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Abstract

In this paper, we prove the complete monotonicity of some functions involving Bateman’s
G−function and show that

1

2x2 + α
< G(x)− 1

x
<

1

2x2 + β
, x > 0

where α = 1 and β = 0 are the best possible constants, which is a refinement of a recent
result. Then, we give a new proof of Slavić inequality about Wallis ratio Wm and provide
a new inequality for Wm. Our new inequality improves some recent related works. We also
present two inequalities for the hyperbolic tangent function.
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1 Introduction

A function H : J → R is said to be completely monotonic (see [45] and [11]), if H(m)(x) exists
on J for all m ≥ 0 and

(−1)mH(m)(x) ≥ 0 x ∈ J ; m ≥ 0. (1)
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For x > 0, the necessary and sufficient condition for the function H(x) to be completely mono-
tonic is the convergence of the following integral

H(x) =

∫ ∞
0

e−xtdv(t), (2)

where v(t) is a nonnegative measure on t ≥ 0. The function H(x) is said to be strictly completely
monotonic if the inequality (1) is strict for all x ∈ J and m ≥ 0. The concept of completely
monotonic function is the continuous analogue of the totally monotone sequence presented by
Hausdorff in 1921 [15] (see also [45]). These functions find applications in several diverse fields
such as in the theory of special functions, asymptotic analysis, probability, physics, and the list
continues, see [2], [5], [6], [12] , [13], [32], [34], [35], [38], [44] and the references therein.

The Bateman’s G−function is defined by (see Erdélyi [10])

G(t) = ψ

(
t

2
+

1

2

)
− ψ

(
t

2

)
, t 6= 0,−1,−2, ... (3)

where ψ(t) is the digamma (Psi) function which is defined by

ψ(t) =
d

dt
ln Γ(t)

and Γ(z) is the classical Euler gamma function which is defined for Re(z) > 0 by

Γ(z) =

∫ ∞
0

e−wwz−1dw.

For more details on bounds, identities, properties and applications of Bateman’s G−function,
refer to [10], [21]-[25], [31], [39] and the references therein. The following relations hold for the
function G(x) [10]:

G(x+ 1) = −G(x) + 2x−1, (4)

G(x) =

∫ ∞
0

2e−xv

1 + e−v
dv, x > 0 (5)

G(x) = x−1
2F1

(
1, 1; 1 + x;

1

2

)
, (6)

where

lFm(v1, ..., vl;w1, ..., wm; z) =
∞∑
k=0

(v1)k...(vl)k
(w1)k...(wm)k

zk

k!

is the generalized hypergeometric function [3] defined for l,m ∈ N, vj, wj ∈ C, wj 6= 0,−1,−2, ...
and

(v)0 = 1 and (v)n =
Γ(v +m)

Γ(v)
, n ∈ N.

Qiu and Vuorinen [39] established the inequality

(6− 4 ln 4)

x2
< G(x)− 1

x
<

1

2x2
, x > 1/2 (7)
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and Mortici [25] improved the inequality (7) to the double inequality

0 < ψ(x+ h)− ψ(x) ≤ ψ(h) + γ − h+ h−1, x ≥ 1; h ∈ (0, 1) (8)

where γ is the Euler constant. Mahmoud and Agarwal [21] deduced the following asymptotic
formula for x→∞

G(x)− 1

x
∼

∞∑
k=1

(22k − 1)B2k

k
x−2k, (9)

where Bm
′s are the Bernoulli numbers [17] and they also presented the following inequality

1

2x2 + 3
2

< G(x)− x−1 <
1

2x2
, x > 0 (10)

which improves the lower bound of the inequality (7) for x >
(

9−12 ln 2
16 ln 2−11

)1/2
. In [22] Mahmoud

and Almuashi proved the following inequality

2m∑
n=1

(22n − 1)

n
B2nx

−2n < G(x)− x−1 <

2m−1∑
n=1

(22n − 1)

n
B2nx

−2n, m ∈ N (11)

where (22n−1)
n

B2n are the best possible constants. Also, Mahmoud, Talat and Moustafa [23]
studied the following family of approximations of Bateman’s G−function

χ(ρ, x) = ln

(
1 +

1

x+ ρ

)
+

2

x(x+ 1)
, 1 ≤ ρ ≤ 2; x > 0

which is asymptotically equivalent to the function G(x) for x→∞.

