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Abstract. In this paper we introduce and study some classes of almost strongly

convergent difference sequences of Fibonacci numbers defined by a sequence of modulus

functions. We also make an effort to study some topological properties and inclusion
relations between these classes of sequences. Further, we compute toeplitz duals of

theses classes and study matrix transformations on these classes of sequences.

1. Introduction and Preliminaries

Let w be the vector space of all real sequences. We shall write c, c0 and l∞ for the sequence
spaces of all convergent, null and bounded sequences. Moreover, we write bs and cs for
the spaces of all bounded and convergent series, respectively. Also, we use the conventions
that e = (1, 1, 1, ...) and e(n) is the sequence whose only non-zero term is 1 in the nth
place for each n ∈ N.
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real numbers
ank, where n, k ∈ N. Then we say that A defines a matrix transformation from X into Y
and we denote it by writing A : X → Y if for every sequence x = (xk) ∈ X, the sequence
Ax = {An(x)} and the A-transform of x is in Y , where

(1.1) An(x) =
∞∑
k=0

ankxk (n ∈ N).

By (X,Y ) we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X,Y )
if and only if the series on the right-hand side of (1.1) converges for each n ∈ N and every
x ∈ X, and we have Ax ∈ Y for all x ∈ X. The matrix domain XA of an infinite matrix
A in a sequence space X is defined by

(1.2) XA = {x = (xk) ∈ w : Ax ∈ X}

which is a sequence space. By using the matrix domain of a triangle infinite matrix, so
many sequence spaces have recently been defined by several authors, (see [1], [2], [15],
[25]). In the literature, the matrix domain X∆ is called the difference sequence space
whenever X is a normed or paranormed sequence space, where ∆ denotes the backward
difference matrix ∆ = (∆nk) and ∆′ = (∆′nk) denotes the forward difference matrix (the
transpose of the matrix ∆), which are defined by

∆nk =

{
(−1)n−k, n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n

∆′nk =

{
(−1)n−k, n ≤ k ≤ n+ 1,

0 , 0 ≤ k < n or k > n+ 1
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for all k, n ∈ N respectively. The notion of difference sequence spaces was introduced by
Kızmaz [16], who defined the sequence spaces

X(∆) = {x = (xk) ∈ w : (xk − xk+1) ∈ X}

for X = l∞, c and c0. The difference space bνp, consisting of all sequences (xk) such that
(xk − xk−1) is in the sequence space lp, was studied in the case 0 < p < 1 by Altay and
Başar [3] and in the case 1 ≤ p ≤ ∞ by Başar and Altay [7] and Çolak et al. [9]. Kirişçi
and Başar [15] have been introduced and studied the generalized difference sequence spaces

X̂ = {x = (xk) ∈ w : B(r, s)x ∈ X}

where X denotes any of the spaces l∞, lp, c and c0, (1 ≤ p <∞) and B(r, s)x = (sxk−1 +
rxk) with r, s ∈ R\{0}. Following Kirişçi and Başar [15], Sönmez [31] have been examined
the sequence space X(B) as the set of all sequences whose B(r, s, t)-transforms are in
the space X ∈ {l∞, lp, c, c0}, where B(r, s, t) denotes the triple band matrix B(r, s, t) =
{bnk(r, s, t)} defined by

bnk(r, s, t) =


r, n = k
s, n = k + 1
t, n = k + 2
0, otherwise

for all k, n ∈ N and r, s, t ∈ R\{0}. Also in ([10-13], [26]) authors studied certain difference
sequence spaces.
A B-space is a complete normed space. A topological sequence space in which all co-
ordinate functionals πk, πk(x) = xk, are continuous is called a K-space. A BK-space is
defined as a K-space which is also a B-space, that is, a BK-space is a Banach space
with continuous coordinates. For example, the space lp(1 ≤ p < ∞) is a BK-space with

‖x‖p =
( ∞∑
k=0

|xk|p
) 1

p

and c0, c and l∞ are BK-spaces with ‖x‖∞ = sup
k
|xk|. The sequence

space X is said to be solid (see [17, p. 48]) if and only if

X̃ = {(vk) ∈ w : ∃(xk) ∈ X such that |vk| ≤ |xk| for all k ∈ N} ⊂ X.

A sequence (bn) in a normed space X is called a Schauder basis for X if for every
x ∈ X there is a unique sequence (αn) of scalars such that x =

∑
n αnbn, i.e., limm ‖x−

m∑
n=0

αnbn‖ = 0.

The following lemma (known as the Toeplitz Theorem) contains necessary and sufficient
condition for regularity of a matrix.

Lemma 1.1. (Wilansky, 1984): Matrix A = (ank)∞n,k=1 is regular if and only if the
following three conditions hold:
(1) There exists M > 0 such that for every n = 1, 2, ... the following inequality holds:

∞∑
k=1

|ank| ≤M ;

(2) lim
n→∞

ank = 0 for every k = 1, 2, ...

