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Abstract 

This study presents an innovative lifetime distribution formed by integrating the exponential and 

the new XLindley distributions, termed the compound exponential new XLindley distribution 

(CENXLD). The resultant distribution displays decreasing hazard rate 

properties, thereby rendering it applicable to a multitude of contexts in reliability and survival 

analysis. The investigation delineates various numerical characteristics associated with the 

moment, as well as the maximum likelihood, least squares, and weighted least 

squares methodologies. It elucidates the techniques for parameter estimation pertinent to 

the newly proposed distribution and introduces a simulation 

to illustrate its efficacy. Furthermore, a section on fuzzy reliability alongside simulation 

is included. In addition, this new model is compared against established one-

parameter distributions utilizing real-world data from the decennial population census. 

Keywords: New XLindley distribution, one-parameter distribution, exponential distribution, 

simulation. 

 

1. Introduction  

Several parametric distributions, such as the exponential, gamma, and Weibull 

distributions, are frequently employed in statistical literature for the analysis of lifetime 

data. Among these, the Lindley distribution has garnered significant interest owing to 

its proficiency in modeling lifetime 

data, rendering it useful in diverse domains. Initially presented by Lindley in 1958, the 

one-parameter Lindley distribution (LD) 
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has demonstrated its utility as an effective instrument in this area. The probability density 

function (pdf) of the LD, corresponding to a random variable X, is defined as follows: 

            𝑓(𝑥, 𝜃) = {
𝜃2(1 + 𝑥)𝑒−𝜃𝑥

1 + 𝜃
,     𝑥, 𝜃 > 0

   0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

 

Gui et al. (2014) analyzed the Lindley distribution and clarified its interpretation as 

a combination of exponential and gamma distributions. Numerous scholars have investigated 

the potential for expanding this distribution by amalgamating it with other 

models. For instance, Arslan et al. (2017) explored its relationship with the Weibull distribution 

and suggested the Generalized Lindley distribution as 

a feasible alternative. Likewise, Asgharzadesh et al. (2014) presented the Poisson-Lindley 

distribution, which demonstrates various forms for the failure rate function. 

Zeghdoudi and Nedjar (2015) offered a distinct one-parameter Lindley distribution, referred to as 

GamL, which proves to be particularly advantageous in modeling lifetime data, survival analysis, 

and actuarial science. Its probability density function is articulated as follows: 

    𝑓(𝑥; 𝜃, 𝛽) =
𝜃2((𝛽 + 𝛽𝜃 − 𝜃)𝑥 + 1)𝑒−𝜃𝑥

𝛽(1 + 𝜃)
;        𝑥 > 0, 𝜃 > 0, 𝛽 > 0. 

 

Nedjar and Zeghdoudi (2016) investigated the diverse statistical characteristics and 

simulations pertinent to the GamL distribution. Shanker, Sharma, and Shanker 

(2013) formulated a two-parameter Lindley distribution by merging an exponential (θ) and a 

gamma (2,θ) distribution. Subsequently, Messaadia and Zeghdoudi (2017) advanced the gamma-

Lindley distribution, elucidating its characteristics and recognizing the standard Lindley 

distribution as a particular instance. 

 

In a more recent contribution, Abdi et al. presented an innovative gamma-Lindley distribution 

by integrating the gamma and Lindley distributions. This new framework exhibits both 

decreasing and unimodal shapes of hazard rates, with its probability density 

function defined as follows: 

𝑓(𝑥) =
𝛼𝛽2

1 + 𝛽

(1 + 𝛼 + 𝛽 + 𝑥)𝑒𝛼−1

(𝛽 + 𝑥)2+𝛼
 

 

Many current distributions are formulated by combining two other 

distributions. This research seeks to present a new lifetime distribution derived from 
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the combination of exponential and Lindley 

distributions.  This innovative model signifies a particular instance of the gamma-Lindley 

distribution (GaL) put forth by Abdi, Asgharzadeh, Bakouch, and Alipour in 

2019, providing a significant framework for modeling lifetime data within the realms of 

biological and actuarial sciences. 

 

Several other significant advancements have been made in recent years. Nedjar and Zeghdoudi 

(2020) and Seghier et al. (2020) presented the compound Poisson distribution and the zero-

truncated Poisson quasi-Lindley distribution, respectively. 