Recently, Mahmoud and Almuashi [24] presented some identities, functional equations and
an asymptotic expansion of the generalized Bateman’s G−function Gσ(x) defined by

Gσ(x) = ψ

(
x+ σ

2

)
− ψ

(x
2

)
, x 6= −2r,−2r − σ; σ ∈ (0, 2); for r = 0, 1, 2, ... .

Also, they presented the double inequality

ln

(
1 +

σ

x+ φ

)
< Gσ(x)− 2σ

x(x+ σ)
< ln

(
1 +

σ

x+ θ

)
, x > 0; σ ∈ (0, 2)

where φ = σ

eγ+
2
σ+ψ(σ2 )−1

and θ = 1 are the best possible constants.

In this paper, we will study the complete monotonicity of some functions involving the func-
tion G(x) and as a consequence, we will deduce a double inequality of it. Also, we will prove
that the function

q(x) =
1

G(x)− 1
x

− 2x2, x > 0

is strictly increasing and present a refinement of the lower bound of the inequality (10). We will

apply our results to present a new proof of Slavić inequality about Wallis ratio Wm = Γ(m+1/2)√
π Γ(m+1)

for m ∈ N. We will also present a new inequality of Wm, which improves some recent results.
Further, we will present two inequalities involving the hyperbolic tangent function.
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2 Main Results

We begin by proving some auxiliary results involving Bernoulli numbers.

Lemma 2.1. For any positive integer s ≥ 1, we have

B2s =
1

2(22s − 1)

[
1− 1

2s+ 1

s−1∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
(12)

and

B2s =
1

2(22s − 1)

[
s−

s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k

]
. (13)

Proof. The identity [30]

Bm =
1

2(1− 2m)

m−1∑
j=0

2j
(
m
j

)
Bj, m ∈ N (14)

can be rewritten as

Bm =
1

2(1− 2m)
[1−m+

[m−1
2

]∑
j=1

22j
(
m
2j

)
B2j], m ≥ 1

where B2r+1 = 0 for r ∈ N and hence

s∑
k=1

22k
(

2s+1
2k

)
B2k = 2s, s ≥ 1 (15)

s−1∑
k=1

22k
(

2s
2k

)
B2k = (2s− 1) + 2(1− 22s)B2s, s ≥ 2. (16)

Also, Bernoulli numbers satisfy [4]

s− 1

2
=

s∑
k=1

(
2s+1
2k

)
B2k, s ≥ 1 (17)

s− 1 =
s−1∑
k=1

(
2s
2k

)
B2k, s ≥ 2. (18)

From the two identities (15) and (17), we get

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k = 2s+ 1 s ≥ 1 (19)

and the two identities (16) and (18) give us

2(22s − 1)B2s +
s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k = s s ≥ 1. (20)
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Lemma 2.2. For v = 2, 3, 4, · · ·, Bernoulli numbers satisfy

(22v+2 − 1)

(22v − 1)
π2 <

|B2v|
|B2v+2|

(2v + 1)(2v + 2) <
(22v+2 − 1)

(22v − 1)
(π2 + 1). (21)

Proof. The function

f(x) = x(8x− (9 + 3π2)) + 1, x ≥ 9 + 3π2 +
√

49 + 54π2 + 9π4

16
≈ 4.80006...

is increasing and positive, and hence

22v−1(22v+2 − (9 + 3π2)) + 1 > 0, v ≥ 2.

Then
(π2 + 1)(22v+2 − 1)(22v−1 − 1)− π2(22v+1 − 1)(22v − 1) > 0, v ≥ 2

or
(22v+1 − 1)

(22v−1 − 1)
π2 <

(22v+2 − 1)

(22v − 1)
(π2 + 1), v ≥ 2. (22)

From the Qi’s result [36]

(22v+2 − 1)

(22v − 1)

π2

(2v + 1)(2v + 2)
<
|B2v|
|B2v+2|

<
(22v+1 − 1)

(22v−1 − 1)

π2

(2v + 1)(2v + 2)
, v ≥ 1 (23)

and the inequality (22), we complete the proof.