(3) lim
n→∞

∞∑
k=1

ank = 1.
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The sequence {fn}∞n=0 of Fibonacci numbers is given by the linear recurrence relations
f0 = f1 = 1 and fn = fn−1 + fn−2, n ≥ 2. Fibonacci numbers have many interesting
properties and applications in arts, sciences and architecture. For example, the ratio se-
quences of Fibonacci numbers converges to the golden ratio which is important in sciences
and arts. Also, in [18] some basic properties of Fibonacci numbers are given as follows:

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= φ (golden ratio),

n∑
k=0

fk = fn+2 − 1 (n ∈ N),

∑
k

1

fk
converges,

fn−1fn+1 − f2
n = (−1)n+1 (n ≥ 1) (Cassini formula).

Substituting for fn+1 in Cassini’s formula yields f2
n−1 + fnfn−1 − f2

n = (−1)n+1.

Now, let A = (ank) be an infinite matrix and list the following conditions:

(1.3) sup
n∈N

∑
k

∣∣∣ank∣∣∣ <∞
(1.4) lim

n→∞
ank = 0 for each k ∈ N

(1.5) ∃αk ∈ C 3 lim
n→∞

ank = αk for each k ∈ N

(1.6) lim
n→∞

∑
k

ank = 0

(1.7) ∃α ∈ C 3 lim
n→∞

∑
k

ank = α

(1.8) sup
k∈H

∑
n

∣∣∣ ∑
k∈K

ank

∣∣∣ <∞
where C and H denote the set of all complex numbers and the collection of all finite sub-
sets of N, respectively.
Now, we may give the following lemma on the characterization of the matrix transforma-
tions between some classical sequence spaces.

Lemma 1.2. The following statements hold:
(a) A = (ank) ∈ (c0, c0) if and only if (1.3) and (1.4) hold.
(b) A = (ank) ∈ (c0, c) if and only if (1.3) and (1.5) hold.
(c) A = (ank) ∈ (c, c0) if and only if (1.3), (1.4) and (1.6) hold.
(d) A = (ank) ∈ (c, c) if and only if (1.3), (1.5) and (1.7) hold.
(e) A = (ank) ∈ (c0, l∞) = (c, l∞) if and only if condition (1.3) holds.
(f) A = (ank) ∈ (c0, l1) = (c, l1) if and only if condition (1.8) holds.

Recently, Kara [19] has defined the sequence spaces lp(F̂ ) as follows:

lp(F̂ ) = {x ∈ w : F̂ x ∈ lp}, (1 ≤ p ≤ ∞)
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where F̂ = (f̂nk) is the double band matrix defined by the sequence (fn) of Fibonacci
numbers as follows

f̂nk =


− fn+1

fn
, k = n− 1,

fn
fn+1

, k = n,

0 , 0 ≤ k < n− 1 or k > n

(k, n ∈ N).

Also, in [20] Kara et al. have characterized some classes of compact operators on the

spaces lp(F̂ ) and l∞(F̂ ), where 1 ≤ p <∞.

The inverse F̂−1 = (gnk) of the Fibonacci matrix F̂ is given by

gnk =

{
f2
n+1

fkfk+1
, 0 ≤ k ≤ n,

0 , k > n
(k, n ∈ N).

that is, 

1 0 0 0 0 0 ...
4
1

4
2 0 0 0 0 ...

9
1

9
2

9
6 0 0 0 ...

25
1

25
2

25
6

25
15 0 0 ...

64
1

64
2

64
6

64
15

64
40 0 ...

...
...

...
...

...
...

. . .


It is obvious that the matrix F̂ is a triangular matrix, that is, fnn 6= 0 and fnk = 0 for
k > n (n = 1, 2, 3...). Also, it follows by Lemma 1.1 that the method F̂ is regular.

In [8] Başarir et al. introduce the Fibonacci difference sequence spaces c0(F̂ ) and c(F̂ ) as

the set of all sequences whose F̂ -transforms are in the spaces c0 and c, respectively, i.e.,

c0(F̂ ) =

{
x = (xn) ∈ w : lim

n→∞

( fn
fn+1

xn −
fn+1

fn
xn−1

)
= 0

}
,

and

c(F̂ ) =

{
x = (xn) ∈ w : ∃l ∈ C 3 lim

n→∞

( fn
fn+1

xn −
fn+1

fn
xn−1

)
= l

}
.

Define the sequence y = (yn) by the F̂ -transform of a sequence x = (xn), i.e.,

(1.9) yn = F̂n(x) =

{
x0 , n = 0

fn
fn+1

xn − fn+1

fn
xn−1, n ≥ 1

(n ∈ N).

