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Abstract 

 

This work presents the truncated variants of the new-XLindley distribution and examines their properties, highlighting 

the monotonic behavior of the density and hazard functions. It also talks about the quantile function, order statistics, 

moments, and other statistical features. Additionally, the paper develops maximum likelihood estimators for the 

unknown parameters of the upper, lower, and double truncated new-XLindley distributions. To demonstrate the 

practicality of the proposed distribution, we apply it to analyze three different data sets related to medical data. We intend 

to capture researchers’ attention and showcase this new distribution’s versatility and potential applications. 

Keywords: Truncated Lindley distribution, New-XLindley distribution, Lindley distribution, Moments, Maximum 

likelihood estimation. 

 

 

1. Introduction 

Truncated distributions are highly effective in situations where a random variable is restricted to a 

specific range, as is often the case in multiple disciplines. For example, in survival analysis, failures 

that occur within the warranty period may be excluded from consideration. Certain failures may also 

be omitted when items are replaced after a designated period according to replacement policies. 

Consequently, many researchers were attracted to the problem of analysing truncated data 

encountered in various disciplines and proposed truncated versions of the usual statistical 

distributions. Among other things, (Ahmed et al., 2010) discussed how to improve a forecasting 

actuarial model by incorporating the truncated Birnbaum-Saunders (BS) distribution. In (Aban et al., 

2006; Zaninetti & Ferraro, 2008), the truncated Pareto distribution was applied to the statistical 

analysis of star masses and asteroids' diameters. The truncated Weibull distribution is used in various 

fields, such as analysing the diameter data of trees, truncating data-specific threshold levels, 

mailto:mohamed.kouadria@univ-annaba.dz
mailto:halim.zeghdoudi@univ-annaba.dz


Journal of Computational Analysis and Applications                                                                              VOL. 34, NO. 3, 2025 

 

                                                                                                                            54                          Mohamed Kouadria et al 53-64 

predicting the height distribution of small trees based on incomplete laser scanning data, modelling 

the diameter distribution of forests, characterizing the observed Portuguese fire size distribution, and 

seismological data on the development of pit depths on a water pipe, etc. The book (Murthy et al., 

2004) that discussed Weibull distributions and a recent article (Zhang & Xie, 2011), based on the 

truncated Weibull distribution, provide more detail on the truncated Weibull distribution and related 

references. 

From the above commentary and monitoring the wide applicability of the truncated distributions, we 

proposed truncation in the new-XLindley distribution. The new-XLindley distribution introduced by 

(Khodja et al., 2023) is a mixture of exponential (θ) and gamma (2, θ) distributions with their mixing 

proportions
1 2

1

2
p p= =  , respectively. Since the last decade, the new-XLindley distribution has been 

attracting the attention of researchers, scientists, and reliability probationers, and many authors 

extended it to the various parsimonious distributions. To name a few extensions, Two Parameter 

Beta-Exponential Distribution (KOUADRIA & ZEGHDOUDI, 2024), The power new XLindley 

distribution (Gemeay et al., 2024), The Discrete New XLindley Distribution (Maya et al., 2024), 

Modified XLindley distribution (Gemeay et al., 2023), The Exponentiated New XLindley 

Distribution (MirMostafaee, 2024), this distribution has captured the attention of researchers, 

scientists, and reliability experts, prompting numerous authors to explore its extensions into various 

parsimonious forms. 

The next parts include the remainder of the paper. The upper truncated new-XLindley (UTNXL), 

lower truncated new-XLindley (LTNXL), and double truncated new-XLindley (DTNXL) 

distributions are the truncated variants of the new-XLindley distribution that are shown in section 2. 

In particular, it has been demonstrated that the UTNXL distribution's flexibility exhibits the 

properties of the hazard and probability density (pdf) functions with varying combinations of its 

parameter values. Section 3 deduces the (UTNXL) distribution's moments, quantile function, and 

order statistics. The estimates of the parameters of the (UTNXL), (LTNXL), and (DTNXL) 

distributions are obtained in section 4 using the maximum likelihood technique.  In Section 5, three 

real datasets are modelled using various distributions, and their applicability is evaluated. Section 6 

concludes the paper. 