 

Segheir and Zeghdoudi (2021) further advanced a discrete 

distribution termed PXLD, achieved through the compounding of the Poisson and X-Lindley 

distributions. Its probability density function is defined as follows: 

𝑓𝑃𝑋𝐿(𝑥, 𝜃) =
𝜃2(𝜃2 + 3𝜃 + 3 + 𝑥)

(𝜃 + 1)𝑥+2
    𝑥 = 0,1,2, … . , 𝜃 > 0 

 

Belhamra et al. (2022) presented a novel compound Exponential-Lindley 

distribution. Furthermore, Chouia and Zeghdoudi (2021) put forward the X-Lindley 

distribution, which is derived from the amalgamation of exponential and Lindley 

distributions. Its probability density function is specified as follows: 

𝑓𝑋𝐿(𝑥, 𝜃) =
𝜃2(2 + 𝜃 + 𝑥)𝑒−𝜃𝑥

(𝜃 + 1)2
    𝑥, 𝜃 > 0 

 

More recently, Khodja et al. (2023) presented the X-Lindley (XLindley) 

distribution, which is developed from a particular combination of exponential and Lindley 

distributions. The corresponding probability density function is delineated as follows: 

𝑓(𝑥, 𝛾) =
𝛾

2
(1 + 𝛾𝑥)𝑒−𝛾𝑥;        𝑥, 𝛾 > 0. 

 

The Compound Exponential New X-Lindley Distribution (CENXLD) has been proposed as 

a statistical distribution that demonstrates a decreasing hazard 

rate pattern, rendering it appropriate for representing datasets that exhibit such 

characteristics. This examination is organized as follows: Section 2 formulates the 

theoretical foundation, while Section 3 explores the shape properties of the CENXLD. In Section 
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4, we investigate quantiles and extreme order statistics. Section 5 addresses estimation 

methods, focusing on maximum likelihood and least squares approaches. The evaluation of the 

stress-strength parameter is elaborated in Section 6. Section 7 introduces generation algorithms 

and findings derived from Monte Carlo simulations. The results are compiled and analyzed in 

Section 8, along with their practical implications. 

 

 

2. Generation of the Data  

2.1. Theoretical model 

Let 𝑋/𝜆 follows the Exponential distribution with pdf 

𝑓(𝑥 ̸ 𝜆) = 𝜆𝑒−𝜆𝑥 ,      𝑥 > 0 ;    𝜆 > 0, 

And 𝜆 /𝛽 having NXLD (Khodja et al.2023) with pdf 

𝑓(𝜆  ̸𝛽) =
𝛽

2
(1 + 𝛽𝜆)𝑒−𝛽𝜆 ,       𝜆 > 0 ;    𝛽 > 0, 

The marginal distribution of 𝑋is calledCENXLD. The pdf of 𝑋 is obtained by  

𝑓(𝑥) =
𝛽

2
∫ (1 + 𝛽𝜆)𝜆𝑒−(𝛽+𝑥)𝜆𝑑𝜆
∞

0

 

By simplifying, we getCENXLD pdf as  

𝑓(𝑥) =
𝛽(𝑥 + 3𝛽)

2(𝑥 + 𝛽)3
 ,                𝑥 > 0;   𝛽 > 0 ,                                                               (1) 

Moreover, the cumulative distribution function (cdf) ofCENXLD is  

𝐹(𝑥) = 1 −
𝛽(2𝛽 + 𝑥)

2(𝑥 + 𝛽)2
=
𝑥(3𝛽 + 2𝑥)

2(𝛽 + 𝑥)2
 

Hence, the corresponding reliability (survival) function is given by  

𝑅(𝑥) = 1 − 𝐹(𝑥) =
𝛽(2𝛽 + 𝑥)

2(𝑥 + 𝛽)2
                                                               (2) 

 

3. Shape characteristics 

In this section, we discuss the shape characteristics of pdf, hrf and rhrfofCENXLD. 

3.1 Shape of pdf 

We can see from (1) that 

lim
𝑥→0

𝑓(𝑥) =
3

2𝛽
 

and lim
𝑥→∞

𝑓(𝑥) = 0. Figure 1 shows the pdf of the Exponential New X-Lindley distribution for some 

selected choices of 𝛽.  
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Theorem 3.1. The pdf of the New Exponential-Lindley distribution given by (1) is decreasing for 

𝛽 > 0. 

Proof. 

We have; 

𝑑

𝑑𝑥
𝑓(𝑥) = −

𝛽(𝑥 + 4𝛽)

(𝑥 + 𝛽)4
                                                                                                           (3) 

We observe that𝑓(𝑥) < 0 

So in this case, 𝑓(𝑥) is decreasing for all 𝑥. 

 

 

 

Figure 1.Shapecharacteristicof Compound Exponential New XLindley distribution 

We have; 

𝑑

𝑑𝑥
𝑓(𝑥) = −

𝛽(𝑥 + 4𝛽)

(𝑥 + 𝛽)4
                                                                                                           (3) 

We observe that𝑓(𝑥)′ < 0 

So in this case, 𝑓(𝑥) is decreasing for all 𝑥. 

