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Abstract 

Most scheduling problems, including the standard Flexible Job Shop Scheduling Problem (FJSP), typically 

assume that machines remain continuously available throughout the entire planning horizon. While this assumption 

may be valid in certain scenarios, it often fails to reflect real-world situations where machines may experience 

downtime due to maintenance, pre-scheduled tasks, or unforeseen disruptions. Therefore, a more practical 

scheduling model must incorporate machine availability constraints. In this study, we address the Flexible Job Shop 

Scheduling Problem with non-fixed availability constraints (FJSP-nfa), where the completion time of maintenance 

tasks is not predetermined and must be determined during the scheduling process. To solve this problem, we 

propose a Hybrid Discrete Firefly Algorithm (HDFA) designed for multi-objective optimization. The algorithm 

simultaneously minimizes three objectives: the maximum completion time, the workload of the critical machine, and 

the total workload across all machines. Since the traditional Firefly Algorithm was originally developed for 

continuous optimization problems, it cannot be directly applied to discrete problems. To overcome this limitation, 

we introduce a modified approach that adapts the algorithm for discrete optimization. This involves converting 

continuous functions such as attractiveness, distance, and movement into appropriate discrete functions for machine 

assignment and operation sequencing. Additionally, to enhance solution quality, the algorithm integrates a 

neighbourhood-based local search method. This local search is applied to promising solutions, focusing on the 

concept of the critical path to identify and explore improvements. The effectiveness of the proposed algorithm is 

validated using representative FJSP-nfa benchmark problems, demonstrating its capability to provide efficient and 

high-quality scheduling solutions. 

Keywords: Flexible job shop scheduling problem, Hybrid discrete firefly algorithm, multi-objective 

optimization, Maintenance activity, Local search. 
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INTRODUCTION 

In production scheduling, the classical Job Shop Scheduling Problem (JSP) is classified as NP-

hard [1]. The Flexible Job Shop Scheduling Problem (FJSP) extends the classical JSP by 

allowing an operation to be processed on one machine selected from a set of alternatives, making 

it more reflective of real-world manufacturing scenarios. Compared to JSP, FJSP is more 

challenging because it involves both assigning operations to machines and sequencing those 

operations. This introduces two sub-problems: the routing sub-problem, which assigns 

operations to machines, and the scheduling sub-problem, which sequences these operations to 

generate an optimal schedule [2]. Due to its NP-hard nature, no exact method has yet been 

proposed that can solve FJSP within a reasonable time frame. Consequently, numerous heuristic 

and metaheuristic approaches, including Tabu Search (TS), Simulated Annealing (SA), Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Variable Neighborhood Search (VNS), 

and Artificial Immune Algorithm (AIA), have been employed to obtain optimal or near-optimal 

schedules efficiently. 

Recently, the multi-objective version of FJSP has gained considerable interest among 

researchers. Solutions to multi-objective FJSP can be approached in two ways: by combining all 

objectives into a single weighted objective or using Pareto-based methods. 

Machine Availability Constraints 

Most scheduling models in the literature assume continuous machine availability throughout the 

planning horizon. While this assumption may hold in certain cases, real-world scenarios often 

involve machine downtime due to maintenance, breakdowns, or pre-scheduled tasks [3]. 

Consequently, a more realistic scheduling model must incorporate machine availability 

constraints. 

Availability constraints can generally be categorized into two types: fixed and non-fixed. Fixed 

availability constraints specify predetermined unavailability periods starting at fixed time points. 

In contrast, non-fixed availability constraints allow flexibility in determining the starting time of 

unavailability periods during the scheduling process. For instance, preventive maintenance (PM) 

tasks are often assigned within a flexible time window, permitting adjustments to the start time 

[4]. 

Schmidt [3] reviewed studies on deterministic scheduling problems with availability constraints 

published before 1998. Since then, numerous studies have explored production scheduling with 

maintenance activities across various machine environments and job characteristics. Recent 

surveys by Ma et al. [5] indicate that most research has addressed single machine problems, 

parallel machine problems, flow shop problems, and job shop problems, with limited work on 

FJSP with availability constraints. 