Now we will prove the complete monotonicity of some functions involving the function G(x).

Lemma 2.3. For a positive integer m, the function

F (x) = G(x)− 1

x
−

2m∑
k=1

(22k − 1)B2k

kx2k
, x > 0 (24)

is strictly completely monotonic.

Proof. Using the formula [1]

1

xk
=

1

(k − 1)!

∫ ∞
0

tk−1e−xtdt, k ∈ N (25)

and the integral representation of G(x), we get

F (x) =

∫ ∞
0

[
et − 1− (1 + et)

2m∑
k=1

(22k − 1)B2kt
2k−1

k(2k − 1)!

]
e−xt

1 + et
dt

=

∫ ∞
0

ϕ(t)
e−xt

1 + et
dt,

where

ϕ(t) = et − 1− (1 + et)
2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1. (26)
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Now

ϕ(t) =
∞∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
r=0

tr+2k−1

r!

=
∞∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=2k−1

ts

(s− 2k + 1)!

=
4m∑
r=1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

4m∑
s=2k−1

ts

(s− 2k + 1)!

+
∞∑

r=4m+1

tr

r!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=4m+1

ts

(s− 2k + 1)!
.

Rewrite infinite summations from 0 and split finite summations by even and odd power of t we
obtain

ϕ(t) =
2m∑
s=1

t2s−1

(2s− 1)!
−

2m∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 −

2m∑
k=1

2(22k − 1)B2k

(2k)!

2m∑
s=k

t2s−1

(2s− 2k)!

+
2m∑
s=1

t2s

(2s)!
−

2m∑
k=1

2(22k − 1)B2k

(2k)!

2m∑
s=k

t2s

(2s− 2k + 1)!
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

2m∑
k=1

2(22k − 1)B2k

(2k)!(s+ 4m− 2k + 2)!
ts+4m+1,

which can be rewritten as

ϕ(t) =
2m∑
s=1

t2s−1

(2s− 1)!
−

2m∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 −

2m∑
s=1

1

(2s)!

s∑
k=1

2(22k − 1)(2s!)B2k

(2k)!(2s− 2k)!
t2s−1

+
2m∑
s=1

t2s

(2s)!
−

2m∑
s=1

1

(2s+ 1)!

s∑
k=1

2(22k − 1)((2s+ 1)!)B2k

(2k)!(2s− 2k + 1)!
t2s +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

m∑
k=1

(
2(24k − 1)B4k

(4k)!(s+ 4(m− k) + 2)!
+

2(24k−2 − 1)B4k−2

(4k − 2)!(s+ 4(m− k) + 4)!

)
ts+4m+1

=
2m∑
s=1

[
2s− 4(22s − 1)B2s −

s−1∑
k=1

2(22k − 1)
(

2s
2k

)
B2k

]
t2s−1

(2s)!

+
2m∑
s=1

[
2s+ 1−

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
t2s

(2s+ 1)!
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

−
∞∑
s=0

m∑
k=1

[(
1 +

(24k−2 − 1)(4k)(4k − 1)B4k−2

(24k − 1)(s+ 4(m− k) + 3)(s+ 4(m− k) + 4)B4k

)
2(24k − 1)ts+4m+1B4k

(4k)!(s+ 4(m− k) + 2)!

]
.
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Using the identities (12) and (13) with the relation

(−1)r+1B2r > 0, r ∈ N (27)

we obtain

ϕ(t) =
∞∑
s=0

m∑
k=1

[(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

(24k − 1)(s+ 4(m− k) + 3)(s+ 4(m− k) + 4)|B4k|

)
2(24k − 1)|B4k|ts+4m+1

(4k)!(s+ 4(m− k) + 2)!

]
+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
.

For s ≥ 0 and m ≥ k ≥ 1, we have

(s+ 4(m− k) + 3)(s+ 4(m− k) + 4) ≥ (s+ 3)(s+ 4) ≥ 12

and then

ϕ(t) ≥
∞∑
s=0

m∑
k=1

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

12(24k − 1)|B4k|

)
ts+4m+1

+
∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!