A linear functional L on l∞ is said to be a Banach limit if it has the following properties:
(1) L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),
(2) L(e) = 1, where e = (1, 1, ...),
(3) L(Dx) = L(x),
where the shift operator D is defined by D(xn) = {xn+1} (see [6]).
Let B be the set of all Banach limits on l∞. A sequence x = (xk) ∈ l∞ is said to be almost
convergent if all Banach limits of x = (xk) coincide. In [22], it was shown that

ĉ =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

xk+s exits, uniformly in s

}
In ([23], [24]) Maddox defined strongly almost convergent sequences. Recall that a se-
quence x = (xk) is strongly almost convergent if there is a number l such that

lim
n→∞

1

n

n∑
k=1

|xk+s − l| = 0, uniformly in s.
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Let X be a linear metric space. A function p : X → R is called paranorm, if

(1) p(x) ≥ 0 for all x ∈ X,
(2) p(−x) = p(x) for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of

vectors with p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm (see [33], Theorem 10.4.2, pp. 183).
A modulus function is a function f : [0,∞)→ [0,∞) such that

(1) f(x) = 0 if and only if x = 0,
(2) f(x+ y) ≤ f(x) + f(y), for all x, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞). The modulus function may
be bounded or unbounded. For example, if we take f(x) = x

x+1 , then f(x) is bounded.

If f(x) = xp, 0 < p < 1 then the modulus function f(x) is unbounded. Subsequently,
modulus function has been discussed in ([4], [27], [28], [29], [30]) and references therein.
Let F = (Fk) be a sequence of modulus functions, p = (pk) be any bounded sequence of
positive real numbers and u = (uk) be a sequence of strictly positive real numbers. In this
paper we define the following sequence spaces:

c0(F̂ ,F , u, p) =

{
x = (xk) ∈ w : lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk = 0

}
,

and

c(F̂ ,F , u, p) =

{
x = (xk) ∈ w : ∃l ∈ C 3 lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk = l

}
.

If Fk(x) = x, for all k ∈ N. Then above sequence spaces reduces to c0(F̂ , u, p) and

c(F̂ , u, p).

By taking pk = 1 and uk = 1, for all k ∈ N, then we get the sequence spaces c0(F̂ ,F) and

c(F̂ ,F).

With the notation of (1.2), the sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) can be
redefined as follows:

(1.10) c0(F̂ ,F , u, p) = {c0(F , u, p)}F̂ and c(F̂ ,F , u, p) = {c(F , u, p)}F̂ .

The following inequality will be used throughout the paper. If 0 ≤ pk ≤ sup pk = H,
K = max(1, 2H−1) then

(1.11) |ak + bk|pk ≤ K{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

In this paper, we introduce the sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p). We in-
vestigate some topological properties of these new sequence spaces and establish some
inclusion relations between these spaces. Also we determine the α−, β− and γ− duals of
these spaces and construct the matrix transformation of the spaces (c0(F̂ ,F , u, p), X) and

(c(F̂ ,F , u, p), X), where X denote the spaces l∞, f, c, f0, c0, bs, fs and l1.
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2. Some topological properties of the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p)

Theorem 2.1. Let F = (Fk) be a sequence of modulus functions, p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real

numbers. Then c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are linear spaces over the field R of real
numbers.

Proof. Let x = (xk), y = (yk) ∈ c0(F̂ ,F , u, p) and λ, µ ∈ C. Then there exist integers
Mλ and Nµ such that |λ| ≤ Mλ and |µ| ≤ Nµ. Using inequality (1.11) and definition of
modulus function, we have

1
n

n∑
k=1

[
ukFk

∣∣∣λ( fk
fk+1

xk −
fk+1

fk
xk−1

)
+ µ

( fk
fk+1

yk −
fk+1

fk
yk−1

)∣∣∣]pk

≤ 1

n

n∑
k=1

[
ukFk|λ|

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk +
1

n

n∑
k=1

[
ukFk|µ|

∣∣∣ fk
fk+1

yk −
fk+1

fk
yk−1

∣∣∣]pk

≤ K 1

n

n∑
k=1

[
ukFkMλ

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk +K
1

n

n∑
k=1

[
ukFkNµ

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk

≤ KMH
λ

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk+KNH
µ

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk
→ 0 as n→∞.
Thus λx+ µy ∈ c0(F̂ ,F , u, p). This proves that c0(F̂ ,F , u, p) is a linear space. Similarly

we can prove that c(F̂ ,F , u, p) is a linear space over the real field R. �

Theorem 2.2. Let F = (Fk) be a sequence of modulus functions and p = (pk) be a bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real

numbers. Then c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are paranormed space with the paranorm
defined by

g(x) = sup

(
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk) 1
M

where 0 ≤ pk ≤ sup pk = H, M = max(1, H).