Gao et al. [4] proposed a hybrid Genetic Algorithm (GA) combined with a local search method 

for solving multi-objective FJSP with preventive maintenance tasks. Zribi et al. [6] investigated 

the MPM job shop scheduling problem under maintenance constraints. Wang and Yu [7] applied 

a Filtered Beam Search (FBS) algorithm to FJSP with maintenance tasks. Rajkumar et al. [8] 

introduced a GRASP algorithm for multi-objective FJSP with non-fixed availability constraints. 

Li and Pan [9] presented a discrete chemical-reaction optimization (DCRO) algorithm for FJSP 
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with maintenance activities, while Moradi et al. [10] integrated preventive maintenance tasks 

into a multi-objective FJSP framework. 

Most of these studies have focused on fixed machine availability constraints, where maintenance 

task times are predetermined. However, in practical applications, preventive maintenance tasks 

often impose non-fixed availability constraints, meaning the starting time of unavailability 

periods must be determined during the scheduling process [4]. Few studies, including those by 

Graves and Lee [11], Aggoune [12], Kubzin and Strusevich [13], and Gao et al. [4], have 

addressed non-fixed availability constraints. 

The Firefly Algorithm (FA) is a nature-inspired metaheuristic algorithm, introduced by Yang in 

2008 [14], based on the flashing behavior of fireflies. Yang [15] applied the FA to multimodal 

optimization problems, while Lukasik and Zak [16] adapted it for constrained continuous 

optimization, demonstrating its efficiency. Sayadia et al. [17] used a discrete firefly algorithm for 

minimizing makespan in permutation flow shop scheduling problems. Jati [18] proposed a 

discrete FA for solving the Traveling Salesman Problem (TSP), and Khadwilard et al. [19] 

applied FA to job shop scheduling problems. Additionally, Marichelvam et al. [20] introduced a 

discrete FA using the SPV rule for multi-objective hybrid flow shop scheduling problems. 

While the traditional FA is primarily used for continuous optimization, its direct application to 

discrete optimization problems is limited. The standard FA relies on real-number operations, 

making it unsuitable for discrete problem-solving. 

This paper proposes a Hybrid Discrete Firefly Algorithm (HDFA) to address the multi-objective 

Flexible Job Shop Scheduling Problem with non-fixed availability constraints (FJSP-nfa). We 

consider a deterministic case where maintenance task durations are known in advance and fixed. 

Additionally, operations are strictly non-preemptive, meaning once an operation begins, it cannot 

be interrupted except by a maintenance task or another operation. 

The primary objectives of this study are to minimize: 

The maximum completion time, 

The workload of the critical machine, and 

The total workload across all machines. 

The rest of the paper is organized as follows: Section 2 presents the problem formulation and 

notation. Section 3 introduces the standard Firefly Algorithm. The proposed algorithm is detailed 

in Section 4. Section 5 presents the computational results based on well-known FJSP-nfa 

benchmark problems. Finally, Section 6 concludes with key findings and suggestions for future 

research. 

PROBLEM DESCRIPTION 

The Flexible Job Shop Scheduling Problem with Non-Fixed Availability Constraints (FJSP-nfa) 

belongs to the broad field of deterministic scheduling with machine availability constraints. It 

can be described as follows: 

Each job Ji (1≤ i ≤ n ) consists of a sequence of ni operations. Each operation Oij (i = 1,2,...,n; j = 

1,2,...,ni) of job (Ji)  can be processed by one machine mij in the set of eligible machines Mij. The 
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processing time of an operation Oij on the machine Mk is pijk (Mk ∈ Mij ⊆M). There are Lk (k =1, 

2, . . . , m) 

A key assumption is that the operations are non-resumable, meaning that if an operation is 

interrupted by maintenance, it must be reprocessed entirely. The objective is to assign operations 

to machines and determine the schedule for both job operations and maintenance tasks, adhering 

to the following constraints: 

1. The sequence of operations for each job is fixed. 

2. Each machine processes only one operation or preventive maintenance (PM) task at a time. 

3. Each maintenance task must be completed within its time window. 

Objectives 

The following three criteria are to be minimized: 

Makespan (Cm) of the jobs, i.e. the completion time of all jobs 

Maximal machine workload (Wm), i.e. the maximum working time spent on any machine 

Total workload of the machines (Wt) which represents the total working time over all 

machines. 

Assumptions 

jobs are to be scheduled on machines. 