3.2 Shapes of hazard rate and reversed hazard rate functions 

The hrf and rhrf corresponding to (1) and (2) are given, respectively by 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=

(𝑥 + 3𝛽)

(𝑥 + 𝛽)(2𝛽 + 𝑥)
                              (4) 

and 
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𝑟(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

𝛽(𝑥 + 3𝛽)

𝑥(𝑥 + 𝛽)(2𝑥 + 𝛽)
                                                                   (5) 

The behavior of ℎ(𝑥) when 𝑥 → 0and 𝑥 → ∞, respectively, are given by 

lim
𝑥→0

ℎ(𝑥) =
3

2𝛽
and lim

𝑥→∞
ℎ(𝑥) = 0 

Also, we can find the lim
𝑥→0

𝑟(𝑥) = ∞and lim
𝑥→∞

𝑟(𝑥) = 0. From figure 2 and figure 3 the ℎ𝑟𝑓 ℎ(𝑥) 

and𝑟ℎ𝑟𝑓 𝑟(𝑥) of CENXLD for some choices of 𝛽 is shown. 

Theorem 3.2. The hazard rate and reversed hazard rate functions of the Compound New 

Exponential-Lindley distribution given by (4) are decreasing for β > 0. 

Proof.  

The derivative of (4) is 

𝑑

𝑑𝑥
ℎ(𝑥) = −

(𝑥2 + 6𝑥𝛽 + 7𝛽²)

(𝑥2 + 3𝑥𝛽 + 2𝛽²)²
 

The derivative of (5) is 

𝑑

𝑑𝑥
𝑟(𝑥) = −

𝛽(4𝑥3 + 21𝑥2𝛽 + 18𝑥𝛽² + 3𝛽³)

𝑥²(2𝑥2 + 3𝑥𝛽 + 𝛽²)²
 

For all 𝛽. Therefore, the hazard rate and the reversed hazard rate function are decreasing. 

4. Quantiles  

The 𝑝𝑡ℎ quantile 𝑥𝑝 ofCENXLD distribution defined by 𝐹(𝑥𝑝) = 𝑝, is the root of the equation  

𝑥𝑝 = 𝑝(1 +
𝛽

𝑥𝑝
)

2

−
3

2
𝛽 

The median of CENXLD is obtained by using the above equation for  𝑝 =
1

2
 , and 𝑥𝑝which can be 

used to generate the Compound Exponential New XLindley Distribution (CENXLD) random 

variables. 

Remark 4.1. The moment and the negative moment are undefined. 

We cannot find the exact solution but we can make numerical solution. See table 1. 

Table 1. Some values of quantiles for variation values of 𝛽 

 𝛽 
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𝑝 0.1 0.5 1 3 

0.1 0.00732 0.0366 0.0732 0.2196 

0.25 0.0215 0.10764 0.21525 0.64575 

0.5 0.0618 0.309 0.618 1.854 

0.75 0.17321 0.86603 1.7321 5.1962 

0.9 0.485 2.4271 4.8541 14.562 

 

 

 

4.1. Extreme order statistics and their limiting distributions 

Let 𝑋1:𝑛, … , 𝑋𝑛:𝑛  be the order statistics of a random sample size 𝑛 from 

CENXLD(𝑥, 𝛽)distribution with distribution function 𝐹(𝑥) given as in(2). The cdf of minimum 

order statistics 𝑋1:𝑛 is given by 

𝐹𝑋1:𝑛(𝑥) =  [𝐹(𝑥)]
𝑛 = [1 −

𝛽(2𝛽 + 𝑥)

2(𝑥 + 𝛽)2
]
𝑛

 

The minimum (maximum) order statistics represents the lifetime of a series (parallel) system in 

reliability studies. 

From the following proposition 1, the limiting distribution of 𝑋1:𝑛 and 𝑋𝑛:𝑛for the CENXLD(𝑥, 𝛽) 

model is provided. 

 

 

Proposition4.1. Let 𝑋1:𝑛, … , 𝑋𝑛:𝑛  be the order statistics of a random sample of size 𝑛 from the 

CENXLD(𝑥, 𝛽) then 

1. lim
𝑛→∞

𝑝(
𝑋1:𝑛−𝑎𝑛

∗

𝑏𝑛
∗ ≤ 𝑡) = 1 − 𝑒−𝑡, 𝑡 > 0, 

2. lim
𝑛→∞

𝑝(
𝑋𝑛:𝑛−𝑎𝑛

𝑏𝑛
≤ 𝑡) = 𝑒−𝑡

−1
, 𝑡 > 0, 

𝑎𝑛
∗ = 0,    𝑏𝑛

∗ = 𝐹−1(𝑛−1)𝑎𝑛 = 0,    𝑏𝑛 = 𝐹−1(1 − 𝑛−1) 

4.2. Stochastic orders 

Stochastic ordering of positive continuous random variables is an important tool to judge the 

comparative behavior of such variables. For this purpose, we shall recall some basic definitions. 