≥
∞∑
s=0

m∑
k=2

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− (24k−2 − 1)(4k)(4k − 1)|B4k−2|

12(24k − 1)|B4k|

)
ts+4m+1

+
∞∑
s=0

30|B4|
(4!)(s+ 4m− 2)!)

(
1− |B2|

5|B4|

)
ts+4m+1 +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
.

Using inequality (21) with v = 2k − 1 for k ∈ N, we get

ϕ(t) >
∞∑
s=0

m∑
k=2

2(24k − 1)|B4k|
(4k)!(s+ 4(m− k) + 2)!

(
1− π2 + 1

12

)
ts+4m+1 +

∞∑
s=0

ts+4m+1

(s+ 4m+ 1)!
> 0,

which complete the proof.

Lemma 2.4. For a positive integer m, the function

M(x) =
1

x
−G(x) +

2m−1∑
k=1

(22k − 1)B2k

kx2k
, x > 0 (28)

is strictly completely monotonic.

Proof. Using the formula (25) and the integral representation of G(x), we have

M(x) =

∫ ∞
0

[
(1 + et)

2m−1∑
k=1

(22k − 1)B2kt
2k−1

k(2k − 1)!
− (et − 1)

]
e−xt

1 + et
dt

=

∫ ∞
0

µ(t)
e−xt

1 + et
dt,
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where

µ(t) = (1 + et)
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 − (et − 1).

Now

µ(t) =
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
r=0

tr+2k−1

r!
−
∞∑
r=1

tr

r!
µ(t)

=
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

∞∑
s=2k−1

ts

(s− 2k + 1)!
−
∞∑
r=1

tr

r!

=
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

4m−2∑
s=2k−1

ts

(s− 2k + 1)!
−

4m−2∑
r=1

tr

r!

+
∞∑

s=4m−1

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts

(s− 2k + 1)!
−

∞∑
r=4m−1

tr

r!
.

Rewrite infinite summations from 0 and split finite summations by even and odd power of t, we
obtain

µ(t) =
2m−1∑
k=1

2(22k − 1)B2k

(2k)!
t2k−1 +

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

2m−1∑
s=k

t2s−1

(2s− 2k)!
−

2m−1∑
r=1

t2r−1

(2r − 1)!

+
2m−1∑
k=1

2(22k − 1)B2k

(2k)!

2m−1∑
s=k

t2s

(2s− 2k + 1)!
−

2m−1∑
r=1

t2r

(2r)!

+
∞∑
s=0

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts+4m−1

(s+ 4m− 2k)!
−
∞∑
r=0

tr+4m−1

(r + 4m− 1)!
,

which can be rewritten as

µ(t) =
2m−1∑
s=1

2(22s − 1)B2s

(2s)!
t2s−1 +

2m−1∑
s=1

1

(2s)!

s∑
k=1

2(22k − 1)(2s!)B2k

(2k)!(2s− 2k)!
t2s−1 −

2m−1∑
s=1

t2s−1

(2s− 1)!

+
2m−1∑
s=1

1

(2s+ 1)!

s∑
k=1

2(22k − 1)(2s+ 1)!B2k

(2k)!(2s− 2k + 1)!
t2s −

2m−1∑
s=1

t2s

(2s)!

+
∞∑
s=0

2m−1∑
k=1

2(22k − 1)B2k

(2k)!

ts+4m−1

(s+ 4m− 2k)!
−
∞∑
s=0

ts+4m−1

(s+ 4m− 1)!

=
2m−1∑
s=1

[
2(22s − 1)B2s − s+

s−1∑
k=1

(22k − 1)
(

2s
2k

)
B2k

]
2t2s−1

(2s)!

+
2m−1∑
s=1

[
−(2s+ 1) +

s∑
k=1

2(22k − 1)
(

2s+1
2k

)
B2k

]
t2s

(2s+ 1)!

+
∞∑
s=0

[
1

2

s+ 4m− 3

(s+ 4m− 1)!
+

2m−1∑
k=2

2(22k − 1)B2k

(2k)!(s+ 4m− 2k)!