Each job has ordered operations. 

Every machine processes only one activity (operation or maintenance) at a time. 

Maintenance tasks have a predefined time window. 

Setup time is machine-independent and included in the processing time. 

Indices and Parameters 

: i, h  index of jobs, i, h = 1,2, . . . , n 

 j, g  index of operation sequence, j, g = 1,2,. . . , ni 

k index of machines, k = 1,2, . . . , m 

l index of maintenance tasks, l = 1,2, . . . , Lk 

Parameters 

n Total number of jobs 

m Total number of machines 

ni Total number of operations of job i 

Lk Total number of preventive maintenance tasks on machine k 

Oij The jth operation of job i 

PMklThe lth preventive maintenance task on machine k 

Mij The set of available machines for the operation Oij 

pijk Processing time of operation Oij on machine k 
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dkl Duration of the maintenance task PMkl 

Cij Completion time of the operation Oij 

ykl Completion time of PMkl 

[𝑡𝑘𝑙
𝐸 , 𝑡𝑘𝑙

𝐿 ] Time window associated with PMkl where 𝑡𝑘𝑙
𝐸  is the early starting time and 𝑡𝑘𝑙

𝐿  is the late 

completion time 

Decision variable 

𝑥𝑖𝑗𝑘 = {
1, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑂𝑖𝑗 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         
  

Under these assumptions and notations, the proposed mathematical model for the problem is 

defined as follows. 

𝑚𝑖𝑛𝑓1 = max
1≤𝑖≤𝑛

(𝐶𝑖𝑛𝑖
)                                                     (1) 

     

𝑚𝑖𝑛𝑓2 = max
1≤𝑘≤𝑚

{∑ ∑ 𝑥𝑖𝑗𝑘

𝑛𝑖

𝑗=1

𝑛

𝑖=1

. 𝑝𝑖𝑗𝑘 + ∑ 𝑑𝑘𝑙

𝐿𝑘

𝑙=1

}        (2) 

𝑚𝑖𝑛𝑓3 = ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 . 𝑝𝑖𝑗𝑘

𝑛𝑖

𝑗=1

𝑛

𝑖=1

𝑚

𝑘=1

+ ∑ ∑ 𝑑𝑘𝑙

𝐿𝑘

𝑙=1

𝑚

𝑘=1

            (3) 

Where  

f1 = maximum completion time of all jobs 

f2 = maximum workload of all machines 

f3 = the total workload of all machines 

The weighted sum of the above three objective values are taken as the combined objective 

function: 

Minimise F(c) = W1 × f1 + W2 × f2 + W3 × f3           (4) 

Subject to: 

W1 + W2 + W3 = 1,  0≤ W1, W2, W3 ≤ 1          (5) 

Objective Functions 

The problem is formulated as follows: 

The weighted sum of these objective values forms the combined objective function: 

Where: 

Firefly Algorithm 

The Firefly Algorithm (FA) is a population-based metaheuristic technique for solving continuous 

optimization problems, particularly NP-hard problems. Inspired by the flashing behavior of 

fireflies, the algorithm models the attractiveness of fireflies as a function of their brightness, 

which is determined by the objective function value. 
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Firefly Algorithm 

Objective function f(X), X=(X1, . . . , Xd)
T 

Generate initial population of fireflies Xi 

(i=1,2,...,n) 

Light intensity Ii at Xi is determined by 

f(Xi) 

Define light absorption coefficient γ 

While (t < Max Generation) 

for i =1 : n all n fireflies 

for j = 1 : I all n fireflies 

if (Ij > Ii), Move firefly i towards j in d-

dimension;  end if 

Attractiveness varies with distance r via 

exp [-γr] 

Evaluate new solutions and update light 

intensity 

end for j 

end for i 

Rank the fireflies and find the current 

best 

end while 

Post process results and visualization 

Idealized Rules of FA 

Unisex Behavior: All fireflies are attracted to others regardless of gender. 

Attraction and Movement: A less bright firefly moves toward a brighter one. Attractiveness is 

proportional to brightness and inversely proportional to distance. 

Brightness Evaluation: For a minimization problem, brightness is inversely proportional to the  

objective function value. 