A random variable 𝑋1 is said to be smaller than a random variable 𝑋2 in the  

(i) Stochastic order (𝑋1 <𝑠𝑡 𝑋2) if 𝐹𝑋1(𝑥) < 𝐹𝑋2(𝑥) for all 𝑥, 
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(ii) Hazard rate order (𝑋1 <ℎ𝑟 𝑋2) if ℎ𝑋1(𝑥) ≥ ℎ𝑋2(𝑥) for all 𝑥, 

(iii) Likelihood ratio order (𝑋1 <𝑙𝑟 𝑋2) if 
𝑓𝑋1(𝑥)

𝑓𝑋2(𝑥)
 decreases in 𝑥. 

It is well known that likelihood ratio order implies hazard rate order which in turn implies 

stochastic order, see (ShakedandShanthikumar,1994)for additional details. 

Theorem 4.1.Let𝑋𝑖~CENXLD(𝑥𝑖; 𝛽𝑖), 𝑖 = 1,2, 𝑏𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.  𝑖𝑓 𝛽1 ≤ 𝛽2 ,

𝑡ℎ𝑒𝑛 𝑋1 <𝑙𝑟 𝑋2 ⇒ 𝑋1 <ℎ𝑟 𝑋2 ⇒ 𝑋1 <𝑠𝑡 𝑋2. 

Proof 

We have  

𝑓𝑋1(𝑥)

𝑓𝑋2(𝑥)
=
𝛽1(𝑥 + 3𝛽1)2(𝑥 + 𝛽2)

3

𝛽2(𝑥 + 3𝛽2)2(𝑥 + 𝛽1)3
                                                              (6) 

This equation can have the following form  

               𝑔(𝑥) =
𝛽1(𝑥 + 3𝛽1)

𝛽2(𝑥 + 3𝛽2)
(
𝑥 + 𝛽2
𝑥 + 𝛽1

)
3

 

Then, we can write  

𝑑𝑙𝑜𝑔𝑔(𝑥)

𝑑𝑥
= (

3

𝑥 + 𝛽2
−

1

𝑥 + 3𝛽2
) − (

3

𝑥 + 𝛽1
−

1

𝑥 + 3𝛽1
) 

                       = 𝑞(𝛽2) − 𝑞(𝛽1) 

Where 

            𝑞(𝛽) = (
3

𝑥 + 𝛽
−

1

𝑥 + 3𝛽
) 

Note that 

𝑑𝑞(𝛽)

𝑑𝑥
=

−3

(𝑥 + 𝛽)2
+

1

(𝑥 + 3𝛽)2
< 0, 

So, 𝑋1 is stochastically smaller than 𝑋2 with respect to the likelihood ratio if and only if 𝛽1 ≤ 𝛽2. 

5. Estimation 

In this section, we consider estimation of the unknown parameters ofCENXLD(𝑥; 𝛽) by maximum 

likelihood, least squares and weighted least squares methods. 

 

5.1. Maximum likelihood estimation 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be the CENXLD (𝑥; 𝛽) distribution. 

Then, the log-likelihood function is given by 

         𝐿(𝑥, 𝛽) = (
𝛽

2
)
𝑛 ∏ (𝑥𝑖 + 3𝛽)𝑛

𝑖=1

[∏ (𝑥𝑖 + 𝛽)𝑛
𝑖=1 ]3

 

The log-likelihood function of the parameter 𝛽 is  
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𝐿𝑛 𝐿(𝛽, 𝑥) = 𝑛𝑙𝑛𝛽 − 𝑛𝑙𝑛(2) +∑ln(𝑥𝑖 + 3𝛽) − 3∑ln(𝑥𝑖 + 𝛽)                 (7)

𝑛

𝑖=1

𝑛

𝑖=1

 

𝑑𝑙𝑛 𝐿(𝛽; 𝑥)

𝑑𝛽
=
𝑛

𝛽
+∑(

3

𝑥𝑖 + 3𝛽
)

𝑛

𝑖=1

− 3∑(
1

𝑥𝑖 + 𝛽
)

𝑛

𝑖=1

= 0                                (8) 

𝑑2𝑙𝑛 𝐿(𝛽; 𝑥)

𝑑𝛽2
= −

𝑛

𝛽2
−∑(

9

(𝑥𝑖 + 3𝛽)3
) + 3∑(

1

(𝑥𝑖 + 𝛽)3
)

𝑛

𝑖=1

𝑛

𝑖=1

< 0, 

To obtain the MLE of 𝛽, we can maximize (7)  directly with respect to 𝛽 or we can solve the non-

linear equation given in(8). Note that MLE of 𝛽 cannot be solved analytically, however, numerical 

iteration techniques, such as the Newton-Raphson algorithm, or Fisher scoring method can be 

used. 

 

5.2. Least squares and weighted least squares estimators 

We present a regression based method estimators for the unknown parameters of the CENXLD. 

The method of ordinary least squares and method weighted least squares were originally proposed 

by (Swain, Venkatraman, and Wilson, 1988) to estimate the parameters of Beta distributions. 