Proof. Since the proof is similar for the space c(F̂ ,F , u, p), we consider only the space

c0(F̂ ,F , u, p). Clearly g(−x) = g(x), for all x ∈ c0(F̂ ,F , u, p). It is trivial that fk
fk+1

xk −
fk+1

fk
xk−1 = 0, for x = 0. Hence we get g(0) = 0. Since pk

M ≤ 1, using Minkowski’s

inequality, we have(
1
n

n∑
k=1

[
ukFk

∣∣∣( fk
fk+1

xk −
fk+1

fk
xk−1

)
+
( fk
fk+1

yk −
fk+1

fk
yk−1

)∣∣∣]pk) 1
M

≤

(
1
n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣+ ukFk

∣∣∣ fk
fk+1

yk −
fk+1

fk
yk−1

∣∣∣]pk) 1
M

≤

(
1
n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk−
fk+1

fk
xk−1

∣∣∣]pk) 1
M

+

(
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

yk−
fk+1

fk
yk−1

∣∣∣]pk) 1
M

.
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Now it follows that g(x) is subadditive. Finally to check the continuity of scalar multipli-
cation let us take any real number ρ. By definition of modulus function Fk, we have

g(ρx) = sup
k

(
1

n

n∑
k=1

[
ukFk

∣∣∣ρ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk) 1
M

≤ C
H
M
ρ g(x).

where Cρ is a positive integer such that |ρ| ≤ Cρ. Now, Let ρ → 0 for any fixed x with
g(x) = 0. By definition for |ρ| < 1, we have

(2.1)
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk < ε for n > N(ε).

Also for 1 ≤ n < N , taking ρ small enough. Since Fk is continuous, we have

(2.2)
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk < ε.

Now from equation (2.1) and (2.2), we have

g(ρx)→ 0 as ρ→ 0.

This completes the proof. �

Theorem 2.3. Let F = (Fk) be a sequence of modulus functions, u = (uk) be a sequence
of strictly positive real numbers. If p = (pk) and q = (qk) are bounded sequences of positive

real numbers with 0 ≤ pk ≤ qk <∞ for each k, then c0(F̂ ,F , u, p) ⊆ c(F̂ ,F , u, q).

Proof. Let x ∈ c0(F̂ ,F , u, p). Then

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

This implies that [
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ≤ 1,

for sufficiently large values of k. Since Fk is increasing and pk ≤ qk we have

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]qk ≤ 1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk
−→ 0 as n→∞.

Hence x ∈ c(F̂ ,F , u, q). This completes the proof. �

Theorem 2.4. Let F = (Fk) be a sequence of modulus functions and % = lim
t→∞

Fk(t)

t
> 0.

Then c0(F̂ ,F , u, p) ⊆ c0(F̂ , u, p).

Proof. In order to prove that c0(F̂ ,F , u, p) ⊆ c0(F̂ , u, p). Let % > 0. By definition of %, we
have Fk(t) ≥ %(t), for all t > 0. Since % > 0, we have t ≤ 1

%Fk(t) for all t > 0.

Let x = (xk) ∈ c0(F̂ ,F , u, p). Thus, we have

1

n

n∑
k=1

[
uk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ≤ 1

%n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk
which implies that x = (xk) ∈ c0(F̂ , u, p). This completes the proof. �
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Theorem 2.5. Let F ′ = (F ′k) and F ′′ = (F ′′k ) are sequences of modulus functions, then

c0(F̂ ,F ′, u, p) ∩ c0(F̂ ,F ′′, u, p) ⊆ c0(F̂ ,F ′ + F ′′, u, p).

Proof. Let x = (xk) ∈ c0(F̂ ,F ′, u, p) ∩ c0(F̂ ,F ′′, u, p). Therefore

1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

and

1

n

n∑
k=1

[
ukF

′′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

Then we have

1
n

n∑
k=1

[
uk(F ′k + F ′′k )

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk

≤ K

{
1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk}

+ K

{
1

n

n∑
k=1

[
ukF

′′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk}
−→ 0 as n→∞.

Thus 1
n

n∑
k=1

[
uk(F ′k + F ′′k )

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk −→ 0 as n→∞.

Therefore x = (xk) ∈ c0(F̂ ,F ′ + F ′′, u, p) and this completes the proof. �

Theorem 2.6. Let F = (Fk) and F ′ = (F ′k) be two sequences of modulus functions, then

c0(F̂ ,F ′, u, p) ⊆ c0(F̂ ,FoF ′, u, p).

Proof. Let x = (xk) ∈ c0(F̂ ,F ′, u, p). Then we have

lim
n→∞

1

n

n∑
k=1

[
ukF

′
k

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk = 0.

Let ε > 0 and choose δ > 0 with 0 < δ < 1 such that Fk(t) < ε for 0 ≤ t ≤ δ.

Write yk =

[
ukF

′
k

∣∣∣ fk
fk+1

xk − fk+1

fk
xk−1

∣∣∣] and consider

1

n

n∑
k=1

[Fk(yk)]pk =
1

n

∑
1

[Fk(yk)]pk +
1

n

∑
2

[Fk(yk)]pk

where the first summation is over yk ≤ δ and second summation is over yk ≥ δ. Since Fk
is continuous, we have

(2.3)
1

n

∑
1

[Fk(yk)]pk < εH

and for yk > δ, we use the fact that

yk <
yk
δ
≤ 1 +

yk
δ
.
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By the definition, we have for yk > δ

Fk(yk) < 2Fk(1)
yk
δ
.