]
ts+4m−1.
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Using the identities (12) and (13) with the relation (27), µ(t) satisfies

µ(t) >
∞∑
s=0

m−1∑
k=1

(
2(24k − 1)B4k

(4k)!(s+ 4(m− k))!
+

2(24k+2 − 1)B4k+2

(4k + 2)!(s+ 4(m− k)− 2)!

)
ts+4m−1

>

[
∞∑
s=0

m−1∑
k=1

(
1− (24k − 1)(4k + 1)(4k + 2)|B4k|

(24k+2 − 1)(s+ 4(m− k)− 1)(s+ 4(m− k))|B4k+2|

)
2(24k+2 − 1)|B4k+2|ts+4m−1

(4k + 2)!(s+ 4(m− k)− 2)!

]
.

For s ≥ 0 and m− k ≥ 1, we have

(s+ 4(m− k)− 1)(s+ 4(m− k)) ≥ (s+ 3)(s+ 4) ≥ 12

and then µ satisfies

µ(t) >
∞∑
s=0

m−1∑
k=1

(
1− π2 + 1

12

)
2(24k+2 − 1)|B4k+2|ts+4m−1

(4k + 2)!(s+ 4(m− k)− 2)!
> 0,

which complete the proof.

From the complete monotonicity of the two functions F (x) and M(x) with the asymptotic
expansion (9), we get the following double inequality which posed as a conjecture in [21].

Lemma 2.5. The following double inequality holds

2m∑
k=1

(22k − 1)B2k

k
x−2k < G(x)− x−1 <

2l−1∑
k=1

(22k − 1)B2k

k
x−2k, l,m ∈ N ; x > 0. (29)

From the positivity of the two functions ϕ(t) and µ(t) in the proofs of Lemmas 2.3 and 2.4,
we obtain the following result:

Lemma 2.6. The following double inequality holds

2m∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1 ≤ tanh(x) ≤

2l−1∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1, l,m ∈ N ; x ≥ 0 (30)

and the inequality is reversed if x ≤ 0. Equality holds if x = 0.

Remark 1. In the case |x| < π
2

and l or m = tends to ∞, in the inequality (30) in fact equality
holds, since

tanh(x) =
∞∑
k=1

22k(22k − 1)B2k

(2k)!
x2k−1, |x| < π

2
.

Elbert and Laforgia established the following lemma to study the monotonicity of some
functions involving gamma function [9] (see also [48]).
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Lemma 2.7. Let K be a real-valued function defined on x > a, a ∈ R with limx→∞K(x) = 0.
Then K(x) > 0, if K(x) > K(x + 1) for all x > a and K(x) < 0, if K(x) < K(x + 1) for all
x > a.

To present our next result, we can easily prove the following simple modification on Lemma
2.7:

Corollary 2.8. Let K be a real-valued function defined on x > a, a ∈ R with limx→∞K(x) = 0.
Then for m ∈ N, K(x) > 0, if K(x) > K(x+m) for all x > a and K(x) < 0, if K(x) < K(x+m)
for all x > a.

Proof. For m ∈ N, if we have K(x) > K(x+m) and limx→∞K(x) = 0, then

K(x) > K(x+m) > ... > K(x+ rm) > ... > lim
r→∞

K(x+ rm) = lim
y→∞

K(y) = 0.

The other case is similarly treated.

Lemma 2.9. The function

q(x) =
1

G(x)− 1
x

− 2x2, x > 0 (31)

is strictly increasing.

Proof. For x > 0, we have

q′(x) =
L(x)

[G(x)− 1
x
]2
,

where

L(x) = −G′(x)− 4xG2(x) + 8G(x)− (4x+ 1)

x2
.

Now,

L(x+ 1)− L(x) = G′(x)−G′(x+ 1) + 4x
[
G2(x)−G2(x+ 1)

]
− 4G2(x+ 1)

− 8 [G(x)−G(x+ 1)] +
4x2 + 6x+ 1

x2(x+ 1)2

and using equation (4) and its derivative, we get

L(x+ 1)− L(x) = 2G′(x)− 4G2(x+ 1) +
6x2 + 10x+ 3

x2(x+ 1)2
, L1(x).