Suppose 𝑋1, … , 𝑋𝑛 is a random sample of size 𝑛 from a distribution function 𝐹(. ) and 𝑋1:𝑛 < ⋯ <

𝑋𝑛:𝑛 be the ordered statistics of the sample. The least squares estimators (LSEs) can be obtained 

by minimizing  

∑[𝐹(𝑋𝑖:𝑛) −
𝑖

𝑛 + 1
]
2

,

𝑛

𝑖=1

 

With respect to the unknown parameter of  𝐹(. ). Therefore in the case of CENXLD distribution, 

the least square estimator of 𝛽, say 𝛽̂𝐿𝑆𝐸 , can be obtained by minimizing  

∑[
1

2

𝑋𝑖:𝑛(3𝛽 + 2𝑋𝑖:𝑛)

(𝛽 + 𝑋𝑖:𝑛)2
−

𝑖

𝑛 + 1
]
2

,

𝑛

𝑖=1

 

With respect to 𝛽. 

While, the weighted least squares estimators (WLSEs) of the unknown parameters can be obtained 

by minimizing  

∑𝑤𝑖 [𝐹(𝑋𝑖;𝑛) −
𝑖

𝑛 + 1
]
2

,

𝑛

𝑖=1

 

With respect to the unknown parameters, where 

𝑤𝑖 =
1

𝑉𝑎𝑟[𝐹(𝑋𝑖;𝑛)]
=
(1 + 𝑛)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
. 
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Therefore, in case of CENXLD, the weighted least square of 𝛽, say 𝛽̂𝑊𝐿𝑆𝐸, can be obtained by 

minimizing  

∑𝑤𝑖 [
1

2

𝑋𝑖:𝑛(3𝛽 + 2𝑋𝑖:𝑛)

(𝛽 + 𝑋𝑖:𝑛)2
−

𝑖

𝑛 + 1
]
2

,

𝑛

𝑖=1

 

With respect to 𝛽 

 

 

6. Estimation of the stress-strength parameter 𝑹 = 𝑷(𝑿 > 𝑌) 

In reliability, the stress-strength model describes the life of a component which has a random 

strength 𝑋 subjected to a random stress 𝑌. The component fails at the instant that the stress applied 

to it exceeds the strength, and the component will function whenever 𝑋 > 𝑌. 

In this section, we consider the problem of estimating 𝑅 = 𝑃(𝑋 > 𝑌), under the assumption that 

𝑋~𝐶𝐸𝑁𝑋𝐿𝐷(𝛽1), 𝑌~𝐶𝐸𝑁𝑋𝐿𝐷(𝛽2), 𝑋and 𝑌 are independently distributed. Then it can be easily 

seen that  

       𝑅 = 𝑃(𝑋 > 𝑌) = ∫ 𝑃 (𝑋 > 𝑌 𝑌 = 𝑦)𝑓𝑌(𝑦)𝑑𝑦 
∞

0

 

                 = ∫ [1 − 𝐹𝑋(𝑦)]𝑓𝑌(𝑦)𝑑𝑦
∞

0

 

                 = ∫
𝛽2
4

∞

0

 ×
(3𝛽1 + 2𝑦)(𝑦 + 3𝛽2)

(𝛽1 + 𝑦)2(𝑦 + 𝛽2+)3
𝑑𝑦 

                 = 𝑆(𝛽1, 𝛽2) 

To compute the maximum likelihood estimator (MLE) of 𝑅, let us first obtain the MLEs of 𝛽1and 

𝛽2. Suppose 𝑥1, 𝑥2, … , 𝑥𝑛be the observed values of a random sample of size 𝑛  from CENXLD(𝛽1) 

and 𝑦1, 𝑦2, … , 𝑦𝑚 be the observed values of a random sample of size 𝑚 from CENXLD(𝛽2). 

Therefore, the log-likelihood function of 𝛽1 and 𝛽2 is given by  

𝐿𝑛 𝐿(𝛽1, 𝛽2) = 𝑛𝑙𝑛𝛽1 − 𝑛𝑙𝑛(2) +∑ln(𝑥𝑖 + 3𝛽1) − 3∑ln(𝑥𝑖 + 𝛽1)

𝑛

𝑖=1

𝑛

𝑖=1

 

+ 𝑛𝑙𝑛𝛽2 − 𝑛𝑙𝑛(2) +∑ln(𝑦𝑖 + 3𝛽2) − 3∑ln(𝑦𝑖 + 𝛽2)

𝑚

𝑖=1

𝑚

𝑖=1

 

It follows that the MLEs of 𝛽1 and 𝛽2 say 𝛽̂1and 𝛽̂2, are the simultaneous solutions of the following 

equations: 

𝑛

𝛽1
+∑(

3

𝑥𝑖 + 3𝛽1
)