2. The Truncated New-XLindley Distributions 

A distribution ( ),G x  is said to be a double truncated distribution over the interval  ,a b if it has the 

cumulative distribution function (cdf) defined as: 

( )
( ) ( )

( ) ( )

, ,
,

, ,

F x F a
G x

F b F a

 − 
 =

 − 
with a x b  , a b−   +  (1 

And the corresponding probability density function (pdf) is  

f(x, )
g(x; )=

F(b, )-F(a, )




 
with a x b  , a b−   +   (2 

where, g(x; ) and ( ),G x  are the (pdf) and (cdf) of the baseline model and R ⁿ  denotes the 

vector parameter of base line model. Here, three cases can be recognized as 

• When 0a =  andb→+ , it reduces to baseline model. 
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• When 0a = , it is called the upper truncated distribution of the baseline model. 

• When b→+ , it is called the lower truncated distribution of the baseline model. 

In this article, we consider the New-XLindley distribution (NXLD)(Khodja et al., 2023) as baseline 

model with the following (cdf)  distribution function : 

F(x)=1-( +1)e  
2

xx  − with , >0x    (3 

And the corresponding (pdf) is given by: 

( )( ) 1
2

xf x x e 
 −= + with , >0x    (4 

Using (1) and (3), the double truncated new-XLindley distribution is defined as 

( )

( )

1
g (x; )=

2 F(b, )-F(a, )

x

D

x e  


 

−+
with 0 <+a x b       (5 

In the following sections, we will only discuss the properties of the upper truncated new-XLindley 

distribution and the same procedure can be applied to study the properties of the lower truncated 

new-XLindley distribution as well as double truncated new-XLindley distribution. The upper 

truncated new-XLindley distribution has the following (pdf) is given by 

( ) ( ) ( )

( )
1 1

g (x; )=
2F(b, ) 2 1

x bx

u b

x e x e

e b





   


 

− −−+ +
=

− −
 ,  0 x b   (6 

And the corresponding (cdf) is given by  

( )
( )

( )

( )
( )

( )
2 2,

,
, 2 2

x

x b

b

e xF x
G x e

F b e b










 

− −
− −

= =
− −

 , 0 x b   (7 

It is denoted by UTNXLD. Note that the above (pdf) will behave like as 

( )
3g (x; )

2( 1)

x bu

b

d x
e

dx b e





 



− −
=

− −
 

The expression ( )2 1bb e − − is negative for all 0b  , meaning that the derivative is negative for 

all 0x  , then g(x; ) is decreasing over  0,b . 
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Figure1 : The density function of UTNXL distribution for 0.5,1,1.5&2 =  and 15b =  

 

The corresponding hazard function at epoch t  is given by 

( ) ( )

( )

1f(t, )
H(t, )=

(b, ) (t, ) 2 F(b, )-F(t, )

t b
t e

F F


 


   

− −
+

=
−

 with 0 t b   

 9  used the term ( )
'( )

( )

f x
x

f x
 = −  to determine the monotonicity of the hazard function. For UTNXL 

distribution, we get  

( )
( )

( )
( )

'' '( ) /( ) ( )

( ) ( ) / ( )

uu
UTNXL NXL

u u u

g x F bg x f x
x x

g x g x F b f x
 = − = − = − =  

It followed that 

 

• 
( )

2

(0)
2 1

b

b

e
H

e b








=

− −
 . 

• ( )H b → , when t b→ . 

• ( )
2'( )

0,
( ) 1

NXL

f x x
x x

f x x





= − =  

+
 , it implies that the hazard rate function of UTNXL 

distribution is increasing in x   and   , see Figure 2. 
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Figure2: The hazard function of UTNXL distribution for 0.5,1&1.5 =  and 3b =  

 

3. Statistical properties 

a) Moments and related measures 

 
The rth moment under the upper truncated New-XLindley distribution is defined as 

( )
0

1
2F(b, )

b

r r xE X x x e dx




−  = +    

1

0 0
2F(b, )

b b

r x r xx e dx x e dx 




− + −
 

= + 
 
   

1

0 0

1

2F(b, )

b b

r y r y

r
y e dy y e dy

 

 

− + −
 

= + 
 
   

And using the lower incomplete gamma function defied by ( ) ( )
1

1

00

, 1 ! 1
!

t ks
s x t

k

x
s t x e dx s e

k


−
− − −

=

 
= = − − 

 
  , 

then we have  

( ) ( )1, 2,

2F(b, )

r

r

r b r b
E X

   

 

+ + +
  =   

In particular, the first two moments can be worked out as  

 
( ) ( ) ( ) ( )( )2

3 3 12, 3,

2F(b, ) 2F(b, )

bb b eb b
E X

    