These rules are integrated into the optimization process, leading to efficient and near-optimal 

solutions for complex scheduling problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                       Fig. 1: Pseudocode of the firefly algorithm 

Based on Yang [15], FA is very efficient in finding the global optimal value with high success 

rates. Simulations and results indicate that FA is superior to both PSO and GA in terms of both 

efficiency and success rate. These facts give inspiration to investigate how to find optimal 

solution using FA in solving FJSP. The challenges are how to compute discrete distance between 

two fireflies and how they move in coordination. The following issues are important in this 

algorithm. 

Distance 

The distance between any two fireflies i and j, at positions xi and xj, respectively can be defined 

as a Cartesian distance:  
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  𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1                 (6) 

where xi,k is the kth component of the spatial coordinate xi of the  ith firefly and d is the number of 

dimensions. 

Attractiveness 

The attractiveness of a firefly is determined by its light intensity. Each firefly has its distinctive 

attractiveness β which implies how strong it attracts other members of the swarm. The form of 

attractiveness function of a firefly is the following monotonically decreasing function [16] 

  𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟𝑚
, (𝑚 ≥ 1)                                   (7)    

where r is the distance between two fireflies, β0 is the attractiveness at r = 0 and γ is a fixed light 

absorption coefficient. 

Movement 

The movement of a firefly i which is attracted by a more attractive (i.e., brighter)   firefly j is 

given by the following equation [16] 

 𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 1 2⁄ )          (8) 

where the first term is the current position of a firefly, the second term is due to attraction and 

the third term is a randomization with α being the randomization parameter, while rand is a 

random number generator uniformly distributed in the space [0, 1].  

Based on the effectiveness of the firefly algorithm in optimizing continuous problems, it is 

predicted that this algorithm will be impressive in solving discrete optimization problems.  

HYBRID DISCRETE FIREFLY ALGORITHM 

The firefly algorithm has been originally developed for solving continuous optimization 

problems. The firefly algorithm cannot be applied directly to solve the discrete optimization 

problems. In this study, we propose a possible way that can be modified to solve the class of 

discrete problems, where the solutions are based on discrete job permutations. In discrete firefly 

algorithm, the target individual is represented by two vectors: one is for the machine assignment 

and the other is for permutation of jobs. Hamming distance is used to measure the distance 

between two permutations. Movement is implemented by breaking the attraction step into two 

sub steps as β-step and α-step. 

Solution Representation 

In the proposed algorithm, each solution contains two components, i.e., the machine assignment 

component and the operation scheduling component. Each element in the machine assignment 

component gives the selected machine for the corresponding operation, while each element in 

the scheduling component denotes the job number being operated. Consider an example problem 

with three jobs and two machines, where each machine has one maintenance task as shown in 

Table 1. Table 2 gives the operation processing time for the problem. One solution for the 

example problem is {1, 2, 2, 1, 1, 2, 1, 1 | 1, 1, 2, 2, 1, 2, 3, 3}. The first part is the machine 

assignment component while the second part is the scheduling component. The corresponding 

machine assignment and scheduling component of the solution are given in Figs. 2 and 3, 

respectively. 
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Table 1: Preventive Maintenance Tasks 

PM tasks Time window Duration 

(dkl) 
𝑡𝑘𝑙

𝐸  𝑡𝑘𝑙
𝐿  

M1 PM11 0 7 3 

M2 PM21 1 8 3 

 

Table 2: Example of FJSP with 3 jobs and 2 machines 

Job Position Operation M1 M2 

 

J1 

1 O11 2 3 

2 O12 5 3 

3 O13 1 1 

 

J2 

4 O21 2 2 

5 O22 2 2 

6 O23 3 2 

J3 

7 O31 5 2 

8 O32 1 2 

 

 

Fig. 2: Machine Assignment Component 

 

Fig. 3: Operation Scheduling Component 

It is notable that the solution encoding given above contains no scheduling information for the 

PM tasks. In this study, the maintenance tasks are scheduled using the heuristic below: 

Step 1: The maintenance tasks on each machine are firstly scheduled at the end of their time 

window, i.e., set ykl ← 𝑡𝑘𝑙
𝐿 . 

Step 2: When schedule an operation Oij on machine Mk, denote the possible start time and end 

time of Oij, without considering the PM tasks, Sij and Cij, respectively. 