𝑛

𝑖=1

− 3∑(
1

𝑥𝑖 + 𝛽1
)

𝑛

𝑖=1

= 0 
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𝑚

𝛽2
+∑(

3

𝑦𝑖 + 3𝛽2
)

𝑚

𝑖=1

− 3∑(
1

𝑦𝑖 + 𝛽2
)

𝑚

𝑖=1

= 0 

 

Once we obtain 𝛽̂1and 𝛽̂2, then, we compute the MLE of 𝑅 as  

𝑅̂ = 𝑆(𝛽̂1 , 𝛽̂2) 

Here the maximum likelihood approach does not give an explicit estimator for the MLEs of the 

parameters and hence the MLEs of 𝑅. In practice, one has to use numerical methods to find the 

MLEs, such methods are well implemented in MATLAB and R packagers.  

 

7. Generation algorithms and Monte Carlo simulation study 

In this section, we propose two different algorithms for generating the random 

data𝑥1, 𝑥2, … , 𝑥𝑛from the CENXLD. Further, a simulation study is given to compare the 

performances of different estimators using the different estimation methods.  

7.1. Algorithms 

Two proposed algorithms for generating the random data 𝑥1, 𝑥2, … , 𝑥𝑛from the CENXLD are as 

follows. 

(i) The first algorithm is based on generating the random data from the LD and conditional 

gamma distribution. 

(ii) The second algorithm is based on generation random data from the inverse cdf of the 

CENXLD. 

Algorithm 1 (conditional distribution). 

1. Generate 𝜆𝑖~𝑁𝑋𝐿𝑖𝑛𝑑𝑙𝑒𝑦(𝛽), 𝑖 = 1,2, … , 𝑛; 

2. Generate 𝑋𝑖  ⃥𝜆𝑖~exp(𝛼, 𝜆𝑖) , 𝑖 = 1,2, … , 𝑛. 

Using the following algorithm 1, we can see (Ghitany, Ateih, and Nadarajah 2008) to generate 

𝜆𝑖from the Lindley (𝛽) distribution: 

1. Generate 𝑈𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1,… , 𝑛; 

2. Generate 𝑉𝑖~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝛽), 𝑖 = 1,2, … , 𝑛; 

3. Generate 𝑊𝑖~𝐺𝑎𝑚𝑚𝑎(2, 𝛽), 𝑖 = 1,2, … , 𝑛; 

4. If 𝑈𝑖 ≤ 𝑝 =
1

2
, then set 𝜆𝑖 = 𝑉𝑖, otherwise, set 𝜆𝑖 = 𝑊𝑖, 𝑖 = 1,2, … , 𝑛. 

Algorithm 2(Inverse CDF). 

1. Generate 𝑈𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), 𝑖 = 1,… , 𝑛; 

2. Set 𝑋𝑖 = 𝑝 (1 +
𝛽

𝑥𝑝
)
2

−
3

2
𝛽 
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Note that 𝑋𝑖 is the root of the equation 𝐹(𝑋𝑖) = 𝑈𝑖 . 

 

 

n 𝜷 Method 𝒃𝒊𝒂𝒔(𝜷̂) Ranks 𝑴𝑺𝑬(𝜷̂) Ranks 

40 0.5 MLE 

LSE 

WLSE 

 

0.0500 

0.0025 

0.0123 

 

3 

1 

2 

0.1705 

0.0308 

0.0552 

 

3 

1 

2 

80 0.5 MLE 

LSE 

WLSE 

 

0.0204 

-0.0004 

0.0121 

 

3 

1 

2 

 

0.0566 

0.0148 

0.0192 

 

3 

1 

2 

 

150 0.5 MLE 

LSE 

WLSE 

 

0.0097 

-0.0018 

0.0059 

 

3 

1 

2 

 

0.0243 

0.0075 

0.0087 

 

3 

1 

2 

 

40 1.5 MLE 

LSE 

WLSE 

 

0.0553 

0.0298 

0.1645 

 

2 

1 

3 

 

0.2511 

0.3655 

0.5422 

 

1 

2 

3 

 

80 1.5 MLE 

LSE 

WLSE 

 

0.0256 

0.0186 

0.0722 

 

2 

1 

3 

 

0.0698 

0.1588 

0.2055 

 

1 

2 

3 

 

150 1.5 MLE 

LSE 

WLSE 

 

0.0075 

0.0144 

0.0377 

 

1 

2 

3 

 

0.0321 

0.0754 

0.0988 

 

1 

2 

3 

 

40 2.5 MLE 

LSE 

WLSE 

 

0.0732 

0.0875 

0.2488 

 

1 

2 

3 

 

0.3566 

0.7095 

0.8785 

 

1 

2 

3 

 

80 

 

2.5 MLE 

LSE 

WLSE 

 

0.0252 

0.0777 

0.1133 

 

1 

3 

2 

 

0.0834 

0.2245 

0.3632 

 

1 

2 

3 
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150 2.5 MLE 

LSE 

WLSE 

 

0.0072 

0.0246 

0.0904 

 

1 

3 

2 

 

0.0386 

0.1058 

0.1084 

 

1 

2 

3 

 

Table 2.  Average biases and MSEs of the simulated estimates for MLE, LSE and WLSE methods 

. 

