𝑑1   𝑖𝑓   𝑑1 ≥ 𝑑2

 

 

Proof: 

Let D be the largest independent set of T (d1, d2) . According tp the structural characteristics of 

the generalized torus network T (d1, d2) = 𝐶𝑑1 × 𝐶𝑑2   ,  the vertex set is of the form  

The vertex set is {0a: a ∈ {0,1, … , (𝑑2 − 1)}} ∪ {1a: a ∈ {0,1, … , (𝑑2 − 1)}} ∪……..∪ 
{(𝑑1 −1)a: a ∈ {0,1, … , (𝑑2 − 1)}}. The vertex set can form a 𝑑1  × 𝑑2 matrix.   

It is clear that there is a second coordinate difference in each row’s vertices. So each row can 

generate a cycle graph 𝑃𝑑2 . If d1 ≥d2 , now to create an independent set D, it is sufficient to choose 

non adjacent vertices in each matrix row. Since the number of row’s is maximum. |D| = 

⋃ ⋃ {𝑖𝑗}
𝑑2−1
𝑗=0

 
𝑑1−1

𝑖=0
 = 𝑑2. 

It is clear that there is a first coordinate difference in each column’s vertices. So each column can 

generate a cycle graph 𝑃𝑑1 . If d1 < d2 , now to create an independent set D, it is sufficient to choose 

non adjacent vertices in each matrix column. Since the number of column’s is maximum. |D| = 

⋃ ⋃ {𝑖𝑗}
𝑑2−1
𝑗=0

 
𝑑1−1

𝑖=0
 = 𝑑1. 

 

Theorem: 2.9 

Let G be any T (d1, d2) torus network with d1, d2 ≥ 2 and d1, d2 ≠ 3. 1 ≤  𝑖 ≤  𝑑1 Then  

   γns’(T(d1, d2))   =       {
|𝑋| ×  └

𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐                 𝑖𝑓  𝑎𝑑1  ∉ 𝐴

|𝑋|  ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ + ┌

𝑑2

4
 ┐ 𝑖𝑓  𝑎𝑑1 ∈  𝐴   

 

 

Proof:  

Let V (M (d1, d2)) = {(ai, bj) / 1≤ i ≤ 𝑑1 , 1 ≤  j ≤  𝑑2}. Consider X = {a1, a5, a9, a13, a17, ……} 

and Y= {a3, a7, a11, a15, …….} are the set of odd vertices in T (d1, d2). Without loss of generality  

 

assume that A = {a6, a10, a14, a18, ….} and B = {a4, a8, a12, a16, a20, ….} are the collection of even  

vertices in T (d1, d2). 

 

Case (i):  𝑎𝑑1  ∉ 𝐴 

Consider the inverse nonsplit dominating set D’ of T (d1, d2). 

Dns’(T(d1,d2)) = {⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (ai

d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y,

j is even}.  Then D’ = |X| × {odd vertices in 𝑃𝑑1} + |Y| × {even vertices in 𝑃𝑑2}  

Therefore D’ = |X|  × └
𝑑2

2
┘ + |𝑌| × ┌

𝑑2

2
┐. 

Case (ii): 𝑎𝑑1 ∈  𝐴 

If d2 is odd then the inverse nonsplit dominating set D’ of T(d1, d2) is  Dns’(M(d1,d2)) = 

{⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (ai

d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y, j is even}  ∪  {(𝑎𝑑1 , 𝑏𝑗 )/

 𝑎𝑑1  ∈  𝑋 𝑎𝑛𝑑 𝑗 =  3,7,11. . . . . 𝑑2 − 2}..  Then D’ = |X| × {odd vertices in 𝑃𝑑1} + |Y| × {even 

vertices in 𝑃𝑑2} .Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐. Thus γns’(M(d1, d2))  = 

|𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐.        

If d2 is even then the inverse nonsplit dominating set D’ of T(d1, d2) is Dns’(M(d1,d2)) =  
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{⋃ ⋃ (ai
d2
j=1

d1
i=1 , bj) / ai ∈  X, j is odd} ∪ {⋃ ⋃ (ai

d2
j=1

d1
i=1 , bj) / 𝑎𝑖  ∈  Y, j is even}  ∪

 {(𝑎𝑑1 , 𝑏𝑗 )/ 𝑎𝑑1  ∈  𝑋 𝑎𝑛𝑑 𝑗 =  3,7,11,15, . . . . . 𝑑2  − 1}.   Then D’ = |X| × {odd vertices in 𝑃𝑑1} 

+ |Y| × {even vertices in 𝑃𝑑2} .Therefore D’ = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2

4
 ┐.Thus 

γns’(M(d1, d2))  = |𝑋| ×  └
𝑑2

2
 ┘ + |𝑌|  × ┌

𝑑2

2
 ┐ +  ┌

𝑑2 

4
 ┐.    