Consider the difference

L1(x+ 2)− L1(x) = 2 [G′(x+ 2)−G′(x)]− 4
[
G2(x+ 3)−G2(x+ 1)

]
− 4 (27 + 135x+ 220x2 + 158x3 + 51x4 + 6x5)

x2(x+ 1)2(x+ 2)2(x+ 3)2
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and using equation (4) and its derivative, we obtain

L1(x+ 2)− L1(x) =
16

(x+ 1)(x+ 2)

{
G(x+ 1)− 4x5 + 34x4 + 98x3 + 99x2 + 3x− 9

4x2(x+ 1)(x+ 2)(x+ 3)2

}
,

16

(x+ 1)(x+ 2)
L2(x).

Using equation (4), the function L2(x) satisfies

L2(x+ 2)− L2(x) = − 3(7x+ 15)(7x+ 20)

2x2(x+ 1)(x+ 2)2(x+ 3)2(x+ 4)(x+ 5)2
< 0.

From the asymptotic formula (9) and its derivative

G′(x) ∼ − 1

x2
−
∞∑
k=1

2(22k − 1)B2k

x2k+1
, x→∞ (32)

we have
lim
x→∞

L(x) = lim
x→∞

L1(x) = lim
x→∞

L2(x) = 0.

Hence, using Corollary 2.8, we get that L(x) > 0 for all x > 0 which completes the proof.

As a consequence of the monotonicity of the function q(x) with the asymptotic expansion
(9), we obtain the following inequality:

Lemma 2.10. The following double inequality holds

1

2x2 + α
< G(x)− 1

x
<

1

2x2 + β
, x > 0 (33)

where α = 1 and β = 0 are the best possible constants.

Remark 2. The double inequality (33) is a refinement of the double inequality (10).

Lemma 2.11. The function

U(x) = G(x)− 1

x
− 1

2x2 + 1
, x > 0 (34)

is strictly completely monotonic.

Proof. Using the formula (25), the integral representation of G(x) and the Laplace transform of
sine function, we have

U(x) =

∫ ∞
0

λ(t)e−xtdt,

where

λ(t) =
et − 1

et + 1
− 1√

2
sin

(
t√
2

)
.
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Since sin z < 1, we get

λ(t) >
et − 1

et + 1
− 1√

2
> 0, t > ln

(√
2 + 1√
2− 1

)
≈ 1.76275 .

Also, from the generalization of Redheffer-Williams’s inequality [40], [41], [42], [46]

π2 − x2

π2 + x2
≤ sinx

x
≤ 12− x2

12 + x2
, 0 < x ≤ π

and the inequality (30) for m = 4, we obtain λ(t) > t5(2352−240t2−17t4)
40320(24+t2)

> 0 for 0 < t <√
4
√

3399−120
17

≈ 2.58051.

As a consequence of the Lemma 2.11, we get

Lemma 2.12.

1. For odd positive integer r , we have

G(r)(x) < − r!

xr+1
+

r!(
√

2)r

(2x2 + 1)r+1

r+1
2∑
l=1

(−1)l
(
r+1
2l−1

)
(
√

2x)r−2l+2 x > 0 (35)

2. For even positive integer r , we have

G(r)(x) >
r!

xr+1
+

r!(
√

2)r

(2x2 + 1)r+1

r
2

+1∑
l=1

(−1)l+1
(
r+1
2l−1

)
(
√

2x)r−2l+2 x > 0 (36)

Also, as a consequence of the proof of Lemma 2.11, we obtain the following inequality:

Lemma 2.13. The following double inequality holds

tanh(x) ≥ 1√
2

sin(
√

2x), x ≥ 0. (37)

Equality holds iff x = 0.

3 Applications: Some inequalities of Wallis ratio

The Wallis ratio

Wm =
1.3.5...(2m− 1)

2.4.6...(2m)
=

Γ(m+ 1/2)√
π Γ(m+ 1)

, m ∈ N (38)

plays an important role in mathematics especially in special functions, combinatorics, graph
theory and many other branches. For further details about its history and applications, we refer
to [7], [16], [18], [20], [26]-[29].
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Guo, Xu and Qi [14] deduced the inequality

C1

m

(
1− 1

2m

)m√
m− 1 < Wm ≤

C2

m

(
1− 1

2m

)m√
m− 1, m ≥ 2 (39)

with the best possible constants C1 =
√

e
π

and C2 = 4
3
.