 

7.2 Monte Carlo simulation study 

A simulation studies to compare the performances of maximum likelihood, least squares and 

weighted least squares an estimator of the unknown parameter 𝛽 via Monte Carlo simulation is 

given here. For a given 𝑛 and 𝛽, we have generated the sample 𝑥1, 𝑥2, … , 𝑥𝑛 from the 𝐶𝐸𝑁𝑋𝐿𝐷(𝛽) 

model and then obtain the estimates using the preceding estimation methods.  

We used Algorithm 1 to generate data from theCENXLD. The simulation experiment was repeated 

𝑁 = 10,000 times each with sample sizes 𝑛 = 40, 80, 150and 𝛽 = 0.5, 1.5, 2.5.Note that the 

selected values of 𝛽 given (0.1, 0.5, 1, 2, 6) for shape parameter of density as displayed in Figure 

1. Two quantities were examined in this Monte Carlo study:  

(i) Average bias of 𝑀𝐿𝐸 𝜃 of the parameter 𝜃 = 𝛽: 

1

𝑁
∑(𝜃 − 𝜃),

𝑁

𝑖=1

 

(ii) Mean square error (𝑀𝑆𝐸) of the 𝑀𝐿𝐸 𝜃of the parameter 𝜃 = 𝛽: 

1

𝑁
∑(𝜃 − 𝜃)

2
.

𝑁

𝑖=1

 

The results of this study are reported in Table 1. The following conclusions can be noted:  

i) Table 1 shows that for 𝑛 = 40𝑎𝑛𝑑 𝑛 = 80the LSE is the best average for 𝛽 < 1.  

ii) The MLE is the best compared to the other methods for all values of n. 

iii) The results of WLSE are not satisfactory for all values of n. 

8. Fuzzy reliability 

Let 𝑇 be a continuous random variable that represents a system’s failure time (component). The 

fuzzy dependability can then calculated using the fuzzy probability in formula: 

𝑅𝐹(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝜇(𝑥)𝑓𝐶𝐸𝑁𝑋𝐿𝐷(𝑥)𝑑𝑥,    0 ≤ 𝑡 ≤ 𝑥 < ∞,
∞

𝑡
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Where 𝜇(𝑥) is a membership function that describes the degree to which each element of given 

universe belongs to a fuzzy set (We can see Chen et al (2021)). Now, assume that 𝜇(𝑥) is  

 

 

𝜇(𝑥) = {

0                                         , 𝑥 ≤ 𝑡1
𝑥 − 𝑡1
𝑡0 − 𝑡1

        , 𝑡1 < 𝑥 < 𝑡2,   𝑡1 ≥ 0

1                                        , 𝑥 ≥ 𝑡2

 

For 𝜇(𝑥), by the computational analysis of the function of fuzzy numbers, the lifetime 𝑥(𝛾) can 

be obtained corresponds to a certain value of 𝛾 − 𝐶𝑢𝑡, 𝛾 ∈ [0,1], can be obtained by 

 𝜇(𝑥) = 𝛾 →
𝑥−𝑡1

𝑡0−𝑡1
= 𝛾,then 

{

𝑥(𝛾) ≤ 𝑡1                        , 𝛾 = 0

𝑥(𝛾) = 𝑡1 + 𝛾(𝑡2 − 𝑡1)      , 0 < 𝛾 < 1

𝑥(𝛾) ≥ 𝑡2                      , 𝛾 = 1

 

As a result, the fuzzy reliability values may be determined for all 𝛾 values. The fuzzy dependability 

of the CENXLD is determined by the fuzzy reliability definition. The fuzzy reliability of the 

CENXLD can be defined as,  

 

𝑅𝐹(𝑡) =
𝛽(2𝛽 + 𝑡1)

2(𝑡1 + 𝛽)2
−
𝛽(2𝛽 + 𝑥(𝛾))

2(𝑥(𝛾) + 𝛽)2
 

Then 𝑅𝐹(𝑡) = 0. 

Numerical values of fuzzy reliability 

In this subsection, we obtained comparison between traditional reliability (see Finkelstein 

(2008))and Fuzzy reliability, where the traditional reliability is a survival function as  

𝑅(𝑥) =
𝛽(2𝛽 + 𝑥)

2(𝑥 + 𝛽)2
 

Table 2 discussed the comparison. The following observations are based on findings: 

 - When the 𝛾 − 𝐶𝑢𝑡 is increased, the Fuzzy reliability increases. 