Hence

(2.4)
1

n

∑
2

[Fk(yk)]pk ≤ max
(

1, (2Fk(1)δ−1)H
) 1

n

∑
k

[yk]pk .

From equation (2.3) and (2.4), we have

c0(F̂ ,F ′, u, p) ⊆ c0(F̂ ,FoF ′, u, p).

This completes the proof. �

Theorem 2.7. The sets c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are BK-spaces with the norm

‖x‖c0(F̂ ,F,u,p) = ‖x‖c(F̂ ,F,u,p) = ‖F̂ x‖∞.

Proof. Since (1.10) holds, c0 and c are the BK-spaces with respect to their natural norms

and the matrix F̂ is a triangle; Theorem 4.3.12 of Wilansky [33, p.63] gives the fact that the

spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are BK-spaces with the given norms. This completes
the proof. �

Remark 2.8. One can easily check that the absolute property does not hold on the spaces
c0(F̂ ,F , u, p) and c(F̂ ,F , u, p), that is, ‖x‖c0(F̂ ,F,u,p) 6= ‖|x|‖c0(F̂ ,F,u,p) and ‖x‖c(F̂ ,F,u,p) 6=
‖|x|‖c(F̂ ,F,u,p) for at least one sequence in the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p), and

this shows that c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are the sequence spaces of non-absolute
type, where |x| = (|xk|).

Theorem 2.9. The Fibonacci difference sequence spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p)
of non-absolute type are linearly isomorphic to the spaces c0 and c respectively, i.e.,
c0(F̂ ,F , p, u) ∼= c0 and c(F̂ ,F , p, u) ∼= c.

Proof. To prove this, we should show the existence of a linear bijection between the spaces
c0(F̂ ,F , u, p) and c0. Consider the transformation T defined with the notation of (1.9),

from c0(F̂ ,F , u, p) to c0 by x → y = Tx. The linearity of T is clear. Further it is trivial
that x = 0 whenever Tx = 0 and hence T is injective.
We assume that y = (yk) ∈ c0, for 1 ≤ p ≤ ∞ and defined the sequence x = (xk) by

xk =

k∑
j=0

f2
k+1

fjfj+1
yj , for all k ∈ N.

Then we have

lim
k→∞

{
1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

fjfj+1
yj −

fk+1

fk

k−1∑
j=0

f2
k

fjfj+1
yj

∣∣∣]pk} = lim
k→∞

yk = 0
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which shows that x ∈ c0(F̂ ,F , p, u). Additionally, we have for every x ∈ c0(F̂ ,F , p, u)
that

‖x‖c0(F̂ ,F,p,u) = sup
k∈N

∣∣∣∣∣ 1n
n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

xk −
fk+1

fk
xk−1

∣∣∣]pk ∣∣∣∣∣
= sup

k∈N

∣∣∣∣∣ 1n
n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

fjfj+1
yj −

fk+1

fk

k−1∑
j=0

f2
k

fjfj+1
yj

∣∣∣]pk ∣∣∣∣∣
= sup

k∈N

(
|yk|pk

)
= ‖y‖∞ <∞.

Consequently, we see from here that T is surjective and norm preserving. Hence, T is a
linear bijection which shows that the spaces c0(F̂ ,F , u, p) and c0 are linearly isomorphic.

It is clear here that if the spaces c0(F̂ ,F , u, p) and c0 are respectively replaced by the

spaces c(F̂ ,F , u, p) and c, then we obtain the fact that c(F̂ ,F , p, u) ∼= c. This concludes
the proof. �

Now, we give some inclusion relations concerning with the space c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).

Theorem 2.10. The inclusion c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) strictly holds.

Proof. It is clear that the inclusion c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) holds. Further, to show

that this inclusion is strict, consider the sequence x = (xk) =
k∑
j=0

f2
k+1

f2
j

. Then, we obtain

(1.9) for all k ∈ N that

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

k∑
j=0

f2
k+1

f2
j

− fk+1

fk

k−1∑
j=0

f2
k+1

f2
j

∣∣∣]pk =
1

n

n∑
k=1

[
ukFk

(fk+1

fk

)]pk

which shows that 1
n

n∑
k=1

[
ukFk

(fk+1

fk

)]pk
→ ϕ, as k →∞. This is to say that F̂ (x) ∈ c\c0.

Thus, the sequence x is in the c(F̂ ,F , u, p) but not in c0(F̂ ,F , u, p). Hence, the inclusion

c0(F̂ ,F , u, p) ⊂ c(F̂ ,F , u, p) is strict. �

Theorem 2.11. The space l∞ does not include the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).