Step 3: If each maintenance task PMkl, does not overlap with the operation Oij, then schedule Oij 

at duration [Sij , Cij]. Otherwise, perform Step 4. 

Position 1 2 3 4 5 6 7 8 

Operation O11 O12 O13 O21 O22 O23 O31 O32 

Machine 1 2 2 1 1 2 1 1 
 

Sequence 1 1 2 2 1 2 3 3 

Operation O11 O12 O21 O22 O13 O23 O31 O32 

Position 1 2 4 5 3 6 7 8 
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Step 4: If [Sij , Cij] is overlapped with a maintenance task PMkl, shift PMkl to left as possible as 

compact, then schedule Oij after PMkl. 

The decoding of the machine assignment, operation scheduling and maintenance tasks for the 

example solution mentioned above can be represented as a following schedule with starting and 

completion time of each operation on its assigned machine. 

S1 = {(O11, M1: 0-2), (O12, M2: 2-5), (O21, M1: 5-7), (O22, M1: 7-9), (O13, M2: 8-9), (O23, M2: 9-

11),     (O31, M1: 9-14), (O32, M1: 14-15), (PM11: 2-5),   (PM21: 5-8)} 

Fig. 4 gives the Gantt chart of the above mentioned schedule. 

 

Fig. 4: Gantt chart 

Population Initialization 

The quality of the initial population has a greater effect on the performance of an algorithm. A 

good initial population locates promising areas in the search space and provides enough diversity 

to avoid premature convergence. 

Machine Assignment Component Initial Rules 

Initiate the machine assignment component of the population using the following two rules: the 

operation minimum processing time rule [21] denoted by Rma1, the global machine workload 

balance rule [22] denoted by Rma2. 

Scheduling Component Initial Rules 

The scheduling component considers how to sequence the operations at each machine, i.e., to 

determine the start time of each operation. Following are initial approaches for scheduling 

component: the most work remaining (MWR) rule [23] denoted by Rsc1, the most number of 

operations remaining (MOR) rule [21] denoted by Rsc2. 

To consider both the problem features and solution quality, in the first part of the population, 

machine assignment components and scheduling components are generated according to 

percentage of population size given for rules Rma1, Rma2, Rsc1, and Rsc2 respectively. All other 

solutions in the initial population are generated randomly to enhance the diversity of the 

population. 

 

Table 3: Illustration of Firefly Solution Updation 

Solution vector Machine Assignment Operation Scheduling 

Current firefly position (P) 1 2 2 1 1 2 1 1 1 2 4 5 3 6 7 8 

Combined objective function F(c) = 16.8 

Best firefly position (Pbest) 1 2 1 1 1 2 2 1 17 4 2 5 6 3 8 

M2 O13

M1 O32

1 153 5 7 9 11 13

O11 PM11 O21 O22 O31

2 5 7 9 14       15

O12 PM21 O23

2 5 8         9 11



 

1195 
 

Combined objective function F(c) = 13.0 

Difference between the 

elements (d ) 
{(3,1), (7,2),} {(2,7), (4,7), (5,7)} 

Hamming distance (r)    2 3 

Attractiveness β – step: 𝜷(𝒓) =
𝜷𝟎

(𝟏+𝜸.𝒓𝟐)
  

0.71 0.53 

rand ( ) between (0,1) { 0.64, 0.66} { 0.3,0.92, 0.06 } 

Movement β – step (3,1), (7,2) (2,7), (5,7) 

Firefly position after β – step 1 2 1 1 1 2 2 1 1 7 4 5 2 6 3 8 

Attractiveness α – step: 

α(randint) 
1 2 1 1 1 2 2 1 4 1 7 5 2 6 3 8 

Combined objective function  F(c) = 13.0 

 

Firefly Evaluation 

Each firefly is represented by machine assignment vector and operation scheduling vector. By 

using the permutation of these vectors in the population each firefly is evaluated to determine the 

objective function. The objective function value of each firefly is associated with the light 

intensity of the corresponding firefly. In this work, the evaluation of the goodness of schedule is 

measured by the combined objective function which can be calculated using equation (4). For 

example, the combined objective function value for the schedule mentioned from the example 

problem is F(c) = 16.8. 