Recently, Qi and Mortici [37] presented the following improvement of the double inequality
(39)√

e

π m

[
1− 1

2(m+ 1/3)

]m+1/3

< Wm <

√
e

π m

[
1− 1

2(m+ 1/3)

]m+1/3

e
1

144m3 , m ∈ N.

(40)
Also, Zhang, Xu and Situ [47] presented the inequality

1√
eπm

(
1 +

1

2m

)m− 1
12m

< Wm ≤
1√
eπm

(
1 +

1

2m

)m− 1
12m+16

, m ∈ N. (41)

Recently, Cristea [8] improved the upper bound of the inequality (41) by

Wm ≤
1√
eπm

(
1 +

1

2m

)m− 1
12m

+ 1
48m2−

1
2880m3

, m ∈ N (42)

which is better than the upper bound of the inequality (40).

3.1 New proof of Slavić inequality

Slavić [43] presented the following double inequality

1√
x

exp

(
2l−1∑
k=1

(1− 2−2k)B2k

k(1− 2k)x2k−1

)
<

Γ(x+ 1/2)

Γ(x+ 1)
<

1√
x

exp

(
2m∑
k=1

(1− 2−2k)B2k

k(1− 2k)x2k−1

)
, (43)

where x > 0 and l,m ∈ N . In the following sequel, we will present a new proof of Slavić
inequality (43). Consider the two functions

SL(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
x exp

(
2l−1∑
k=1

(1− 2−2k)B2k

k(2k − 1)x2k−1

)
, l ∈ N

and

SU(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
x exp

(
2m∑
k=1

(1− 2−2k)B2k

k(2k − 1)x2k−1

)
, m ∈ N.

Using Lemma 2.5, we obtain

S ′L(x)

SL(x)
= G(2x)− 1

2x
−

(
2l−1∑
k=1

(1− 2−2k)B2k

kx2k

)
< 0, l ∈ N
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and
S ′U(x)

SU(x)
= G(2x)− 1

2x
−

(
2m∑
k=1

(1− 2−2k)B2k

kx2k

)
> 0, m ∈ N.

Then the function SL(x) is decreasing and the function SU(x) is increasing and using the asymp-
totic expansion of the ratio of two gamma functions [19]

Γ(x+ a)

Γ(x+ b)
∼ xa−b

[
1 +

(a− b)(a+ b− 1)

2x
+O(x−2)

]
, a, b ≥ 0 (44)

as x→∞, we have
lim
x→∞

SL(x) = lim
x→∞

SU(x) = 1.

Hence we get
SL(x) > 1 and SU(x) < 1,

which complete the proof of Slavić inequality (43).

Remark 3. In the case of l = 1, m = 1 and x = m, the inequality (43) will gives

e
−1
8m

√
πm

< Wm <
e
−1
8m

+ 1
192m3

√
πm

, m ∈ N (45)

which is better than inequality (40) of Qi and Mortici [37].

3.2 New upper bound of Wn

Consider the function

ML(x) =
Γ(x+ 1/2)

Γ(x+ 1)

√
xe

−1
2
√
2
[tan−1(2

√
2x)−π

2 ], x > 0.

Using the inequality (33), we get

M ′
L(x)

ML(x)
= G(2x)− 1

2x
− 1

8x2 + 1
> 0

and using the expansion (44), we have limx→∞ML(x) = 1. Then

ML(x) < 1

and we obtain the following result:

Lemma 3.1. The following double inequality holds

Γ(x+ 1/2)

Γ(x+ 1)
<
e

1
2
√
2
[tan−1(2

√
2x)−π

2 ]
√
x

, x > 0. (46)

Remark 4. In the case of x = m in the inequality (46), we have

Wm <
e

1
2
√
2
[tan−1(2

√
2m)−π

2 ]
√
πm

, m ∈ N (47)

which is better than inequality (42) of Cristea [8].
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