Proof. Let us consider the sequence x = (xk) = (f2
k+1). Since f2

k+1 → ∞ as k → ∞ and

F̂ (x) = e(0) = (1, 0, 0, ...), the sequence x is in the space c0(F̂ ,F , u, p) but is not in the

space l∞. This shows that the space l∞ does not include the space c0(F̂ ,F , u, p) and the

space c(F̂ ,F , u, p), as desired. �

Theorem 2.12. The inclusions c0 ⊂ c0(F̂ ,F , u, p) and c ⊂ c(F̂ ,F , u, p) strictly holds.

Proof. Let X = c0 or c. Since the matrix F̂ = (fnk) satisfies the conditions

sup
n∈N

∑
k

|fnk| = sup
n∈N

( fn
fn+1

+
fn+1

fn

)
= 2 +

1

2
=

5

2
,

lim
n→∞

fnk = 0,

lim
n→∞

∑
k

fnk = lim
n→∞

( fn
fn+1

− fn+1

fn

)
=

1

ϕ
− ϕ
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we conclude by parts (a) and (c) of Lemma 1.2 that (F̂ ,F , u, p) ∈ (X,X). This leads that

(F̂ ,F , u, p)x ∈ X for any x ∈ X. Thus, x ∈ X(F̂ ,F,u,p). This shows that X ⊂ X(F̂ ,F,u,p).

Now, let x = (xk) = (f2
k+1). Then, it is clear that x ∈ X(F̂ ,F,u,p)\X. This says that the

inclusion X ⊂ X(F̂ ,F,u,p) is strict. �

Theorem 2.13. The spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) are not solid.

Proof. Consider the sequences r = (rk) and s = (sk) defined by rk = f2
k+1 and sk =

(−1)k+1 for all k ∈ N. Then, it is clear that r ∈ c0(F̂ ,F , u, p) and s ∈ l∞. Nevertheless

rs = {(−1)k+1f2
k+1} is not in the space c0(F̂ ,F , u, p), since

1

n

n∑
k=1

[
ukFk

∣∣∣ fk
fk+1

(−1)k+1f2
k+1 −

fk+1

fk
(−1)kf2

k

∣∣∣]pk

=
1

n

n∑
k=1

[
ukFk

(
2(−1)k+1fkfk+1

)]pk
for all k ∈ N.

This shows that the multiplication l∞c0(F̂ ,F , u, p) of the spaces l∞ and c0(F̂ ,F , u, p) is

not a subset of c0(F̂ ,F , u, p). Hence, the space c0(F̂ ,F , u, p) is not solid.

It is clear here that if the spaces c0(F̂ ,F , u, p) is replaced by the space c(F̂ ,F , u, p), then

we obtain the fact c(F̂ ,F , u, p) is not solid. This completes the proof. �

It is known from Theorem 2.3 of Jarrah and Malkowsky [14] that the domain XT of an
infinite matrix T = (tnk) in a normed sequence space X has a basis if and only if X has
a basis, if T is a triangle. As a direct consequence of this fact, we have

Corollary 2.14. Define the sequences c(−1) = {c(−1)
k }k∈N and c(n) = {c(n)

k }k∈N for every
fixed n ∈ N by

c
(−1)
k =

k∑
j=0

f2
k+1

fjfj+1
and c

(n)
k =

{
0 , 0 ≤ k ≤ n− 1
f2
k+1

fnfn+1
, k ≥ n

Then, the following statements hold:
(a) The sequence {c(n)}∞n=0 is a basis for the space c0(F̂ ,F , u, p) and every sequence x ∈
c0(F̂ ,F , u, p) has a unique representation x =

∑
n F̂n(x)c(n).

(b) The sequence {c(n)}∞n=−1 is a basis for the space c(F̂ ,F , u, p) and every sequence z =

(zn) ∈ c(F̂ ,F , u, p) has a unique representation z = lc(−1) +
∑
n[F̂n(z) − l]c(n), where

l = lim
n→∞

F̂n(z).

3. The α−, β− and γ− duals of the spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p) and
some matrix transformations

The α−, β− and γ− duals of the sequence space X are respectively defined by

Xα = {a = (ak) ∈ w : ax = (akxk) ∈ l1 for all x = (xk) ∈ X},
Xβ = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X}

and
Xγ = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X}

In this section, we determine α−, β− and γ− duals of the sequence spaces c0(F̂ ,F , u, p) and

c(F̂ ,F , u, p), and characterize the classes of infinite matrices from the spaces c0(F̂ ,F , u, p)
and c(F̂ ,F , u, p) to the spaces c0, c, l∞, f, f0, bs, fs, cs and l1, and from the space f to the
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spaces c0(F̂ ,F , u, p) and c(F̂ ,F , u, p).
The following two lemmas are essential for our results.

Lemma 3.1. [8] Let X be any of the spaces c0 or c and a = (an) ∈ w, and the matrix

B = (bnk) be defined by Bn = anF̂
−1
n , that is ,

bnk =

{
angnk, 0 ≤ k ≤ n,
0 , k > n

for all k, n ∈ N. Then a ∈ Xβ

F̂
if and only if B ∈ (X, l1).