Solution Updation 

In the firefly algorithm, the movement of fireflies is guided by light intensity, with comparisons 

made between pairs of fireflies. The attractiveness of a firefly is determined by its brightness, 

which corresponds to the encoded objective function. Consequently, a dimmer firefly will move 

toward a brighter one. If no other firefly is brighter, it moves randomly. 

In this study, the standard firefly algorithm is adapted by discretizing its distance, attraction, and 

movement functions. Table 3 presents how the solution updates between two fireflies using these 

modified functions. The distance from the current firefly position to the best firefly position is 

calculated using the Hamming distance for the machine assignment vector and the number of 

swaps for the operation scheduling vector. 

The attraction process consists of two steps: the β-step and the α-step. During the β-step, the β-

probability is determined using the Hamming distance, followed by an insertion or pairwise 

exchange on the current firefly’s elements if a randomly generated number is less than the β-

probability. The α-step introduces random movement, shifting the permutation to a neighboring 

one using a random integer (randint). 
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In this example, the combined objective function value improves from 16.8 to 13.0, 

demonstrating the movement from the current position to the best firefly position with an 

objective function value of 13.0. This process repeats until the termination criterion, defined by 

the total number of generations, is satisfied. 

Local search 

A local search mechanism is employed to explore the neighborhood of a generated solution in 

search of better alternatives. Various neighborhood structures are proposed to enhance both the 

exploitation and exploration capabilities of the algorithm. These structures improve convergence 

towards near-optimal solutions while maintaining the diversity of the solution population. By 

making local moves from one solution to its neighboring solution, the search process effectively 

explores promising regions within the solution space. The following neighborhood structures are 

designed for the machine assignment and scheduling components: 

Neighborhood Structure for Machine Assignment 

Random Neighborhood in Machine Assignment (Lma1): 

This neighborhood is generated using the following steps: 

Select a position within the machine assignment component. 

Randomly choose another machine from the available set for the corresponding operation at 

the selected position. 

Critical Operations Neighborhood in Machine Assignment (Lma2): 

This structure identifies the machine with the most critical operations. Some of these critical 

operations are then reassigned to another machine to potentially enhance the solution's quality. 

Neighborhood Structure for Operation Scheduling 

Critical Operation Swap Neighborhood (Lswap): 

This neighborhood involves swapping operations along the critical path, following these rules: 

If the first or last block has more than two operations, only the last two or the first two operations 

are swapped. 

If the block contains only two operations, they are directly swapped. 

No swaps occur if a block contains only one operation. 

Critical Operation Insert Neighborhood (Linsert): 

This neighborhood is formed through the following steps: 

Randomly select a critical block with at least two critical operations. 

Within each critical block, the first or last operation is inserted into the internal operations of the 

block. 

Internal operations within the block are shifted to the beginning or the end of the block. 

During the local search, the current schedule is replaced by a better neighboring solution, if one is 

found. A solution is considered improved if it meets one of the following criteria: 
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It has a lower fitness value compared to the initial solution. 

It has the same fitness value as the initial solution but features fewer critical paths, provided there 

are multiple critical paths in the initial solution. 

The primary benefit of hybridizing the Firefly Algorithm (FA) with local search is the 

accelerated convergence towards local optima. However, the downside is the increased 

computational time per generation. When the computational time is limited, the number of 

generations is reduced, which restricts the global search capability of genetic algorithms. Therefore, 

an essential challenge in the hybrid discrete firefly algorithm is effectively balancing the available 

computation time between the firefly solution search and the local search. 

 Framework of HDFA 

The proposed HDFA could keep the balance of both the global exploration and local 

exploitation, and it also stresses the diversity of the population during the searching process. 

Thus, it is expected to achieve good performance in solving the multi-objective flexible job shop 

scheduling problem. The detailed steps of the proposed HDFA are as follows: 

Step1: Set the parameter values; 

//set the population size (Psize); 

//set the rate of machine assignment rules and scheduling component rules (Rma1, Rma2, Rsc1, Rsc2); 

//set the maximum number of generations (maxgen); 

//set the max local search iterations (itemax) 

//set attractiveness of fireflies (β0); light absorption coefficient (γ); randomization parameter (α) 

Step 2: Initialize the firefly population stochastically according to the encoding scheme; 

Step 3: Evaluate each firefly’s objective value in the population and find the Pbest the best firefly 

solution with the lowest fitness value. 