- When the 𝑡2 of interval of membership function is increased the Fuzzy reliability 

increases. 
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- When the 𝑡1 is decreased the fuzzy reliability increases, and vice versa. 

- The traditional reliability with  𝑡2 is lower than the traditional reliability with  𝑡1. 

The fuzzy estimation algorithm produces a series of draws from CENXLD as in 

algorithm 1. 

Algorithm 1: fuzzy estimation algorithm 

• Input: initial values of 𝛽,interval time (𝑡1, 𝑡2) and 𝛾 where 0 < 𝛾 < 1. 

• Calculate: 𝑥(𝛾) = 𝑡1 + 𝛾(𝑡2 − 𝑡1). 

• For each method do  

Set:i=1. 

Estimate parameter as 𝛽̂. 

Calculate 

𝑅̂𝐹(𝑡) =
𝛽(2𝛽 + 𝑡1)

2(𝑡1 + 𝛽)2
−
𝛽(2𝛽 + 𝑥(𝛾))

2(𝑥(𝛾) + 𝛽)2
 

• End 

 

 

 

 

      𝑅𝐹  

𝛽 𝑡1 𝑡2 𝑅(𝑡1) 𝑅(𝑡2) 0.25 0.5 0.9 

 0.001 1 0.9852 0.0496 0.80201 0.88881 0.9302 

0.1 0.05 2 0.5556 0.0249 0.3724 0.4584 0.5006 

 0.01 1.5 0.9852 0.2800 0.3619 0.7189 0.8146 

1 0.2 3 0.7639 0.1563 0.3622 0.4976 0.5934 

3 0.1 1 0.9521 0.6563 0.0939 0.1725 0.27415 

Table 3. Traditional and fuzzy reliability with different values. 

 

9. Application and comparison  

In this section, we present the application of the CENXLD to real-life data set to illustrate its 

flexibility for Populations Recorded by the US Census data. 

This data set gives the population of the United States (in millions) as recorded by the decennial 

census for the period 1790-1970. 
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    Source 

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley. 

    3.93, 5.31, 7.24, 9.64, 12.90, 17.10, 23.20, 31.40, 39.80, 50.20, 62.90, 76.00, 92.00, 105.70, 

122.80, 131.70, 151.30, 179.30, 203.20 

 

Model 𝛽 𝐴𝐼𝐶 𝐵𝐼𝐶 −2𝐿 𝐴𝐶𝐼𝐶 𝐾𝑆 

𝐿𝑖𝑛𝑑𝑙𝑒𝑦 0.028 207.6266 208.571 205.6266 207.8619  0.2749752 

𝑋𝐿𝑖𝑛𝑑𝑙𝑒𝑦 0.0279 206.924 207.8684 204.924 207.1593  0.8518941 

𝑍𝐿𝑖𝑛𝑑𝑙𝑒𝑦 0.077 272.9751 273.9196 270.9751 273.2104  

𝑍𝑒𝑔ℎ𝑑𝑜𝑢𝑑𝑖 0.0426 220.9815 221.926 218.9815 221.2168 0.3386842 

𝐶𝐸𝑁𝑋𝐿𝐷 68.11 206.2763 207.2208 204.2763 206.5116 0.1755424 

Table 4. Goodness of fit statistics of CENXLD 

The values of 𝐴𝐼𝐶, 𝐵𝐼𝐶,−2𝑙𝑜𝑔𝐿, 𝐾-𝑆 statistics in Table 3, indicate that CENXLD is a strong 

competitor to the other distributions commonly used in literature for fitting lifetime data, moreover 

the best fit measured the previous goodness of fit statistics. 

 

Figure 1: QQ plot and Box plot of Data set 

10. Conclusions 

In this investigation, a novel one-

parameter lifetimedistribution, created through the combination of the exponential and new 

XLindley distributions, referred to as CENXLD, and has been introduced. This new 

distribution exhibits both decreasing hazard rate and reversed hazard rate characteristics, 
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which are applicable in various contexts. Its pertinent mathematical attributes, encompassing the 

shape, characteristics of the probability density function (pdf), hazard rate function (hrf), 

reversed hazard rate function (rhrf), quintiles, moments, and stochastic ordering mean deviations, 

have been thoroughly explored. 

 

The parameter of the CENXLD is estimated using the maximum likelihood, least squares, and 

weighted least squares methods. To evaluate the effectiveness of the proposed estimator under 

the outlined estimation techniques, a simulation approach has been employed. The efficacy of 

the new model relative to the contemporary iterations of the new XLindley and exponential 

distributions is demonstrated through a real-world dataset concerning failure rates from the 

decennial population census, utilizing goodness-of-fit statistics. Future 

research endeavors may focus on examining the Bayesian estimation of the CENXLD parameter 

and the introduction of a truncated version of the CENXLD to address the issue of infinite 

moments. 
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