   

−− + ++
= =  

( ) ( )

( ) ( )
2 3

2

2 2

5 1 1
2 103, 4,

2F(b, ) 2F(b, )

bb b
b e

b b
E X

 


   

   

−
  
 − + + + 

  +     = =   
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The variance is  ( )
22 2E X E X  = −   

Skewness, Kurtosis and Coefficient of variation of the upper truncated New-XLindley distribution 

( )

( )

 

3

1 3
2 2

4

2 2
2

2

Skewness=

Kurtosis=

E X

E X

CV
E X










  =

  =

=

 

b) Order statistics 

In this subsection, we derive the (pdf) 
( )
( )

kXg t   of the s th, ( 1,...,s n= ) order statistics ( )k
X  : 

( )
( )

( )
( )( ) ( )( )

11
( ) 1

, 1k

k n k

Xg t g t G t G t
B k n k

− −

= −
− +

 

Where ( ), 1B k n k− + is the beta function. Expanding the binomial expansion, we get 

( )
( )

( )
( )

( )

( ) ( )0

,1 ( , )
1

, 1 , ,k

k i
n k

i

X

i

n k F t f t
g t

iB k n k F b F t

 

 

+
−

=

 − 
= −    − +   

  

Where ( , )f t  and ( ),F t  are the (pdf) and (cdf) of the New-XLindley distribution. For k n= ,  the (pdf) of 

( )n
X  is given by  

( )
( )

( )
1

1 1 1
2

2 1 1
2

n

n

t t

X n

b

t
n e t e

g t
n

e

 




 



−

− −

−

  
− + +  
  =
  
− +  
  

 

Similarly, the pdf of ( )1
X is given by 

( )
( ) ( )

( )

1

1

1
0

1 1 1
1 2

1
2

1 1
2

i

t t

n
i

X i
i b

t
e t e

nn
g t

i b
e

 










− −

−

+
= −

  
− + +  −    = −  
    
− +  
  

  

c) Quantile function 

Let X  be a (UTNXLD) with (cdf) as given in (7). The quantile function ( ) ( )1 , pQ p G p x−= =  . 

For that we need to solve this equation:  
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( ),pG x p = with ( )0,1p     (8 

From (7) and (8), we have  

( ) ( ) ( )( )
2 22 2 , 1px

px e e pF b


 
− + −− + = −   (9 

To solve the above equation for px . The Lambert W function was first used in [10] to generate 

random variables with the Lindley or Poisson-Lindley distribution. The Lambert W function is a 

multivalued complex function defined as the solution of the equation: 

( ) ( )W z
W z e z= where z£    (10 

Form (9) and (10), we obtained 

( ) ( )( )( )2

12 2 , 1px W e pF b −

−− + = −  

where, 
1W−
 is negative branch of the Lambert W  function. Then we have the quantile function of 

(UTNXLD) 

( ) ( )( )( )2

1

2 1
2 , 1px Q p W e pF b 

 

−

−= = − − −  

As b→+ , we get the quantile function of new-XLindley distribution derived by [10]: 

( ) ( )( )2

1

2 1
2 1px Q p W e p

 

−

−= = − − −  

The median of the UTNXL distribution can obtained as 

( )( )( )2

1

1 2 1
, 2

2
Medx Q W e F b 

 

−

−

 
= = − − − 

 
 

 

4. Maximum Likelihood Estimation 

This section explains how to get the maximum likelihood estimates (MLE) of the UTNXL 

parameters as well as the lower truncated New-XLindley (LTNXLD) and double truncated New-

XLindley (DTNXLD) distributions based on a random sample  1 2, ,..., nx x x x=  of size n  . 

Depending on the type of data, these distributions can be used to model the actual problems. In the 

following part, we fitted these distributions to two real datasets. 

a) MLEs for UTNXLD 

In the UTNXL distribution, let  1 2, ,..., nx x x x=  be a sample of size n  that is (iid) independent and 

identically distributed. Given sample x  , the likelihood function is provided by 

( )
( )

( ) ( )

1

, 1
2 1

i

n
n

x b

ib
i

L b x x e
e b






 