Step 4: If the termination condition is not satisfied go to Step 5; otherwise go to Step 8 

Step 5: Update the firefly solution using β-step and α-step; 

Step 6: Start Local search procedure and replace the current solution with the better solution 

obtained by Local search; 

Step 7: Evaluate the fireflies once again and update the best firefly solution using the whole 

population’s experience; then go to Step 4 

Step 8: Output computational results. 
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COMPUTATIONAL RESULTS 

This section describes the computational experiments used to evaluate the performance of the 

proposed algorithm. In order to conduct the experiment, we implement the algorithm in C++ on 

an Intel Core 2 Duo 2.0 GHz PC with 4 GB RAM memory.  

Setting Parameters 

The parameters of the hybrid algorithm are as follows. Set the population size Psize = 200, rate of 

machine assignment rule Rma1 and scheduling component rule Rsc1 = 20%, rate of machine 

assignment rule Rma2 and scheduling component rule Rsc2 = 30%, the maximum number of 

generations maxgen = 100, maximum local search iteration    itemax = 50, attractiveness of fireflies 

β0 = 1.0, light absorption coefficient γ = 0.1 and randomization parameter α = 1.0. 

Comparison of the FJSP instances with PM Tasks 

 

Table 4: PM tasks of 4 × 5-m 

 PM11 PM21 PM31 PM41 PM51 

 

Time 

window 

𝑡𝑘𝑙
𝐸  0 0 0 1 4 

𝑡𝑘𝑙
𝐿  4 6 6 5 10 

Duration 1 2 2 1 2 

 

Table 5: PM tasks of 8 × 8-m 

 PM11 PM21 PM31 PM41 PM51 PM61 PM71 PM81 

 

Time 

window 

𝑡𝑘𝑙
𝐸  1 3 5 6 0 3 1 3 

𝑡𝑘𝑙
𝐿  10 9 15 17 10 16 14 13 

Duration 4 3 5 3 3 5 3 4 

 

 

 

 

 

 

 

 

 

Table 6: PM tasks of 10 × 10-m 

 PM1,1 PM2,1 PM3,1 PM4,1 PM5,1 PM6,1 PM7,1 PM8,1 PM9,1 PM10,1 

 

Time 

window 

𝑡𝑘𝑙
𝐸  0 1 0 0 2 0 0 0 0 0 

𝑡𝑘𝑙
𝐿  4 7 6 5 7 6 5 7 5 6 

Duration 2 1 1 2 1 2 2 3 2 3 
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M1 PM11 O41

M2 O42 O32

M3

M4 O11 PM41 O34

M5

PM31 O31

O21 O23

PM21 O12

2          3        4 7 11

2 6         7         8         9

12      13

2

O22 PM51

131 3 5 7 9 11

7 9

8

1         2 6 10

2

O13 O33

One representative instance with PM tasks (denoted by problem n x m-m) is taken from 

Rajkumar et al. [8] and the remaining two instances from Gao et al. [4]. Each instance sets one or 

two PM activities on each machine in the planning horizon. The non-fixed availability constraint 

is set as the same as in Gao et al. [4], and the time window of starting time and duration of 

maintenance tasks are shown in Tables 4-6 for 4 × 5-m, 8 × 8-m, and       10 × 10-m instance, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Optimal Solution of the 4 × 5 instance  

 

 

 

 

 

 

(Cm = 13, Wmax = 9, Wt = 40) 

Table 7: Comparison of Results on FJSP instances with PM Tasks 

Algorithm 

4 × 5-m 8 × 8-m 10 × 10-m 

Cm Wmax Wt Cm Wmax Wt Cm Wmax Wt 

hGA - - - 17 15 105 8 7 61 

GRASP 16 9 40 18 16 103 9 7 60 

FBS-based 

algorithm 

- - - 18 16 103 9 8 60 

DCRO 

- - - 17 15 105 8 7 61 

- - - 18 16 103 9 8 60 

HDFA 

13 9 40 17 15 105 8 7 61 

- - - 18 16 103 9 8 60 
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Fig. 6: Optimal Solution of the 8 × 8 instance  

(Cm = 17, Wmax = 15, Wt = 105) 

 

Fig. 6: Optimal Solution of the 8 × 8 instance  

(Cm = 18, Wmax = 16, Wt = 103) 