Lemma 3.2 (5, Theorem 3.1). Let C = (cnk) be defined via a sequence a = (ak) ∈ w and
the inverse matrix V = (vnk) of the triangle matrix Z = (znk) by

cnk =

{ ∑n
j=k ajvjk, 0 ≤ k ≤ n,

0 , k > n

for all k, n ∈ N. Then for any sequence space X,

Xγ
Z = {a = (ak) ∈ w : C ∈ (X, l∞)},

Xβ
Z = {a = (ak) ∈ w : C ∈ (X, c)}.

Combining Lemmas (1.2), (3.1), and (3.2), we have

Corollary 3.3. Consider the sets d1, d2, d3 and d4 defined as follows:

d1 =

{
a = (ak) ∈ w : sup

k∈H

∑
n

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣ ∑
k∈K

f2
n+1

fkfk+1
an

∣∣∣∣∣
]pk

<∞

}
,

d2 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

<∞

}
,

d3 =

{
a = (ak) ∈ w : lim

n→∞

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

exists for each k ∈ N

}
,

d4 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

1

n

n∑
k=1

[
ukFk

∣∣∣∣∣
n∑
j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣
]pk

exists

}
.

Then the following statements hold:
(a) {c0(F̂ ,F , u, p)}α = {c(F̂ ,F , u, p)}α = d1.

(b) {c0(F̂ ,F , u, p)}β = d2 ∩ d3 and {c(F̂ ,F , u, p)}β = d2 ∩ d3 ∩ d4.

(c) {c0(F̂ ,F , u, p)}γ = {c(F̂ ,F , u, p)}γ = d2.

Theorem 3.4. Let X = c0 or c and Y be an arbitrary subset of w. Then, we have
A = (ank) ∈ (XF̂ , Y ) if and only if

(3.1) D(m) = (d
(m)
nk ) ∈ (X, c) for all n ∈ N,

(3.2) D = (dnk) ∈ (X,Y ),

where

d
(m)
nk =


1
n

n∑
k=1

(
ukFk

∣∣∣∣∣
m∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣∣
)pk

, 0 ≤ k ≤ m

0 , k > m
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and

dnk =
1

n

n∑
k=1

(
ukFk

∣∣∣∣∣
∞∑
j=k

f2
j+1

fkfk+1
anj

∣∣∣∣∣
)pk

for all k,m, n ∈ N.

By changing the roles of the spaces XF̂ and X with Y in Theorem 3.4, we have

Theorem 3.5. Suppose that the elements of the infinite matrices A = (ank) and B = (bnk)
are connected with the relation

(3.3) bnk =
1

n

n∑
k=1

[
ukFk

∣∣∣− fn+1

fn
an−1,k +

fn
fn+1

ank

∣∣∣]pk
for all k, n ∈ N and Y be any given sequence space. Then, A ∈ (Y,XF̂ ) if and only if
B ∈ (Y,X).

Proof. Let z = (zk) ∈ Y . Then, by taking into account the relation (3.3) one can easily
derive the following equality

m∑
k=0

bnkzk =
m∑
k=0

(
1

n

n∑
k=1

[
ukFk

∣∣∣− fn+1

fn
an−1,k +

fn
fn+1

ank

∣∣∣]pk)zk for all m,n ∈ N

which yields as m → ∞ that (Bz)n = [F̂ (Az)]n. Therefore, we conclude that Az ∈ XF̂

whenever z ∈ Y if and only if Bz ∈ X whenever z ∈ Y . This completes the proof. �

By f0, f and fs we denote the spaces of almost null and almost convergent sequences and
series respectively. Now, the following two lemmas characterizing the strongly and almost
conservative matrices:

Lemma 3.6. (see [32]) A = (ank) ∈ (f, c) if and only if (1.3), (1.5), and (1.7) hold, and

(3.4) lim
n→∞

∑
k

∆(ank − αk) = 0

also holds, where ∆(ank − αk) = ank − αk − (an,k+1 − αk+1) for all k, n ∈ N.

Lemma 3.7. (see [21]) A = (ank) ∈ (c, f) if and only if (1.3) holds, and

(3.5) ∃αk ∈ C 3 f − lim ank = αk for each fixed k ∈ N,

(3.6) ∃α ∈ C 3 f − lim
∑
k

ank = α.