Using the above theorem 2.9 , we obtain the value of the inverse nonsplit domination number of 

2D Torus Network for 3 ≤ d1 ≤ d2 ≤ 20 as shown in Table 2. 

 

d1d2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

3 3 3 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 

4  4 6 7 8 8 10 11 12 12 14 15 16 16 18 19 20 20 

5   7 9 10 10 12 14 15 15 17 19 20 20 22 24 25 25 

6    11 12 12 15 17 18 18 21 23 24 24 27 29 30 30 

7     14 14 17 19 21 21 24 26 28 28 31 33 35 35 

8      16 20 22 24 24 28 30 32 32 36 38 40 40 

9       22 25 27 27 31 34 36 36 40 43 45 45 

10        28 30 30 35 38 40 40 45 48 50 50 

11         33 33 38 41 44 44 49 52 55 55 

12          36 42 45 48 48 54 57 60 62 

13           45 49 52 52 58 62 65 65 

14            53 56 56 63 67 70 70 

15             60 60 67 71 75 75 

16              64 72 76 80 80 

17               76 81 85 85 

18                86 90 90 

19                 95 95 

20                  100 

 

Table 2: Inverse Nonsplit Domination number of 2D Torus Network 

 

 

Definition: 2.10 

We denote n- dimensional generalized hypercube network as Q (𝑑1𝑑2, … . . , 𝑑𝑛  ), 
𝑑𝑖 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , 𝑑𝑖 ≥ 2, i = 1, 2, …., n.  We can easily describe it as Q 

(𝑑1𝑑2, … . . , 𝑑𝑛  ) = 𝐾𝑑1 × 𝐾𝑑2   × …× 𝐾𝑑𝑛 . The vertex set V = {𝑎1𝑎2… . . 𝑎𝑛 : 𝑎𝑖 ∈

{0,1, … , 𝑑𝑖 − 1}. The vertices a = 𝑎1𝑎2… . . 𝑎𝑛 and 𝑏1𝑏2… . . 𝑏𝑛 are adjacent if and 

only if  a and b vary in exactly one coordinate. 

 

Example: 2.10.1 
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Figure 2: Two dimensional Generalized Hypercube Network Q (6,7) 

 

 

Theorem:2.11 

For 2- dimensional Generalized Hypercube Network γns’(Q(d1, d2)) = {
 𝑑1   𝑖𝑓   𝑑1  < 𝑑2 
𝑑2  𝑖𝑓   𝑑1 ≥ 𝑑2

  

Proof: 

For n=2, then the GHN Q (d1, d2) = 𝐾𝑑1× 𝐾𝑑2. The vertex set is of the form {0u: u ∈ {0, 1, …, 

(d2 – 1)}} ∪ {1u: u ∈ {0, 1, …, (d2 – 1)}} ∪. . . . . . .∪ {(d1-1) u: u ∈ {0, 1, …, (d2 – 1)}}. This 

vertex set can form a d1 × d2 matrix.  

 

Case (i): Suppose d1 < d2 

It is clear that there is a single co-ordinate difference between each row’s vertices in the second 

one. Consequently, every vertex in a row is adjacent to every other vertex in that same row. As a 

result, every row can generate a complete graph 𝐾𝑑2 .  Now to create a dominating set it is 

sufficient to choose single vertex from each row of d1 × d2 matrix such that D = ⋃ ⋃ 𝑖𝑗
𝑑2 −1
𝑗=1

𝑑1−1
𝑖=1  

where i’s are distinct and j’s are distinct. Since row is minimum,  |D| = d1. Clearly <V (Q (d1, d2)) 

– D> is connected. Therefore D is a nonsplit Dominating set. We can find one more nonsplit 

dominating set with same cardinality. Hence γns’(Q(d1, d2)) = d1. 

 

Case (i): Suppose d1 ≥ d2  

If d1 = d2, then the vertex set can form a d1 × d2 square matrix. The minimum nonsplit dominating 

set D = {00, 11, …, (d1 -1) (d2-1)}. Clearly we can find one more dominating set D’  

with |D| = |D’|. where D’ is an inverse nonsplit dominating set of V (Q (d1, d2)). If d1 > d2 , It is  

clear that there is a single co-ordinate difference between each column’s vertices in the second 

one. Consequently, every vertex in a column is adjacent to every other vertex in that same column. 

As a result, every column can generate a complete graph 𝐾𝑑1 .  Now to create a dominating set it 

is sufficient to choose single vertex from each column of d1 × d2 matrix such that D = 

⋃ ⋃ 𝑖𝑗
𝑑2 −1
𝑗=1

𝑑1−1
𝑖=1  where i’s are distinct and j’s are distinct. Since column is minimum, |D| = d1.  
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Clearly <V (Q (d1, d2)) – D> is connected. Therefore D is a nonsplit Dominating set. We can find 

one more nonsplit dominating set with same cardinality. Hence γns’(Q(d1, d2)) = d2. 