− −

=

 
 = +
 − −
 

  
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We noted here that 
1

n

i

i

x
=

  is the joint sufficient statistics for  andb . The corresponding log-

likelihood equation is given by 

( ) ( ) ( )( ) ( ) ( )
1 1

log , log log 2 1 log 1
n n

b

i i

i i

L b x n n e b x x b    
= =

= − − − + + − −   (11 

Note that in the above log-likelihood equation, it is impossible to get an estimate of b  in terms of the 

observed sample since b  is free from x . Let ( ) ( ) ( )1 2 n
x x x  L be the order sample corresponding 

to 
1 2, ,..., nx x x . Then, the MLE b



 of b  is ( ) ( )1 2max , ,..., n n
b x x x x


= = , the MLE 


 of   can be 

obtained as the solution of the following non-linear equation: 

1 1

2 1

0
1

2 1

b

n n
i

i
b i ii

nb e
xn

x b
x

e b



 











= =

 
− 

  − + − − = 
+   − − 

 

   

To answer the aforementioned problem, we must employ an iterative process similar to Newton's 

method. 

b) MLEs for LTNXLD 

The (pdf) of LTNXLD is given by  

( )
( ) ( )1

,
2

x a

L

x
g x e

a

 




− −+
=

+
 

So, the likelihood function based on x   from LTNXL distribution is given by 

( )
( ) ( )

1

( , ) 1
2

i

n n
x a

in
i

L a x x e
a


 



− −

=

= +
+

  

 

The corresponding log- likelihood function is given by 

( ) ( ) ( ) ( )
1 1

log ( , ) log log 2 log 1
n n

i i

i i

L a x n n a x x a    
= =

= − + + + − −   

Similarly,from the above subsection, the maximum likelihood estimate of a   will be

( ) ( )1 2 1
min , ,..., na x x x x



= =  , smallest observation. The maximum likelihood estimate


 of   can be 

uniquely determined by solving the following non-linear equation: 

1 1

0
12

n n
i

i

i ii

xn n a
x a

xa 





= =

 
− + − − = 

+  +
   

To answer the aforementioned problem, we must employ an iterative process similar to Newton's 

method. 
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c) MLEs for DTNXLD 

The likelihood function under the assumption of the double truncated New-XLindley distribution for 

the random variable X , is given by 

( )
( )

( )
1

2
, , 1 i

n
n

x

i

i

L a b x x e
 



−

=

 
= +   

  

The corresponding log-likelihood function is given by 

( ) ( ) ( )( ) ( )
1 1

log , , log 2 log log 1
n n

i i

i i

L a b x n n x x   
= =

= −  + + −   

Where ( ) ( ) ( )
2b a b abe ae e e   


− − − − = − + − , and the MLEs of a  andb  are ( )1
a x


=  and ( )n
b x


=

respectively, the MLE of   can be obtained by solving the following non-linear equation : 

( )

( )

'

1 1

0
1

n n
i

i

i ii

n x
x

x



 = =


− + − =
 +

   

 

 

5. Real Data Applications  

In this section, we illustrate that the truncated new-XLindley distribution can be a better model than 

the exponential, Lindley, and new-XLindley distributions by using two real data sets. And to 

compare several distribution models, we consider criteria like AIC (Akaike Information Criterion), 

BIC (Bayesian Information Criterion), -2L (-2Log-Likelihood), AICC (Consistent Akaike 

Information Criterion), and HQIC (Hannan-Quinn Information Criterion) for the data set. The better 

distribution corresponds to smaller AIC, BIC, -2L, AICC, and HQIC values. 

Dataset 1: this data on recovered times (in week) of 74 Angola individuals infected with the 

Marburg virus (see https://www.who.int/): 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5,  5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.  

 

 

 

 

 

 

 

 



Journal of Computational Analysis and Applications                                                                              VOL. 34, NO. 3, 2025 

 

                                                                                                                            62                          Mohamed Kouadria et al 53-64 

Table 1: The ML estimates, -2 log-likelihood, AIC, BIC,AICC, and HQIC for dataset 1. 

distribution Estimates AIC BIC -2L AICC HQIC 

exp(θ) 0.1989 388.9947 391.2987 386.9947 389.0502 389.9138 

Lindley (θ) 0.3466 367.9865 370.2906 365.9865 368.0421 368.9056 

XLindley (θ) 0.3128 374.8971 377.2012 372.8971 374.9527 375.8162 

New-XL (θ) 0.3111 377.825 380.129 375.825 377.8805 378.7441 

Zeghdoudi(θ) 0.5536 351.3284 353.6325 349.3284 351.384 352.2476 

UTNXLD(θ,b) (0.00057,9) 329.9532 334.5613 325.9532 330.1222 331.7915 

LTNXLD(θ,a) (0.4410,2) 317.2225 321.8306 313.2225 317.3915 319.0608 

DTNXLD(θ,a,b) (0.5035,2,9) 328.2239 332.832 324.2239 328.3929 330.0621 

Dataset 2:A numeric vector of 15 measurements by different laboratories of the pesticide DDT in 

kale, in ppm (parts per million) using the multiple pesticide residue measurement.(Finsterwalder, 

1976).  