Table 7 shows the comparison of the results on the three FJSP instances with PM tasks with 

other four algorithms, i.e., the hGA in [4], GRASP in [8], the FBS based algorithm in [7] and the 

DCRO algorithm in [9]. The first column in Table 7 gives the comparison algorithms. The next 

three columns show the comparison results on the 4 × 5-m instance. The following three 

columns express the comparison results on the 8 × 8-m instance, while the last three columns 

display the comparison results on the 10 × 10-m instance. It can be seen from Table 7 that the 

make span value of the small scale instance 4 × 5-m is better than the GRASP algorithm. Then 

for the 8 × 8-m instance and the    10 × 10-m instance, the HDFA algorithm can obtain all the 

two non-dominated solutions, while the other algorithms except DCRO obtain only one optimal 

solution, respectively. 

M1 O33

M2 O41

M3 O61

M4

M5 O84

M6

M7 O23

M8 O83

12 14 16 18

1 5 9 14     15

2 40 6 8 10

1 6 8       9 11 16

2       3 9       10 13 16

6 8 11 14 17

3 6 9 12 16     17

1 3 6 10 15

1 3 6 11 13

O31 O52 PM71 O54

O62 PM81 O72

O7,3

O12 PM51 O24

O42 O13 O53 PM61

2

O63

O7,1 O21 PM31 O43

O32 O22 PM41

O11

O51 O81 PM11

PM21 O8,2

3 5 9      10

M1 O33

M2 O41

M3 O61

M4

M5 O8,4

M6

M7 O23

M8 O83

O51 O81 PM11

3 5 9      10

O7,1 O21 PM31 O43

1 3 6 11 13

O32 O22 O5,2 PM41

2 6 8 12 15

93       4 7 13 15      16

PM51 O12 O24

O42

1 6 16

PM61 O53 O13

11     12 14

O31 PM71 O54

2 5 8        9 14

10

O6,2 PM81 O72

1 5 9 14     15

0 2 4 6 8

O11 PM21 O82 O63

4 71 11 16

12 14 16 18

O7,3

18

17
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Fig. 7: Optimal Solution of the 10 × 10 instance  

(Cm = 8, Wmax = 7, Wt = 61) 

 

Fig. 8: Optimal Solution of the 10 × 10 instance  

(Cm = 9, Wmax = 8, Wt = 60) 

The optimal solution for the 4 × 5-m instance obtained by the HDFA algorithm are shown in     

Fig. 5. Fig. 6 and Fig. 7 display the obtained optimal solution for the 8 × 8-m by the proposed 

algorithm, while Fig. 7 and Fig.8 gives the scheduling result for the 10 × 10-m instance. In the 

figures the block marked with “PM” is the maintenance task to the corresponding machine. The 

hatched block represents the machine’s idle periods. 

CONCLUSIONS 

This paper presents an effective Hybrid Discrete Firefly Algorithm (HDFA) designed to address 

the multi-objective flexible job shop scheduling problem with non-fixed availability constraints 

caused by maintenance activities. The objective is to minimize the makespan, maximal workload, 

and total workload of machines. Instead of using the standard firefly algorithm, a discrete version of 

M1 O1,1 O7,1

M2 O1,2 PM2,1

M3 PM3,1 O9,1 O7,2

M4 O10,2 O1,3 O5,3 O4,3
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M10 O3,1 O2,2
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         0           1           2           3            4           5            6           7           8
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5            6 8
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2           3           4           5           6

1           2           3

O10,3

PM8,1 O3,3

O5,1 PM9,1 O6,2

PM1,1

O8,2 O8,3

O4,2

O6,1 PM6,1

1

PM10,1 O2,3

2           3

PM7,1

1 3           4
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1           2
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31 5           6
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the continuous functions for distance, attractiveness, and movement is introduced to update the 

firefly positions. A specialized decoding method is applied to account for maintenance activities. 

Additionally, two neighborhood structures related to machine assignment and operation 

sequencing are integrated into the algorithm to guide the local search toward more promising 

regions of the search space. The effectiveness of the proposed algorithm is validated by comparing 

its results with those reported in the literature for three representative instances. Future research will 

focus on extending the application of HDFA to solve other combinatorial optimization problems. 
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