 

Observation:2.12 

Evaluating four or more numbers can be challenging. When the values of d1, d2, ..., dn are 

substantial, visualizing the graph becomes intricate. If we swap the di’s, the structures of the 

graphs remain isomorphic. 

 

Theorem: 2.13 

For n ≥ 3, The Inverse Nonsplit Domination Number of n dimensional Generalized Hypercube 

Network is 𝛾𝑛𝑠′(Q (d1, d2, d3, ...., dn−1, dn)) = d1.d2.d3 ... dn−2. 𝛾𝑛𝑠′(Q(dn−1,dn)) 

Proof: 

Using Mathematical Induction on n we prove this result. 

Let n = 3, Q(d1,d2,d3) = 𝐾𝑑1 ×𝐾𝑑2 × 𝐾𝑑3 can be divided into d1 groups according to the 

first coordinate. Then each group can form d2 ×d3 matrix. Let D be the nonsplit dominating set 

of Q(d1, d2, d3). 

 

Case (i): Suppose d2 < d3 

By Previous Theorem, The minimum inverse nonsplit dominating set is d2. Since d2 ×d3 matrix 

can be formed into d1 times, we get 𝛾𝑛𝑠′(Q(d1, d2,d3)) = d2d1. 

 

Case (ii): Suppose d2 ≥ d3 

Subcase (i): d2 > d3 

By Previous Theorem, The minimum inverse nonsplit dominating set is d3. Since d2 ×d3 matrix 

can be formed into d1 times, we get 𝛾𝑛𝑠′(Q(d ,d2,d3)) = d3d1. 

Subcase (ii): d2 = d3 

By Previous Theorem, The minimum inverse nonsplit dominating set is d3. Since d2 ×d3 matrix 

can be formed into d1 times, we get 𝛾𝑛𝑠′(Q(d ,d2,d3)) = d3d1. From the above cases, we conclude 

that 𝛾𝑛𝑠′(Q(d1,d2,d3)) = d1.min(d2,d3) = d1. 𝛾𝑛𝑠′(Q(d2, d3)). 

Let n = 4, then Q(d1, d2, d3) = 𝐾𝑑1 
× 𝐾𝑑2 

× 𝐾𝑑3 
× 𝐾𝑑4 

. According to the structural characteristics 

of the generalized hypercube network, first we consider the 𝐾𝑑3 × 𝐾𝑑4 . It can form d3 × d4 

matrix. Clearly 𝛾𝑛𝑠′ (Q(d3, d4)) = min(d3,d4). Next we consider Q(d2, d3,d4). It can be divided 

into d2 groups according to the first coordinate. Then each group can form a d3 ×d4 matrix. 

Then Clearly 𝛾𝑛𝑠 ′ (Q(d2, d3, d4)) = d2 min(d3,d4). Finally, Consider Q(d1,d2,d3,d4) 

=𝐾𝑑1 × 𝐾𝑑2 × 𝐾𝑑3 × 𝐾𝑑4 . The vertex set of Q(d1, d2,d3,d4) can be divided into d1d2 groups  

according to first coordinate. Then each group can form a d3 ×d4 matrix. Therefore 𝛾𝑛𝑠′ (Q(d1, 

 d2, d3, d4)) = d1.d2.min(d3,d4) = d1.d2. 𝛾𝑛𝑠′ (Q(d3, d4)). The Statement is true for n = 3,4. Now 

assume that the statement is true for n−1. Thus 𝛾𝑛𝑠′ (Q(d1, d2, d3,....,dn−2, dn−1)) = d1.d2.d3  dn−3. 

𝛾𝑛𝑠 ′ (Q(dn−2, dn−1)). Now to prove the statement is true for n. For Generalized Hypercube 

Network Q(d1, d2,...dn−1,dn) =𝐾𝑑1 × 𝐾𝑑2  × … × 𝐾𝑑𝑛. = 𝐾𝑑1 .Q(d2,d3,  ,dn−1,dn). Since the result 

is true for n − 1, we get 𝛾𝑛𝑠′(Q(d2, d3, d4,....,dn−1)) = d2.d3  dn−2. 𝛾𝑛𝑠′ (Q(dn−1, dn)). Now the vertex 

set of Q(d1, d2,d3,. ,dn−1,dn) can be divided into d1 groups and each group can form a dn−1 ×dn 

matrix. Therefore 𝛾𝑛𝑠′(Q(d1, d2, d3, d4,....,dn−1, dn)) = d1.d2.d3....dn−2. 𝛾𝑛𝑠′( (Q(dn−1, dn)). Hence 

the statement is true for all n. 
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3 Conclusion: 

Network reliability is one of the key factors in designing network topology, which can greatly 

increase the cost of performance of network performance. This paper discusses the inverse 

nonsplit domination of multi dimensional networks, determines the exact values of it. Besides, 

there are many other properties, which will be studied further. 
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