Now, we list the following conditions:

(3.7) sup
m∈N

m∑
k=0

∣∣∣d(n)
mk

∣∣∣ <∞
(3.8) ∃dnk ∈ C 3 lim

m→∞
d

(n)
mk = dnk for each k, n ∈ N

(3.9) sup
n∈N

∑
k

|dnk| <∞

(3.10) ∃αk ∈ C 3 lim
n→∞

dnk = αk for each k ∈ N
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(3.11) sup
N,K∈H

∣∣∣∑
n∈N

∑
k∈K

dnk

∣∣∣ <∞
(3.12) ∃βn ∈ C 3 lim

m→∞

m∑
k=0

d
(n)
mk = βn for each n ∈ N

(3.13) ∃α ∈ C 3 lim
n→∞

∑
k

dnk = α

It is trivial that Theorem 3.4 and Theorem 3.5 have several consequences. Indeed, com-
bining Theorem 3.4, 3.5 and Lemmas 1.1, 3.6 and 3.7 we derive the following results:

Corollary 3.8. Let A = (ank) be an infinite matrix and a(n, k) =
n∑
j=0

ajn for all k, n ∈ N.

Then, the following statements hold:
(a) A = (ank) ∈ (c0(F̂ ,F , u, p), c0) if and only if (3.7), (3.8), (3.9) hold and (3.10) also
holds with αk = 0 for all k ∈ N.
(b) A = (ank) ∈ (c0(F̂ ,F , u, p), cs0) if and only if (3.7), (3.8), (3.9) hold and (3.10) also
holds with αk = 0 for all k ∈ N with a(n, k) instead of ank.

(c) A = (ank) ∈ (c0(F̂ ,F , u, p), c) if and only if (3.7), (3.8), (3.9) and (3.10) hold.

(d) A = (ank) ∈ (c0(F̂ ,F , u, p), cs) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
a(n, k) instead of ank.

(e) A = (ank) ∈ (c0(F̂ ,F , u, p), l∞) if and only if (3.7), (3.8) and (3.9) hold.

(f) A = (ank) ∈ (c0(F̂ ,F , u, p), bs) if and only if (3.7), (3.8) and (3.9) hold with a(n, k)
instead of ank.
(g) A = (ank) ∈ (c0(F̂ ,F , u, p), l1) if and only if (3.7), (3.8) and (3.11) hold.

(h) A = (ank) ∈ (c0(F̂ ,F , u, p), bv1) if and only if (3.7), (3.8) and (3.11) hold with
ank − an−1,k instead of ank.

Corollary 3.9. Let A = (ank) be an infinite matrix. Then, the following statements hold:

(a) A = (ank) ∈ (c(F̂ ,F , u, p), l∞) if and only if (3.7), (3.8), (3.9) and (3.12) hold.

(b) A = (ank) ∈ (c(F̂ ,F , u, p), bs) if and only if (3.7), (3.8), (3.9) and (3.12) hold with
a(n, k) instead of ank.

(c) A = (ank) ∈ (c(F̂ ,F , u, p), c) if and only if (3.7), (3.8), (3.9), (3.10), (3.12) and
(3.13) hold.

(d) A = (ank) ∈ (c(F̂ ,F , u, p), cs) if and only if (3.7), (3.8), (3.9), (3.10), (3.12) and
(3.13) hold with a(n, k) instead of ank.

(e) A = (ank) ∈ (c(F̂ ,F , u, p), c0) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
αk = 0 for all k ∈ N, (3.12) and (3.13) also hold with α = 0.

(f) A = (ank) ∈ (c(F̂ ,F , u, p), cs0) if and only if (3.7), (3.8), (3.9) and (3.10) hold with
αk = 0 for all k ∈ N, (3.12) and (3.13) also hold with α = 0 with a(n, k) instead of ank.

(g) A = (ank) ∈ (c(F̂ ,F , u, p), l1) if and only if (3.7), (3.8), (3.11) and (3.12)hold.

(h) A = (ank) ∈ (c(F̂ ,F , u, p), bv1) if and only if (3.7), (3.8), (3.11) and (3.12) hold with
ank − an−1,k instead of ank..

Corollary 3.10. A = (ank) ∈ (c(F̂ ,F , u, p), f) if and only if (3.7), (3.8), (3.12) and
(3.13) hold, and (3.9), (3.10) also hold with dnk instead of ank.

Corollary 3.11. A = (ank) ∈ (c(F̂ ,F , u, p), f0) if and only if (3.7), (3.8), (3.12) and
(3.13) hold, and (3.9), (3.10) also hold with dnk instead of ank and αk = 0 for all k ∈ N.
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Corollary 3.12. A = (ank) ∈ (c(F̂ ,F , u, p), fs) if and only if (3.7), (3.8), (3.9), (3.10),
(3.12) and (3.13) hold with a(n, k) instead of ank and (3.9), (3.10) also hold with d(n, k)
instead of dnk.

Corollary 3.13. A = (ank) ∈ (f, c(F̂ ,F , u, p)) if and only if (1.3), (1.5), (1.7) and (3.8)
hold with bnk instead of ank, where b(n, k) is defined by (3.3) .

Corollary 3.14. A = (ank) ∈ (f, c0(F̂ ,F , u, p)) if and only if (1.3) and (1.7) hold, (1.5)
and (3.8) also hold with bnk instead of ank and αk = 0 for all k ∈ N, where b(n, k) is
defined by (3.3).
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