The data are:  2.79, 2.93, 3.22, 3.78, 3.22, 3.38, 3.18, 3.33, 3.34, 3.06, 3.07, 3.56, 3.08, 4.64, 3.34 

Table 2: The ML estimates,-2 log-likelihood, AIC, BIC,AICC, and HQIC for dataset 2. 

distribution Estimates AIC BIC -2L AICC HQIC 

exp(θ) 0.3004 68.07115 68.7792 66.07115 68.37884 68.0636 

Lindley (θ) 0.5007 61.84888 62.55693 59.84888 62.15658 61.84134 

XLindley (θ) 0.44029 64.57162 65.27967 62.57162 64.87932 64.56408 

New-XL (θ) 0.4854 64.18241 64.89046 62.18241 64.4901 64.17486 

Zeghdoudi(θ) 0.81449 53.14825 53.8563 51.14825 53.45595 53.14071 

UTNXLD(θ,b) 0.0006 50.12314 51.53924 46.12314 51.12314 50.10805 

LTNXLD(θ,a) 2.0968 15.30998 16.72608 11.30998 16.30998 15.2949 

DTNXLD(θ,a,b) 2.2577 18.09554 20.21969 12.09554 20.27736 18.07291 

Dataset 3:  A numeric vector with 18 determinations by different laboratories of the amount 

(percentage of the declared total weight) of shrimp in shrimp cocktail.(King & Ryan, 1976) 

The data are: 32.2, 33.0, 30.8, 33.8, 32.2, 33.3, 31.7, 35.7, 32.4, 31.2, 26.6, 30.7, 32.5, 30.7, 31.2, 

30.3, 32.3, 31.7 

Table 3: The ML estimates,-2 log-likelihood, AIC, BIC,AICC, and HQIC for dataset 3. 

distribution Estimates AIC BIC -2L AICC HQIC 

exp(θ) 0.03144 162.5345 163.4249 160.5345 162.7845 162.6573 

Lindley (θ) 0.06109 149.7339 150.6242 147.7339 149.9839 149.8566 

XLindley (θ) 0.05943 150.6912 151.5816 148.6912 150.9412 150.814 

New-XL (θ) 0.05087 157.7884 158.6788 155.7884 158.0384 157.9112 

Zeghdoudi(θ) 0.09296 141.4851 142.3755 139.4851 141.7351 141.6079 

UTNXLD(θ,b) 0.00046 133.303 135.0838 129.303 134.103 133.5486 

LTNXLD(θ,a) 0.21758 99.04227 100.823 95.04227 99.84227 99.28781 

DTNXLD(θ,a,b) 0.26181 105.8118 108.4829 99.81177 107.5261 106.1801 

 

It is revealed that the proposed upper truncated, lower truncated, and double truncated distributions 

have lower values of AIC, BIC, log-likelihood, HQIC and ACIC, the goodness of-fit measure. 
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6. Conclusions 

This article provides a summary of the truncated new XLindley distributions, particularly focusing on 

the upper truncated, lower truncated, and double truncated forms. We examine the characteristics of 

the upper truncated new XLindley distribution, emphasizing its moments, quantile function, and order 

statistics. Additionally, we derive maximum likelihood estimators for the unknown parameters 

associated with the upper truncated, lower truncated, and double truncated new XLindley distributions. 

A comparative assessment of the goodness-of-fit for the exponential, Lindley, XLindley, Zeghdoudi, 

new XLindley, and various truncated new XLindley distributions is conducted using log-likelihood, 

AIC, AICC, HQIC, and BIC, showing that the lower truncated new XLindley distribution provides an 

excellent fit for the window strength data. In conclusion, we argue that truncated distributions are 

highly beneficial for modeling real-world situations, and we recommend the use of truncated new 

XLindley distributions in various fields such as engineering, medicine, finance, and demography, 

where such truncated data frequently arise. 
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